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1 Introduction

In principle, a way to get much information about the
physics of black holes, and other similar spacetimes, is to
analyze their interaction with quantum fields, especially
scalar fields [1–7]. One such source of information is the
Resonant Frequencies (RFs) emitted by a black hole via
its interaction with different fields [8, 9].

Since the expansion of the universe was discovered,
several new theories of gravity have been developed to
take this fact into account. One of these is f(R) gravity,
in which a function of the Ricci scalar, R, is introduced
in the Einstein-Hilbert action [10]. Other studies con-
cerning alternative theories of gravity as well as their
consequences can be found in Refs. [11–14].

In the 21st century, the most important special func-
tions are the Heun functions. Indeed, there are a large
number of applications of these functions in different ar-
eas of physics [15], in particular problems concerning the
interaction between scalar fields and gravitational back-
grounds [16, 17]. Otherwise, without the use of these
functions, scalar solutions would be possible only for
asymptotic regimes.

In the present work, we apply the general Heun equa-
tion to obtain the solution of the radial Klein-Gordon
equation for a massive scalar field in a Schwarzschild
black hole with a global monopole in f(R) gravity. This

solution, which is given in terms of the general Heun
functions, is used to examine the resonant frequencies
and the Hawking radiation of scalar waves.

The richness of the new ideas and the perspective of
describing the open problems in cosmology justify the in-
terest in the study of f(R) gravity. From a cosmological
point of view, the f(R) theory makes it possible, in prin-
ciple, to explain both the late time cosmic speed-up and
the early time inflationary scenario in one model, without
the introduction of an ad hoc cosmological constant [18].
Furthermore, f(R) gravity can be seen as an effective
theory that introduces corrections to general relativity,
such as, for example, to explain the rotation of galax-
ies [19], and the Starobinsky model that can be used to
fit some results on Cosmic Microwave Background data
[20].

On the other hand, motivated by the idea of con-
structing a theory combining quantum physics and gen-
eral relativity, the f(R) theory can be used to study the
interaction between scalar particles and one of their black
hole solutions, namely, the Schwarzschild black hole with
a global monopole [21]. This can lead us to find the in-
fluence of modified gravity on the thermal properties of
black holes [22], for example.

This paper is organized as follows. In Section 2, we
present the background under consideration. In Section
3, we obtain the solution of the Klein-Gordon equation
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for a massive scalar field in this spacetime. In Section
4, we discuss the Hawking radiation effect. In Section 5,
we obtain the resonant frequencies. Finally, in Section
6, the conclusions are given.

2 Schwarzschild black hole with a global
monopole in f(R) gravity

The metric generated by a static and spherically sym-
metric spacetime in f(R) gravity corresponds to the
Schwarzschild black hole with a global monopole [21],
whose line element is given by

ds2=∆ dt2−∆−1 dr2−r2(dθ2+sin2θ dφ2) , (1)

with

∆=1−2M

r
−8πη2−ψ0r , (2)

where M is the total mass of the Schwarzschild black
hole with a global monopole. The deviation from gen-
eral relativity is indicated by the constant ψ0, which is
assumed to have values such that |ψ0r|�1 in the weak
field approximation constrained equation df(R)

dR
=1+ψ0r.

The parameter η is related to the scalar field vacuum
expectation value and we will assume that η2�1 (for a
review, see Ref. [23] and references therein).

The horizon surface equation is obtained from
Eq. (2), namely, under the condition

∆=(r−r+)(r−r−)=0 . (3)

The solutions of Eq. (3) are

r±=
1−8πη2±

√

(1−8πη2)2−8Mψ0

2ψ0

, (4)

and correspond to the event horizons of the background
under consideration; r− is the interior event horizon and
r+ is the cosmological event horizon.

3 Exact solution of the Klein-Gordon
equation

Now, let us consider the covariant Klein-Gordon
equation for a massive scalar field in a curved spacetime.
In this case, we can write the Klein-Gordon equation as

[

1√−g∂σ(gστ
√−g∂τ )+µ2

0

]

Ψ=0 , (5)

where µ0 is the mass of the scalar particle. Note that
the units G≡c≡~≡kB≡1 were chosen.

Substituting Eq. (1) into Eq. (5), we obtain
[

−r
2

∆

∂2

∂t2
+
∂

∂r

(

r2∆
∂

∂r

)

−L2−µ2
0r

2

]

Ψ=0 , (6)

where L2 is the angular momentum operator given by

L2=− 1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

− 1

sin2θ

∂2

∂θ2
. (7)

Due to the time independence and symmetry of the
spacetime under consideration with respect to rotation,
the solution of Eq. (6) can be written as

Ψ=Ψ(r,t)=R(r)Y m
l (θ,φ)e−iωt , (8)

where Y m
l (θ,φ) are called spherical harmonics, with l=

{0,1,2,...} being the orbital quantum number and |m|6l
is the azimuthal quantum number. The energy (fre-
quency) is taken as ω>0, which corresponds to the flux
of particles at infinity.

Substituting Eq. (8) into Eq. (6), we find that [21]

d

dr

(

r2∆
dR

dr

)

+

(

r2ω2

∆
−λlm−µ2

0r
2

)

R=0 , (9)

where λlm=l(l+1) is a constant.

3.1 Radial equation

Now, let us obtain the exact and general solution for
the radial part of the Klein-Gordon equation given by
Eq. (9).

To solve the radial part of the Klein-Gordon equa-
tion, we use Eq. (3) and write down Eq. (9) as

d2R

dr2
+

(

2

r
+

1

r−r+
+

1

r−r−

)

dR

dr
+

{

1

r(r−r+)(r−r−)

[

−µ2
0r−

λlm

r
+

r+ω
2

(r+−r−)

1

r−r+
− r−ω

2

(r+−r−)

1

r−r−

]}

R=0 . (10)

This equation has singularities at r = (a1,a2,a3,a∞)
= (r−,r+,0,∞). The transformation of Eq. (10) to a
Heun-type equation is achieved by setting

x=
r−a1

a2−a1

=
r−r−
r+−r−

, (11)

which transforms (a1,a2) 7→(0,1), and the remaining sin-
gularity is transformed to x=a, where

a≡a3−a1

a2−a1

=
−r−
r+−r−

. (12)

This is an homographic substitution which has the fol-
lowing asymptotic regimes: x→0⇒r→r− and x→∞⇒
r→∞. Then, it is easy to see that this transformation
covers the entire spacetime region of the Schwarzschild
black hole with a global monopole in the f(R) theory of
gravity.

095102-2



Chinese Physics C Vol. 41, No. 9 (2017) 095102

Thus, we can write Eq. (10) as

d2R

dx2
+

(

1

x
+

1

x−1
+

2

x−a

)

dR

dx
+

{

2a2ω2+µ2
0r

2
−
+λlm

r2−

1

x
+
−(2a2ω2+µ2

0r
2
−
)(a−1)2−a2λlm

(a−1)2r2−

1

x−1

+
(2a−1)λlm

(a−1)2r2−

1

x−a+
a2ω2

r2−

1

x2
+
a2ω2

r2−

1

(x−1)2
− aλlm

(a−1)r2−

1

(x−a)2
}

R=0 . (13)

Now, let us perform a transformation in order to
reduce the powers of the terms proportional to 1/x2,
1/(x− 1)2, and 1/(x−a)2. This transformation is a
F-homotopic transformation of the dependent variable,
R(x) 7→U(x), such that

R(x)=xA1(x−1)A2(x−a)A3U(x) , (14)

where the coefficients A1, A2, and A3 are given by

A1=
iaω

r−
, (15)

A2=
iaω

r−
, (16)

A3=
{(a−1)r2

−
[4aλlm+(a−1)r2

−
]}1/2−r2

−
(a−1)

2(a−1)r2−
, (17)

The function U(x) satisfies the following equation

d2U

dx2
+

[

2A1+1

x
+

2A2+1

x−1
+

2(A3+1)

x−a

]

dU

dx

+
A4x−A5

x(x−1)(x−a)U=0 , (18)

where the coefficients A4 and A5 are given by

A4 =
(a−1)[r2

−
A2(2A3+3)+2r2

−
A3−µ2

0r
2
−
]+aλlm

(a−1)r2−

+
(a−1)[r2

−
A1(2A2+2A3+3)−2a2ω2]

(a−1)r2−
, (19)

A5 = A3+A1(2aA2+a+2A3+2)

+a

(

A2−µ2
0−

λlm

r2−

)

−2a3ω2

r2−
. (20)

Equation (18) is similar to the general Heun equation
[26], namely,

d2U

dx2
+

(

γ

x
+

δ

x−1
+

ε

x−a

)

dU

dx
+

αβx−q
x(x−1)(x−a)U=0 , (21)

where U(x) = HeunG(a,q;α,β,γ,δ;x) are the general
Heun functions. This is a Fuchsian type equation with
regular singularities at x=(0,1,a,∞). The general Heun
function is simultaneously a local Frobenius solution
around a singularity x= ai and a local Frobenius solu-
tion around x=aj, so that it is analytic in some domain
including both these singularities. The parameters α, β,
γ, δ, ε, q, a are generally complex, arbitrary (except that
a 6=0,1), and related by

γ+δ+ε=α+β+1 . (22)

If γ 6=0,−1,−2,..., then from the Fuchs-Frobenius Theory,
it follows that HeunG(a,q;α,β,γ,δ;x) exists, is analytic
in the disk |x|< 1, corresponds to exponent 0 at x= 0
and assumes the value 1 there, and has the Maclaurin
expansion

HeunG(a,q;α,β,γ,δ;x)=

∞
∑

j=0

bjx
j , |x|<1 , (23)

where b0=1, and

aγb1−qb0=0 ,

Xjbj+1−(Qj+q)bj+Pjbj−1=0, j>1 , (24)

with

Pj = (j−1+α)(j−1+β) ,

Qj = j[(j−1+γ)(1+a)+aδ+ε] ,

Xj = a(j+1)(j+γ) . (25)

Thus, the general solution of the radial part of the
Klein-Gordon equation for a massive scalar particle in
the Schwarzschild black hole with a global monopole
spacetime in f(R) gravity, given by Eq. (13), valid in
the exterior region of the event horizon r−, can be writ-
ten as

R(x) = x
1

2
(γ−1)(x−1)

1

2
(δ−1)(x−a) 1

2
(ε−2)

×{C1 HeunG(a,q;α,β,γ,δ;x)

+C2 x
1−γ HeunG(a,q1;α1,β1,γ1,δ;x)} ,

(26)

where C1 and C2 are constants, and the parameters α,
β, γ, δ, ε, and q are now given by

α =
[4aλlm(a−1)+(a−1)2r2

−
]1/2

2(a−1)r−

+
[(4µ2

0+9)(a−1)2r2
−
]1/2

2(a−1)r−

+
4iaω(a−1)+2(a−1)r−

2(a−1)r−
, (27)

β =
[4aλlm(a−1)+(a−1)2r2

−
]1/2

2(a−1)r−

− [(4µ2
0+9)(a−1)2r2

−
]1/2

2(a−1)r−

+
4iaω(a−1)+2(a−1)r−

2(a−1)r−
, (28)

095102-3



Chinese Physics C Vol. 41, No. 9 (2017) 095102

γ=1+
2iaω

r−
, (29)

δ=1+
2iaω

r−
, (30)

ε=
[4aλlm(a−1)+(a−1)2r2

−
]1/2+(a−1)r−

(a−1)r−
, (31)

q =
r−{4ia3ω−2iaω(a+1)

2(a−1)r2−

+
[4aλlm(a−1)+(a−1)2r2

−
]1/2}

2(a−1)r2−

+
r2
−
(1−a)(2aµ2

0−1)

2(a−1)r2−

+
2a{ω{−4a2ω(a−1)

2(a−1)r2−

+
i[4aλlm(a−1)+(a−1)2r2

−
]1/2}

2(a−1)r2−

+
λlm(1−a)}
2(a−1)r2−

. (32)

The parameters α1, β1, γ1, and q1 are given by

α1=α+1−γ , (33)

β1=β+1−γ , (34)

γ1=2−γ . (35)

q1=q+(αδ+ε)(1−γ) . (36)

At this point, we can compare the result obtained
with those given by Refs. [16, 27]. First, it is worth pay-
ing attention to the difference between the functional
form of the general solution of the radial equation ob-
tained analytically, given by Eq. (26) in terms of the
general Heun functions, and the solutions obtained, also
analytically, in [16, 27], given by their Eqs. (31) and (78)
(both in the case a=Q= e= 0), respectively, in terms
of the confluent Heun functions. It is always possible to
reduce the general Heun function to the confluent Heun
function by a general process of confluence but the lim-
iting process generally alters the solutions qualitatively.
Then, the results in this paper can recover just the func-
tional form of the results presented in Refs. [16, 27].

In what follows, we will use this analytical solution for
the radial part of the Klein-Gordon equation and the pre-
sented properties of the general Heun function to study
the Hawking effect and the resonant frequencies.

4 Hawking radiation

We will consider the massive scalar field near the in-
terior event horizon in order to discuss the Hawking ra-
diation.

From Eqs. (11) and (23) we can see that the radial
solution given by Eq. (26), near the interior event hori-
zon, that is, when r→ r− (which implies that x→ 0),
behaves asymptotically as

R(r)∼C1 (r−r−)
1

2
(γ−1)+C2 (r−r−)−

1

2
(γ−1) , (37)

where we are considering contributions only of the first
term in the expansion, and all constants are included in
C1 and C2. Thus, considering the time factor, near the
black hole event horizon r−, this solution is given by

Ψ=e−iωt(r−r−)±
1

2
(γ−1) . (38)

From Eq. (29), we obtain

1

2
(γ−1)=

i

2κ−

ω , (39)

where κ− is the surface gravity of the black hole (or the
gravitational acceleration on the background horizon sur-
face r−) given by

κ−≡
1

2r2−

d∆

dr

∣

∣

∣

∣

r=r
−

=
r−−r+
2r2−

. (40)

Therefore, on the black hole interior horizon surface,
the ingoing and outgoing wave solutions are

Ψin=e−iωt(r−r−)
− i

2κ
−

ω
, (41)

Ψout(r>r−)=e−iωt(r−r−)
i

2κ
−

ω
. (42)

Using the definition of the tortoise and advanced
Eddington-Finkelstein coordinates

r∗=
1

2κ−

ln(r−r−) , (43)

v=t+r∗ , (44)

we can rewrite Ψout, near the interior event horizon r−,
as

Ψout(r>r−)=e−iωv(r−r−)
i

κ
−

ω
. (45)

This solution is not analytical in the interior event
horizon r=r−. According to the Damour-Ruffini method
[28], by analytic continuation, rotating −π through the
lower-half complex r plane, namely,

(r−r−)→|r−r−|e−iπ=(r−−r)e−iπ , (46)

we can extend Ψout from the outside of the black hole
into the inside of the black hole, and get the outgoing
decay rate (or the relative scattering probability) of the
scalar wave at the interior event horizon surface r=r−

Γ−=

∣

∣

∣

∣

Ψout(r>r−)

Ψout(r<r−)

∣

∣

∣

∣

2

=e
−

2π

κ
−

ω
, (47)

This is the relative probability of creating a particle-
antiparticle pair just outside the interior horizon.

According to the Sannan heuristic derivation [29], the
mean number of particles emitted in a given mode, N̄ω,
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can be obtained from the expression for the relative scat-
tering probability, Γ−, as follows:

N̄ω=
Γ−

1−Γ−

=
1

e
~ω

kBT
− −1

, (48)

where

T−=
κ−

2π

=
r−−r+
4πr2−

(49)

is the Hawking radiation temperature in geometric units.
Equation (48) is exactly the resulting Hawking radia-
tion spectrum for scalar particles being radiated from a
black hole with a global monopole in f(R) gravity, where
Boltzmann’s and Planck’s constants are reintroduced.

Therefore, we can see that the resulting Hawking ra-
diation spectrum of scalar particles has a thermal char-
acter, analogous to the black body spectrum, where
kBT−=~κ−/2π.

By integrating the above spectrum (or distribution
function) over all ω’s, we can obtain the Hawking flux
for massive scalar particles. It is given by

Flux=
1

2π

∫

∞

0

N̄ω ω dω=
1

2π

∫

∞

0

ω dω

e
2π

κ
−

ω−1
=
κ2
−

48π

. (50)

Once again, we can compare the results obtained with
those of Ref. [27]. The surface gravity of the black hole,
κ−, and the Hawking radiation temperature, T−, given
by Eqs. (40) and (49), respectively, have magnitudes big-
ger than those obtained in Ref. [27], given by its Eqs. (10)

and (110). Then, the mean number of particles emitted
in a given mode, N̄ω, for scalar particles being radiated
from a Schwarzschild black hole with a global monopole
in f(R) gravity is bigger than that from a Schwarzschild
black hole in general relativity. Furthermore, these two
quantities are negative in the background under consid-
eration.

5 Resonant frequencies

In this section, we follow the technique recently de-
veloped by Vieira and Bezerra [8] for computing the RFs
for massive scalar waves propagating in a Schwarzschild
black hole with a global monopole in f(R) gravity.

The RFs are associated with the solution given by
Eq. (26) under certain boundary conditions, that is, the
radial solution should be finite on the interior horizon
and well behaved at asymptotic infinity. The latter con-
dition requires that R(x) must have a polynomial form.
Indeed, the function HeunG(a,q;α,β,γ,δ;x) becomes a
polynomial of degree n if

α=−n , (51)

with n=0,1,2,....
Using Eq. (27), we therefore find that the RFs for a

massive scalar particle in the background under consid-
eration are given by

ωn=i

{

[4aλlm(a−1)+(a−1)2r2
−
]1/2+[(a−1)2(4µ2

0+9)r2
−
]1/2

4(a−1)a
+

2(a−1)(n+1)r−
4(a−1)a

}

, (52)

where the quantum number n is a positive integer or
zero.

This is a nontrivial quantization law, because it gives
a complex number. We remark that the eigenvalues given
by Eq. (52) are degenerate, since that there is a depen-
dence on the eigenvalue λlm.

The resonant frequencies for n={0,1,2,3}, 06 l6n,
ψ0 = 0.02, M = 1 and µ0 = {0,0.1,0.2,0.3} are shown in
Tables 1 and 2 for two different values of the parame-
ter η, namely, 8πη2=10−5 and 8πη2=0.02, respectively.
These are the same set of values that were used in our
recent work [21] for the quasinormal modes.

Table 1. Values of the resonant frequencies for l=0,
ψ0=0.02, and 8πη2=10−5 with different values of
mass µ0 and principal quantum number n. The
units are in multiples of the total mass M .

a=−0.04554 µ0=0.0 µ0=0.1 µ0=0.2 µ0=0.3

n =(ωn) =(ωn) =(ωn) =(ωn)

0 22.9126 22.9888 23.2167 23.5932

1 1.049e-8 0.07629 0.30415 0.68063

2 -22.9126 -22.8363 -22.6084 -22.2319

3 -45.8252 -45.7489 -45.5210 -45.1445

Table 2. Values of the resonant frequencies for l=0,
ψ0=0.02, and 8πη2=0.02 with different values of
mass µ0 and principal quantum number n. The
units are in multiples of the total mass M .

a=−0.04769 µ0=0.0 µ0=0.1 µ0=0.2 µ0=0.3

n =(ωn) =(ωn) =(ωn) =(ωn)

0 22.3662 22.4407 22.6631 23.0306

1 2.501e-8 0.07447 0.29690 0.66440

2 -22.3662 -22.2917 -22.0693 -21.7018

3 -44.7325 -44.6580 -44.4356 -44.0681

Once again, we can compare the results obtained
with those of Ref. [8]. The RFs, ωn, given by Eq. (52),
decrease with quantum number n for massless scalar
fields (µ0 = 0.0). On the other hand, the RFs from a
Schwarzschild black hole in general relativity, given by
Eq. (61) in Ref. [8], increase with quantum number n.
Furthermore, this quantity becomes negative in the back-
ground under consideration.

In Figs. 1, 2, and 3 we present the resonant frequen-
cies as functions of l, µ0, and n, respectively, for 8πη2=
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10−5, as well as in Figs. 4, 5, and 6 for 8πη2=0.02. This
is the same set of variables that was used in Refs. [24, 25]
for the quasinormal modes.

Fig. 1. (color online) Scalar resonant frequencies
for µ0=0.1, ψ0=0.02, and 8πη2=10−5. The units
are in multiples of the total mass M .

Fig. 2. (color online) Scalar resonant frequencies
for n=1, l=0, ψ0 =0.02, and 8πη2 =10−5. The
units are in multiples of the total mass M .

Fig. 3. (color online) Scalar resonant frequencies
for l=1, and µ0=0.4, ψ0=0.02, and 8πη2=10−5.
The units are in multiples of the total mass M .

Fig. 4. (color online) Scalar resonant frequencies
for µ0=0.1, ψ0=0.02, and 8πη2=0.02. The units
are in multiples of the total mass M .
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Fig. 5. (color online) Scalar resonant frequencies
for n= 1, l=0, ψ0 =0.02, and 8πη2 = 0.02. The
units are in multiples of the total mass M .

Fig. 6. (color online) Scalar resonant frequencies
for l=1, and µ0 =0.4, ψ0 =0.02, and 8πη2 =0.02.
The units are in multiples of the total mass M .

Indeed, since the singularity a is a constant given by
Eq. (12), the resonant frequencies given by Eq. (52) are
not a function of a. However, for completeness, we will
analyze the behavior of ωn(a). This is shown in Figs. 7
and 8.

From Figs. 1–8 we can conclude that there is no rel-
evant difference between the values of the resonant fre-
quencies concerning the two choices of the parameter η.

Fig. 7. (color online) Values of the resonant fre-
quencies for the mode n = 3, l = 2, µ0 = 0.3,
ψ0 =0.02, 8πη2 =10−5 for different values of sin-
gularity a. The units are in multiples of the total
mass M .

Fig. 8. (color online) Values of the resonant fre-
quencies for the mode n = 3, l = 2, µ0 = 0.3,
ψ0 =0.02, 8πη2 =0.02 for different values of sin-
gularity a. The units are in multiples of the total
mass M .

6 Conclusions

We have presented an exact solution for the radial
part of the covariant Klein-Gordon equation for a mas-
sive scalar field in a Schwarzschild black hole with a
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global monopole in f(R) gravity. We compare this result
with those obtained in our recent works.

We used the general Heun functions to investigate
some processes associated with scalar fields in the back-
ground under consideration, such as the existence of res-
onant frequencies and the Hawking radiation.

From this analytic solution, corresponding to the ra-
dial part, we obtained the solutions for ingoing and out-
going waves near the interior horizon, and used these re-
sults to discuss the Hawking radiation effect, by taking

into account the properties of the general Heun functions.
We also obtained a general expression for the energy flux
for massive scalar particles.

Finally, we obtained the resonant frequencies. The
RFs are a complex number and the imaginary compo-
nent of the RFs tells us how quickly the oscillation will
die away. Therefore, using these results, it is possible, in
principle, to get some information about the physics of
this black hole as well as to validate the f(R) theory of
gravity.
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15 M. Hortaçsu, arXiv:1101.0471v9 [math-ph] (2017)
16 V. B. Bezerra, H. S. Vieira and A. A. Costa, Class. Quantum

Grav., 31: 045003 (2014)

17 A. S. Tarloyan, T. A. Ishkhanyan and A. M. Ishkhanyan, Ann.
Phys. (Berlin), 528: 264 (2016)
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