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Abstract: The death of massive stars due to supernova explosions is a key ingredient in stellar evolution and stellar

population synthesis. Electron capture (EC) plays a vital role in supernova explosions. Using the Shell-Model Monte

Carlo method, based on the nuclear random phase approximation and linear response theory model for electrons, we

study the strong screening EC rates of 52,53,59,60Fe in pre-supernovae. The results show that the screening rates can

decrease by about 18.66%. Our results may become a good foundation for future investigation of the evolution of

late-type stars, supernova explosion mechanisms and numerical simulations.
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1 Introduction

Supernovae not only play a critical role in the uni-
verse, but are also major sources of nucleosynthesis in
stellar evolution and galactic chemical evolution. How-
ever, the driving mechanisms are still not well under-
stood for two typical types of supernova, core-collapse
(type II) and thermonuclear (type Ia) supernovae. Some
studies show that electron capture (EC) and strong elec-
tron screening (SES) on medium-heavy nuclei play im-
portant roles as they lead to unstable nuclear burning
and iron nucleus collapse in supernova explosions [1–
3]. Thus, EC and SES have raised very interesting
problems for nuclear astrophysicists in stellar evolution
and nucleosynthesis. Some pioneer works on EC have
been done by Fuller et al. [4, 5] (FFN), Aufderheide et
al. [6, 7] (AUFD). According to the shell model Monte
Carlo method, [8–11] Langanke et al. [12, 13], and Juoda-
galvis et al. [14] also studied the EC reaction in detail.
Liu et al. [1–3, 15–25] and Nabi et al. [26](NKK) have
also discussed these issues in explosive stellar environ-
ments.

Nonetheless, there are still some challenging prob-
lems. For instance, what roles do EC and SES play in
stars? How does SES influence EC rates? It is extremely
important for us to accurately calculate the EC rates and

screening correction for supernova explosions and numer-
ical simulations.

52,53,59,60Fe are very important nuclei in supernova ex-
plosions. Their EC rates have been widely investigated
by some scholars (e.g., Refs. [4–7, 18, 20, 27, 28]). In
the same environment, Liu et al. [1–3, 22] and Gutier-
rez et al. [29] have also discussed the weak interaction
rates of 52,53,59,60Fe. However, their works seem not to
consider the influence of SES on EC. The SES problem
has already been discussed by Bravo et al. [30] and Liu
et al. [31]. The works mentioned above show that the
screening corrections to EC rates in dense stars should
be calculated accurately.

The effects of charge screening on nuclear physics
(e.g., EC and beta decay) come at least from three fac-
tors. Firstly, the screening potential changes the electron
Coulomb wave function in nuclear reactions. Secondly,
the electron screening potential decreases the energy of
incident electrons joining the capture reaction. Thirdly,
electron screening increases the energy of the atomic nu-
cleus (i.e., increases the single particle energy) in nu-
clear reactions, thus increasing the nuclear reaction rate.
Finally, electron screening evidently and effectively de-
creases the number of higher-energy electrons, whose en-
ergy is more than the threshold of the capture reaction.
Therefore, screening causes a relative increase in the re-
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action threshold and decrease in the capture rate, but
increases the beta decay rate.

In this paper, based on the linear response theory
model (LRTM) [32] and Random Phase Approximation
(RPA) theory [27], by using the Shell-Model Monte Carlo
(SMMC) method, we investigate the influence of SES on
the EC rates for 52,53,59,60Fe . We also discuss the electron
capture cross section (ECCS) and the screening factors.
We find the influence of SES on the rates is very signifi-
cant.

Our work differs from previous works [4–7, 26] on EC.
These works did not consider the influence of SES on EC.
Our discussion also differs from Ref. [33], which analyzed
EC using the Brink Hypothesis, based on the plasma
ion ball strong screening model. They assumed that the
Gamow-Teller strength distribution for excited states is
the same as for the ground state, only shifted by the exci-
tation energy of the state in their model. We analyze the
effect of SES on EC by the LRTM. Our screening rates
may be universal, important and helpful for research into
supernova explosions and numerical simulation.

This paper is organized as follows. In the next sec-
tion, we analyze the EC rates in stellar interiors with and
without SES. Some numerical results and discussions are
given in Section 3. Our conclusions are summarized in
Section 4.

2 EC in stellar interiors

2.1 Response function and GT strength distri-

bution

The hybrid SMMC+RPA model was proposed in
Ref. [34] to compute electron capture rates on nuclei
which required large model spaces. A pairing quadrupole
residual interaction [35] was calculated in order to avoid
the sign problem associated with using realistic interac-
tions in SMMC studies [8–10]. At finite temperature,
SMMC calculations are used to obtain occupation num-
bers for the various neutron and proton valence shells
in the parent nucleus. SMMC is then used to calculate
ECCS and rates within a Random Phase Approxima-
tion (RPA) approach with partial shell occupancies. The
RPA method is explained in Ref. [36].

Based on a statistical formulation of the nuclear
many-body problem, in the finite-temperature version of
this approach, an observable is calculated as the canon-
ical expectation value of a corresponding operator Â by
the SMMC method at a given temperature T , and is
written as [8–10]

Â=
TrA[Âe−βĤ ]

TrA[e−βĤ ]
. (1)

The problem of the shell model Hamiltonian Ĥ has
been investigated in detail by Alhassid et al. [11]. When

some many-body Hamiltonian Ĥ is given, a tractable
expression for the imaginary time evolution operator is
written as

Û=exp−βĤ, (2)

where β=1/TN, with TN the nuclear temperature in units
of MeV. TrAÛ is the canonical partition function for A
nucleons.

The SMMC method is used to calculate the response
function RA(τ) of an operator Â at an imaginary-time τ ,
using a spectral distribution of initial and final states |i〉
and |f〉 with energies Ei and Ef . RA(τ) is given by [12]

RA(τ)=

∑

if
(2Ji+1)exp(−βEi)exp(−τ(Ef−Ei))|〈f|Â|i〉|2

∑

i
(2Ji+1)exp(−βEi)

.

(3)
Note that the total strength for the operator is given by
R(τ =0). The strength distribution is given by

SGT+(E)=

∑

if δ(E−Ef+Ei)(2Ji+1)exp(−βEi)|〈f|Â|i〉|2
∑

i
(2Ji+1)exp(−βEi)

,

(4)
which is related to RA(τ) by a Laplace transform,
RA(τ)=

∫

∞

−∞
SGT+(E)exp(−τE)dE. Note that here E is

the energy transfer within the parent nucleus, and that
the strength distribution SGT+(E) has units of MeV−1.

2.2 EC process without SES

The stellar electron capture rates for the k th nucleus
(Z,A) in thermal equilibrium at temperature T is given
by a sum over the initial parent states i and the final
daughter states f. In the case without SES, the EC rate
is related to the electron capture cross-section by [14, 34]

λ0
ec(LJ)=

1

π
2~3

∑

if

∫

∞

ε0

p2
eσec(εe,εi,εf)f(εe,UF,T )dεe,

(5)
where ε0 = max(Qif ,1). pe =

√

ε2
e−1 is the momentum

of the incoming electron, εe is the sum of rest mass and
kinetic energy of the incoming electron, UF is the elec-
tron chemical potential, and T is the electron temper-
ature. The electron Fermi-Dirac distribution is defined
as f(εe,UF,T )=[1+exp((εe−UF)/kT )]−1. σec(εe,εi,εf) is
the cross section for capture of an electron with energy
εe from an initial proton single particle state with en-
ergy εi to a neutron single particle state with energy εf .
The cross section is computed within the Random Phase
Approximation.

Due to energy conservation, the electron, proton and
neutron energies are related to the neutrino energy, and
the Q-value for the capture reaction is given by [37]

Qi,f=εe−ε
ν
=εn−ε

ν
=εn

f −εp
i , (6)

where εn
f −εp

i = ε∗

if+µ̂+∆np, µ̂=µn−µp is the difference
between neutron and proton chemical potentials in the
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nucleus, and ∆np=Mnc
2−Mpc

2=1.293 MeV, the mass dif-
ference between neutron and proton. Q00=Mfc

2−Mic
2=

µ̂+∆np, with Mi and Mf being the masses of the parent
nucleus and the daughter nucleus respectively; ε∗

if corre-
sponds to the excitation energies in the daughter nucleus
at the states of zero temperature.

The electron chemical potential is found by inverting
the expression for the lepton number density

ne=
8π

(2π)3

∫

∞

0

p2
e(f−e−f+e)dpe, (7)

where f−e=[1+exp((εe−UF)/kT )]−1 and f+e=[1+exp((εe+
UF)/kT )]−1 are the electron and positron distribution
functions respectively, and k is the Boltzmann constant.

According to the Shell-Model Monte Carlo method,
the total cross section by EC in Eq. (5) is given by [27]

σec = σec(Ee)=
∑

if

(2Ji+1)exp(−βEi)

ZA

σfi(Ee)

= 6g2
wk

∫

dξ(Ee−ξ)2
G2

A

12π

SGT+(ξ)F (Z,Ee) (8)

where Ee=εe is the electron energy. SGT+ is the Gamow-
Teller(GT) strength distribution, which is a function of
the transition energy ξ. gwk=1.1661×10−5GeV−2 is the
weak coupling constant and GA is the axial vector form-
factor, which at zero momentum is GA =1.25. F (Z,εe)
is the Coulomb wave correction.

The pre-supernova EC rates in the case without SES
is given by [12]

λ0
ec(LJ)=

ln2

6163

∫

∞

0

dξSGT

c3

(mec2)5

×

∫

∞

p0

dpep
2
e(−ξ+εe)

2F (Z,εe)f(εe,UF,T ) (s−1), (9)

where ξ is the transition energy of the nucleus, and
f(εn,UF,T ) is the electron distribution function. p0 is
defined as

p0=

{

√

Q2
if−m2

ec
4 (Qif<−mec

2)

0 (otherwise).
(10)

In the case without SES, we compare our results for
λ0

ec(LJ) with those of λ0
ec(AFUD). The error factor C is

defined as follows

C=
(λ0

ec(LJ)−λ0
ec(AUFD))

λ0
ec(LJ)

. (11)

The RCEF plays a key role in stellar evolution and
pre-supernova outbursts, and is given by

˙Y ec
e (k)=−

Xk

Ak

λk, (12)

where Xk is the mass fraction of the k th nucleus and Ak

is the mass number of the k th nucleus.

2.3 EC process with SES

The linear response theory has been discussed in de-
tail by some authors [38, 39]. They investigated the
density-functional study of hydrogen plasmas as well as
the density-functional study of C, Si, and Ge metallic liq-
uids, and found that the results of the density-functional
calculations of these systems are close to the results ob-
tained by linear response theory. They also confirmed
that density functional theory as well as linear response
theory satisfactorily reproduce the experimental results
for Ge metallic liquid, thus proving the applicability of
these theories for this system. Based on this theory, Itoh
et al. [32] calculated the screening potential for relativis-
tic degenerate electrons. We name this the linear re-
sponse theory model (LRTM). Electrons are strongly de-
generate in the density-temperature regime we consider.
The condition is expressed as

T�TF=5.930×109







[

1+1.018

(

Z

A

)2/3

(10ρ7)
2/3

]1/2

−1







,

(13)
where ρ7 is the density in units of 107g/cm3, TF is the
electron Fermi temperature, and Z and A are the atomic
number and mass number of the nucleus considered, re-
spectively.

Jancovici et al. [40] calculated the static longitudinal
dielectric function due to the relativistically degenerate
electron liquid. When the strong screening by the rel-
ativistically degenerate electron liquid is taken into ac-
count, the electron potential energy is written as

V (r)=−
Ze2(2kF)

2kFr

2

π

∫

∞

0

sin[(2kFr)]q

qε(q,0)
dq, (14)

where ε(q,0) is Jancovici’s static longitudinal dielectric
function and kF is the electron Fermi wavenumber.

The linear response theory is a good method to cal-
culated the screening potential for relativistic degener-
ate electrons [32]. A more precise screening potential in
LRTM is given by

D=7.525×10−3Z

(

10zρ7

A

) 1
3

J(rs,R)(MeV), (15)

where J(rs,R), rs and R can be found in Ref. [17]. The
formula (14) is valid for 10−5≤rs≤10−1,0≤R≤50, con-
ditions which are usually fulfilled in the pre-supernova
environment.

If the electron is strongly screened, the screening en-
ergy will be high enough not to neglect in high density
plasma. Its energy will decrease from ε to ε

′

= ε−D in
the decay reaction due to SES. Meanwhile, the screening
causes a relative decrease in the number of high energy
electrons, whose energies are higher than the threshold
energy for electron capture. The threshold energy also
increases from ε0 to εs =ε0+D. Thus the EC rate with
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SES becomes

λs
ec(LJ)=

ln2

6163

∫

∞

0

dξSGT+

c3

(mec2)5

×

∫

∞

εs

dε′ε′(ε′2−1)
1
2 (−ξ+ε′)2F (Z,ε′)f(εe,UF,T ). (16)

In order to understand the effect of SES on the EC,
we define the screening factor C1 as follows:

C1=
λs

ec(LJ)

λ0
ec(LJ)

. (17)

3 Results and disscusion

Figure 1 shows the ECCS of 52,53,59,60Fe as a function
of electron energy at temperature T9=9,11. The ECCS
increases greatly with increasing electron energy. The
higher the temperature, the faster the changes in ECCS
become. This is because the higher the temperature, the
larger the electron energy and electron chemical potential
are, so even more electrons will join in the EC process
because their energy is higher than the Q-value. The
minimum electron energy, which is given by the mass
splitting between parent and daughter (i.e., Qif), will be
a key parameter to trigger EC. At finite temperature
this threshold will be lowered by the internal excitation
energy. For even-even parent nuclei, the Gamow-Teller
strength is centered at daughter excitation energies of
the order of 2 MeV at low temperatures. Therefore,
the ECCS for these parent nuclei increases dramatically
within the first couple of MeV of electron energies above
threshold. For odd-A nuclei, however, the Gamow-Teller
distribution will peak at noticeably higher daughter ex-
citation energies at low temperatures, so the ECCS are
shifted to electron energies about 3 MeV higher than to
even-even parent nuclei.

Based on RPA theory and using the SMMC method,
we discuss EC in detail, especially taking account of the
contribution of the GT transition. Figure 2 and 3 show
the EC rates as a function of ρ7 with and without SES.
From Fig. 2, the EC rates increase by more than six or-
ders of magnitude as the density increases (e.g. for 60Fe
at T9=3.40,Ye=0.47). From Fig. 3, we find that the rates
with screening are lower than those with no screening.
The rates with SES may be approximately 20% lower
than with no SES.

The Gamow-Teller strength distributions play an im-
portant role in the pre-collapse evolution of supernovae.
The GT transition, compared with low energy transi-
tions, may not be dominant at relatively low temper-
atures. At relatively high temperature and density, the
GT transition strength of nuclei is distributed in the form
of a centrosymmetric Gaussian function around the GT
resonance point. Many electrons can therefore partici-
pate in the GT resonance transitions. Due to insufficient
experimental information, the GT+ transitions, which
change protons into neutrons, have so far been addressed
only qualitatively in pre-supernova simulations. When
we assume the GT+ strength to reside in a single reso-
nance, the energy relative to the daughter ground state
will be parameterized phenomenologically [4, 5]. (n, p)
experiments show that the GT+ strength is fragmented
over many states, while the total strength is significantly
quenched compared to the single particle model. The
experimental information is usually obtained from (n, p)
and (p, n) charge exchange reactions. However, there are
no available experimental GT+ strength distributions for
these nuclei. Thus, we cannot give any comparison be-
tween theory and measurements.

As an example, we plot the strength distributions
SGT+ as a function of excitation energy of the daughter
state for 60Fe nuclei. We show the calculated strength
functions for GT+ for the two parent states, the ground
state (0+) and first excited state (2+) of 60Fe in Figure 4.
We consider and reproduce the first few low-lying levels
in 60Fe, which are 0, 1.1, 2.2, 2.4 MeV, corresponding
to spin parities of 0+, 2+, 0+, 2+. The peak of SGT+

reaches 1.562 MeV−1 at 0.5 MeV for the ground state
and 0.223 MeV−1 at 3.40 MeV for the 1st excited state
for the daughter nucleus 60Mn. The total GT strength
distribution B(GT)tot for the ground state (0+) and first
excited state (2+) is 9.47 MeV and 8.19 MeV, respec-
tively. From the above discussion, by simply displacing
the ground state strength distribution by the excitation
energy, one can see that the GT distribution for the ex-
cited state may not be qualitatively inferred from the
ground state information. In fact, an average value of
the excited state distributions may be the most standard
distribution, which would appear to be the one pertain-
ing to the excited states.
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Fig. 1. (color online) ECCS for nuclides 52,53,59,60Fe as a function of the electron energy at temperatures of T9=9,
Ye=0.44 and T9=11, Ye=0.43 and density ρ7=5.86.
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Fig. 2. (color online) Screening rates for nuclides 52,53,59,60Fe as a function of density ρ7 at temperatures of T9 =
3.40,Ye=0.47 and T9=7.33,Ye=0.41.
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peratures of T9=7.5,Ye =0.43 and T9 =11.5,Ye =0.41. The solid and dotted lines correspond to the rates without
and with SES respectively.
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Table 1. Comparison of our calculations in the case without SES for nuclides 59Fe and 60Fe with those of FFN [5],

AUFD [7] and NKK [26] at ρ7=4010,Ye=0.41,T9 =7.33. The ratios computed as ki=
λ0
ec(i)

λ0
ec(LJ)

, λ0
ec(i) (i=1,2,3) are

the rates for FFN, AUFD, and NKK respectively in the case without SES.

nuclide λ0
ec(FFN) λ0

ec(AUFD) λ0
ec(NKK) λ0

ec(LJ) k1 k2 k3

59Fe 7.20e+02 7.43e+02 2.7e+02 2.629e+02 2.739 2.816 1.027
60Fe 6.73e+01 1.44e+01 3.02+01 1.749e+01 3.848 0.823 1.726

Table 2. Comparisons of our calculations for nuclides 59Fe and 60Fe with those of FFN [5], AUFD [7] and NKK

[26] at ρ7 =33,Ye =0.45,T9 =4.24. The ratios computed as sj =
λs

ec(LJ)

λ0
ec(j)

, λ0
ec(j) (j=1,2,3,4) are the rates for FFN,

AUFD, NKK, and ours respectively in the case without SES.

nuclide λ0
ec(FFN) λ0

ec(AUFD) λ0
ec(NKK) λ0

ec(LJ) λs
ec(LJ) s1 s2 s3 s4

59Fe 6.30e−03 5.30e−03 6.20e−05 5.63e−05 5.43e−05 8.6190e−03 1.0245e−02 0.8758 0.9644
60Fe 4.60e−03 1.00e−03 1.10e−05 1.08e−05 1.02e−05 2.2174e−03 1.0200e−02 0.9273 0.9444

Table 3. The minimum values of strong screening factor C1 for some typical astronomical conditions when 1≤ρ7≤200.

T9=0.133,Ye=0.485 T9=0.74,Ye=0.481 T9=3.80,Ye=0.45 T9=7.99,Ye=0.43

nuclide ρ7 Cmin ρ7 Cmin ρ7 Cmin ρ7 Cmin

52Fe 25 0.9986 18 0.9997 19 0.9998 41 0.9999
53Fe 10 0.9788 10 0.9854 9 0.9960 8 0.9984
59Fe 15 0.8220 15 0.9670 13 0.9944 12 0.9978
60Fe 26 0.8134 26 0.9641 14 0.9937 21 0.9971

The RCEF is a very sensitive parameter in pre-
collapse evolution of supernovae. The RCEF decreases
by more than four orders of magnitude for 60Fe at
T9 =7.33 in Fig. 5. As the density and temperature in-
crease, the electron chemical potential becomes so high
that large numbers of electrons join in the EC reaction.
Thus, the RCEF reduces greatly.

Based on the shell model, and the Brink Hypothesis
theory, AUFD expended FFN’s work and discussed the
EC in detail in the case without SES. Figure 6 shows the
error factor C as a function of density ρ7. The factor
C reduces greatly as the density increases. We find that
our results agree well with those of AUFD at relatively
high density (e.g. ρ7 = 100) and the maximum error is
within 0.35%. However, it is within 3.982% at relatively
low density (e.g. ρ7=10, Ye=0.41, T9=12.6).

As examples, comparisons of several EC rates (i.e.

FFN’s, AUFD’s, NKK’s, and ours) for 59Fe and 60Fe are
presented in Table 1 at ρ7 = 4010, Ye = 0.41, T9 = 7.33
in the case without SES. One finds that for the even-
even nuclide 60Fe, the factor ki(i=1,2,3) is about 0.832,
3.848, and 1.726 respectively, corresponding to those of
AUFD, FFN and NKK. However, it is 2.739, 2.816, 1.027
respectively for the odd-A nuclide 59Fe.

Table 2 presents a comparison of our strong screen-
ing results with those of FFN, AUFD, NKK. From the
results of si (i=1, 2, 3, 4), one can conclude that the
strong screening rates are about three and two orders
magnitude lower than those of FFN and AUFD for the
even-even nuclide 60Fe and the odd-A nuclide 59Fe, re-
spectively. Our screening rates decrease by about 12.42%
and 7.27% compared with those of NKK for 59Fe and
60Fe, respectively.

The screening factor C1 is plotted as a function of
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ρ7 in Figs. 7–9. Due to SES, one finds that the rates
decrease about by ∼ 18.66% and ∼ 17.80% in Fig. 6.
The lower the temperature, the larger the effect of SES
on EC rates becomes. This is because the SES mainly
decreases the number of higher energy electrons, which
can actively join in the EC reaction. We also find that
the screening factor is nearly the same at higher density
and does not depend on the temperature and density.
The reason is that at higher density surroundings the
electron energy is mainly determined by its Fermi en-
ergy, which is strongly decided by density. Of course, the
screening of nuclear electric charges with a high electron
density means a short screening length, which means a
lower enhancement factor from Coulomb wave correc-
tion. However, even a relatively short electric charge
screening length will not have much effect on the overall
rate due to the weak interaction, which is effectively a
contact potential. A bigger effect is that electrons are
bound in the plasma.

Table 3 shows the numerical calculations of the min-
imum values of screening factor C1min in detail. The EC
rates of 52,53,59,60Fe decrease by about ∼1.40%, ∼2.12%,
∼ 17.80% and ∼ 18.66% respectively at T9 = 0.133,
Ye=0.485.

Because the Q-value of EC for some neutron-rich nu-
clei (e.g. 60Fe) has not been measured, FFN estimated it
with a semiempirical atomic mass formula (see Ref. [41]).
Thus, the the effective rates of FFN can be quite differ-
ent. For odd-A nuclei (e.g. 59Fe), FFN places the cen-
troid of the GT strength at excitation energies which are
too low (see the detailed discussions in Ref. [5]). Their
rates may therefore be somewhat overestimated.

AUFD expanded FFN’s works and analyzed the nu-
clear excited level by a simple calculation of nuclear exci-
tation level transitions. AUFD considered that the cap-
ture rates are made up of the lower energy transition
rates between the ground states and the higher energy
transition rates between GT resonance states. The works
of FFN and AUFD may be an oversimplification and
therefore their accuracy is limited.

Using the pn-QRPA theory, NKK analyzed the nu-
clear excitation energy distribution. They have taken
into consideration the particle emission processes, which
constrain the parent excitation energies. The pn-QRPA
theory calculates stronger Gamow-Teller strengths distri-
bution from these excited states compared to those as-
sumed using Brink.s hypothesis. However, in the GT
transitions considered in their works, only low angular
momentum states are considered.

The SMMC method adopts an average GT intensity
distribution of electron capture and the calculated results
are in good agreement with experiments, but the results
for most nuclei are generally smaller than other methods,
especially for some odd-A nuclei (e.g., 59Fe). The charge

exchange reactions (p, n) and (n, p) make it possible to
observe in the weak interaction, especially for the total
GT strength distribution in nuclei. For example, the EC
for 59Fe is dominated by the wave functions of the par-
ent and daughter states. The total GT strength for 59Fe
in a full p-f shell calculation results in B(GT)=10.1g2

A

[4]. An average of the GT strength distribution is in
fact obtained by the SMMC method. A reliable replica-
tion of the GT distribution in the nucleus is carried out
and analysed in detail by using an amplification of the
electronic shell model. Thus, the method is relatively
accurate.

Summing up the above discussions, based on the the-
ory of RPA and LRTM, using the SMMC method, we
have discuss in detailed the EC rates in SES. SES has
an evident effect on EC rates for different nuclei, par-
ticularly for heavier nuclides whose threshold is negative
(e.g. 59,60Fe) at relatively lower temperature and higher
density. According to the above calculations and discus-
sion, we can conclude that the strong screening rates can
be decreased by about ∼18.66% with SES.

4 Conclusions

In this paper, based on RPA theory and LRTM, us-
ing the SMMC method, we have studied the EC rates
of 52,53,59,60Fe with and without SES. We have also dis-
cussed the influence of SES on the ECCS and the RCEF.
Firstly, we find that the influence of SES on ECCS is
very obvious and significant. As the electron energy in-
creases, the ECCS increases greatly. The RCEF is a very
sensitive parameter in the EC process and can decrease
by more than four orders of magnitude (e.g., for 60Fe at
T9=7.33). Secondly, we compare our results with those
of AUFD in the case without SES. Our rates are in good
agreement with those of AUFD at relatively high den-
sity (e.g., ρ7 = 100) and the maximum error is within
0.35%, but is within 3.982% at relatively low density
(e.g., ρ7 = 10,Ye = 0.41,T9 = 15.6). Finally, we compare
our strong screening rates with those of FFN, AUFD,
and NKK. Our screening rates are about three and two
orders magnitude lower than those of FFN and AUFD
for 60Fe and 59Fe, respectively. However, the rates are
decreased by about 12.42% and 7.27% compared with
those of NKK for 59Fe and 60Fe, respectively. According
to our calculations, our rates can decrease by more than
∼18.66% with SES.

It is generally known that EC and SES are not only
among the main parameters which lead to a supernova
explosion and stellar collapse, but are also relevant for
simulations of the process of collapse and explosion for
a massive star. The SES also strongly influences the
cooling rate and evolutionary timescale. The results we
derived may become a good foundation for the future
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investigation of late-type star evolution, supernova ex-
plosion mechanisms and numerical simulations.

The authors would like to thank the anonymous ref-

erees for carefully reading the manuscript and providing

some constructive suggestions which are very helpful in

improving this manuscript.

References

1 J. J. Liuand W. M. Gu, ApJS., 224: 29 (2016)
2 J. J. Liu, MNRAS., 438: 930 (2014)
3 J. J. Liu and D. M. Liu., Ap&SS., 361: 246 (2016)
4 G. M. Fuller, W. A. Fowler, and M. J. Newman, ApJ., 42: 447

(1980)
5 G. M. Fuller, W. A. Fowler, and M. J. Newman, ApJS., 48:

279 (1982)
6 M. B. Aufderheide, G. E. Brown, T. T. S. kuo, D. B. Stout,

and P. Vogel., ApJ., 362: 241 (1990)
7 M. B. Aufderheide, I. Fushikii, S. E. Woosely, and D. H. Hart-

manm, ApJS., 91: 389 (1994)
8 M. H. Johnson and B. A. Lippmann, PhRv., 76: 828 (1949)
9 W. E. Ormand, D. J. Dean, C. W. Johnson, et al., PhRvC.,

49: 1422 (1994)
10 S. E. Koonin, D. J. Dean, and K., Langanke, PhRep., 278: 1

(1997)
11 Y. Alhassid, D. J. Dean, S. E. Koonin et al, PhRvL.,72: 613

(1994)
12 K. Langanke and G. Martinez-Pinedo, Phys. Lett. B., 436: 19

(1998)
13 K. Langanke and G. Martinez-Pinedo, Nuclear Phys. A., 673:

481 (2000)
14 A. Juodagalvis, K. Langanke, W. R. Hix et al, Nuclear Phys.

A., 848: 454 (2010)
15 Z. F. Gao, N. Wang, J. P. Yuan, L. Jiang, and D. L. Song,

ApS&S., 332: 129 (2011)
16 J. J. Liu and Z. Q. Luo, Chin. Phys. Lett., 16: 1861 (2007)
17 J. J. Liu and Z. Q. Luo, Chin. Phys., 16: 2671 (2007)
18 J. J. Liu and Z. Q. Luo, Chin. Phys., 16: 3624 (2007)
19 J. J. Liu and Z. Q. Luo, Chin.Phys. C, 32: 108 (2008)
20 J. J. Liu and Z. Q. Luo, Comm.Theo. Phys., 49: 239 (2008)

21 J. J. Liu, X. P. Kang et al, Chin. Phys. C, 35: 243 (2011)
22 J. J. Liu, Chin. Phys. C, 34: 171 (2010)
23 J. J. Liu, Chin. Phys. C, 34: 190 (2010)
24 J. J. Liu, Q. H, Peng, L. H. Hao et al, RAA., arXiv:1707.03504

(2017)
25 J. J. Liu, Chin. Phys. C, 37: 51018 (2013)
26 J. Nabi and H. V. Klapdor-Kleingrothaus, EPJA, 337: 339

(1999)
27 D. J. Dean, K. Langanke, L. Chatterjee, P. B. Radha, and M.

R. Strayer, Phys. Rev. C, 58: 536 (1998)
28 A. Heger, S. E. Woosley, G. Martinez-Pinedo, and K. Lan-

ganke, ApJ., 560: 307 (2001)
29 J. Gutierrez, E. Garcia-Berro, I. Iben et al, ApJ., 459: 701

(1996)
30 E. Bravo and D. Garcia-Senz, MNRAS., 307: 984 (1999)
31 J. J. Liu, Chin. Phys. B, 19: 099601 (2010)
32 N. Itoh, N. Tomizawa, M. Tamamura et al, ApJ., 579: 380

(2002)
33 Z. Q. Luo and Q. H. Peng, ChA&A, 25: 1 (2001)
34 K. Langanke, E. Kolbe, and D.J. Dean, Phys. Rev. C, 63:

032801 (2001)
35 D.R. Bes and R.A. Sorensen, Adv. Nucl. Phys., 2: 129 (1969)
36 E. Kolbe, K. Langanke, and P. Vogel, Nucl. Phys. A., 652: 91

(1999)
37 J. Cooperstein, and J. Wambach, Nuclear Phys. A, 420: 591

(1984)
38 M. W. C.Dharma-wardana, and F. Perrot, Phys. Rev. A, 26:

2096 (1982)
39 D. Pines and P. Nozie‘res, The Theory of Quantum Liquids

(New York: W. A. Benjamin, 1966)
40 B. Jancovici, Nuovo Cimento, 25: 428 (1962)
41 P. A. Seeger and W. M. Howard, Nucl. Phys. A, 238: 491

(1975)

095101-9


