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Abstract: The rich phenomena of deformations in neutron-deficient krypton isotopes, such as shape evolution with

neutron number and shape coexistence, have attracted the interest of nuclear physicists for decades. It is interesting

to study such shape phenomena using a novel way, e.g. by thermally exciting the nucleus. In this work, we develop

the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing

correlations by the BCS approach, and apply this approach for the study of shape evolution in 72,74Kr with increasing

temperature. For 72Kr, with temperature increasing, the nucleus firstly experiences a relatively quick weakening in

oblate deformation at temperature T∼0.9 MeV, and then changes from oblate to spherical at T∼2.1 MeV. For 74Kr,

its global minimum is at quadrupole deformation β2∼−0.14 and abruptly changes to spherical at T ∼1.7 MeV. The

proton pairing transition occurs at critical temperature 0.6 MeV following the rule Tc=0.6∆p(0), where ∆p(0) is the

proton pairing gap at zero temperature. The signatures of the above pairing transition and shape changes can be

found in the specific heat curve. The single-particle level evolutions with temperature are presented.
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1 Introduction

The neutron-deficient krypton isotopes are of particu-
lar interest for study due to their rapidly changing shapes
with neutron number and the shape coexistence in the
same nucleus, where the oblate and prolate shapes co-
exist within a very small energy range of a few hundred
keV. The underlying reason is generally considered to
be the abundance of low nucleon level densities, or large
/shell gaps0for both prolate and oblate shapes at neu-
tron/proton numbers 34, 36 and 38 in the Nilsson dia-
gram. Therefore, adding or removing only a few nucleons
has a dramatic effect on the nuclear particle energies, and
consequently changes the ground state shape.

The experimental evidence for shape coexistence in
the neutron-deficient krypton isotopes was first observed
in the irregularity of the low-lying spectra of 74,76Kr more
than three decades ago [1, 2]. More evidence of prolate-
oblate shape coexistence was found for 72,74Kr [3, 4].
Then, significantly reduced B(E2) values of the 2+

1 →0+
1

transition for 72,74,76Kr were reported [5, 6], indicat-

ing considerable shape mixing at lower spins. More
conclusive evidence of shape coexistence for even-even
nuclei lies in the identification of low-lying excited 0+

2

states which could be seen as the /ground states0of
the other shape. Two rotational bands may build on
0+ states with different deformations. In 1999, an E0
transition at 508 keV was observed in 74Kr by means
of combined conversion-electron and γ-ray spectroscopy,
confirming the existence of the expected low-lying iso-
meric 0+

2 state [7]. This gives support to the mixing
between coexisting prolate and oblate shapes. In 2003,
the isometric 0+

2 state of 72Kr was identified [8]. This
state can be understood as the band head of a prolate ro-
tational structure, which strongly supports the interpre-
tation that the ground state of 72Kr is oblate-deformed.
The systematics of excited 0+ states and the monopole
transition strength in even-even nuclei 72−78Kr [8] were
interpreted as evidence for an inversion of the ground-
state deformation with decreasing neutron number: 78Kr
and 76Kr are assumed to be prolate in their ground state,
prolate and oblate configurations strongly mix in 74Kr,
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and an oblate shape becomes the ground state of 72Kr.
More direct evidence for the coexistence of prolate and
oblate shapes in 74,76Kr by means of Coulomb excita-
tion is given where opposite signs are found for the
quadrupole moments of the yrast and excited 2+ states
in 74,76Kr [9]. In 2015, 72Kr was studied with the total
absorption spectroscopy technique, and its data can be
interpreted as a dominant oblate deformation or large
oblate-prolate mixing in the ground state [10].

Together with experimental efforts, various theories
have been applied to elucidate what kinds of shape are
involved and how they evolve, including those employ-
ing Bohr’s collective Hamiltonian [11, 12], self-consistent
triaxial mean-field models [13], shell-model-based ap-
proaches [14, 15], beyond (relativistic) mean-field stud-
ies [12, 16, 17], constrained Hartree-Fock-Bogoliubov
(plus local Random-Phase-Approximation) calculations
[18, 19], the Total Routhian Surface method [20], and
self-consistent Nilsson-like calculation [21]. In general,
many of the global features of these Kr isotopes, such as
the coexistence of prolate and oblate shapes, their strong
mixing at low angular momentum, the deformation of
collective bands, the low-spin spectra and the system-
atics of excitation energies and transition strengths are
reproduced.

The large shell gaps at prolate and oblate shapes
at nucleon numbers 34, 36 and 38 cause the compli-
cated shape evolution and shape coexistence in neutron-
deficient Kr isotopes. If we excite the nucleus from an-
other degree of freedom, e.g. the temperature, how will
the shapes of these nuclei evolve with temperature? It is
interesting to study how the shape evolves with temper-
ature for neutron-deficient Kr isotopes from the nuclear
structure point of view. Additionally, 72Kr is one of the
three major waiting points 64Ge, 68Se, and 72Kr in the
astrophysical rapid proton capture (rp) process, which
powers type I X-ray bursts [22]. Since the environment
of X-ray bursts is at high temperature, it is also inter-
esting to study the evolution of 72Kr with temperature
from an astrophysics point of view.

Usually, shape deformations or superfluidity are ex-
pected to wash out in a heated nucleus [23]. The equi-
librated nucleus can be characterized by a temperature
T as an approximation to the microcanonical descrip-
tion. This expectation can be understood in terms of
the shell model, since by increasing temperature T par-
ticles from levels below the Fermi surface are promoted to
levels above it. The basic thermal theory was developed
by Refs. [24, 25]. The shape transition at finite tempera-
ture was first studied in Ref. [26]. The finite temperature
Hartree-Fock theory was developed in Refs. [27, 28] and
the dependence of nuclear shape transition on changes
in the volume was studied by taking 24Mg as an example
[29]. The finite temperature Hartree-Fock-Bogoliubov

theory was formulated in Ref. [30] and then applied to
the pairing and shape transitions in rare earth nuclei
[31]. Using the finite range density dependent Gogny
force and a large configuration space within the frame-
work of the finite-temperature Hartree-Fock-Bogoliubov
theory [23, 32], various nuclei, including well-deformed
quadrupole nuclei, superdeformed nuclei, and octupole
deformed nuclei, gradually collapse to a spherical shape
at certain critical temperatures ranging from 1.3∼2.7
MeV. The temperature also affects the effective mass and
the neutron skin [33].

The covariant density functional theory (CDFT),
which has achieved great success in describing ground-
state properties of both spherical and deformed nuclei
all over the nuclear chart [34–37], has also been applied
to study the evolution of nuclear properties with tem-
perature. The finite-temperature relativistic Hartree-
Bogoliubov theory citeNiu2013 and relativistic Hartree-
Fock-Bogoliubov theory [39] for spherical nuclei have
been formulated, and used to study pairing transitions
in hot nuclei. The relativistic Hartree-BCS theory has
been applied to study the temperature dependence of
shapes and pairing gaps for 166,170Er and rare-earth nu-
clei [40, 41]. A shape transition from prolate to spherical
shapes is found at temperatures ranging from 1.0∼2.7
MeV. Taking into account the unbound nucleon states,
the temperature dependence of the pairing gaps, nuclear
deformation, radii, binding energies, entropy are stud-
ied in the Dirac-Hartree-Bogoliubov (DHB) calculations
[42, 43]. It is also found the nuclear deformation dis-
appears at temperatures T = 2.0−4.0 MeV. When the
temperature T > 4 MeV, the effects of the vapor phase
that take into account the unbound nucleon states be-
come important.

It is clear that the sharp phase transitions obtained
in the mean field approach will be somewhat washed out
when statistical fluctuations are considered. The sta-
tistical fluctuations can be treated in the spirit of the
Landau theory [32, 44], or from a more fundamental
point of view by using path integral techniques like the
static path approximation [45, 46], shell model Monte
Carlo [47], the particle number projected BCS [48–50],
or the shell-model-like approach [51].

However, in the various previous studies, we find none
on the shape evolution of neutron-deficient Kr isotopes
with temperature in the deformed relativistic framework.
So in our present work, we aim to investigate how the
shape deformation changes when the temperature rises
for the shape coexistence region like 72,74Kr in the frame-
work of CDFT. For shape coexistence phenomena, espe-
cially for soft energy surfaces, the quantal fluctuations
become important. One therefore needs a beyond-mean-
field approach, such as the multiple-reference generator
coordinate method (GCM) [12], for quantitative descrip-
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tions. However, as a first step towards this goal, the
self-consistent finite-temperature relativistic mean field
with BCS approach for axially deformed nuclei based
on the point-coupling density functional is developed in
our paper for the first time, and is used to investigate
the free energy curves, the quadrupole deformations, and
the pairing correlations as functions of temperature for
isotopes 72,74Kr. The evolution of the shapes and single-
particle spectra will be discussed. Considering the effects
of the vapor phase become important when T>4.0 MeV
in the DHB calculations [43], we limit the temperature
range to 0-4 MeV in our study.

2 Theoretical framework

The starting point of the CDFT is an effective La-
grangian density with zero-range point-coupling interac-
tion between nucleons:

L = ψ̄(iγµ∂
µ−m)ψ−

1

2
αS(ψ̄ψ)(ψ̄ψ)

−
1

2
αV (ψ̄γµψ)(ψ̄γµψ)−

1

2
αTV (ψ̄~τγµψ)·(ψ̄~τγµψ)

−
1

3
βS(ψ̄ψ)3−

1

4
γS(ψ̄ψ)4−

1

4
γV [(ψ̄γµψ)(ψ̄γµψ)]2

−
1

2
δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)−

1

2
δV ∂ν(ψ̄γµψ)∂ν(ψ̄γµψ)

−
1

2
δTV ∂ν(ψ̄~τγµψ)·∂ν(ψ̄~τγµψ)

−
1

4
F µνFµν−eψ̄γ

µ 1−τ3
2

ψAµ, (1)

which includes the free nucleons term, the four-fermion
point-coupling terms, the higher-order terms which are
responsible for the effects of medium dependence, the
gradient terms which are included to simulate the ef-
fects of finite range, and the electromagnetic interaction
terms. The isovector-scalar channel is neglected. The
Dirac spinor field of the nucleon is denoted by ψ, and
the nucleon mass is m. ~τ is the isospin Pauli matrix,
and Γ generally denotes the 4×4 Dirac matrices includ-
ing γµ, σµν while Greek indices µ and ν run over the
Minkowski indices 0, 1, 2, and 3. α,β,γ,and δ with sub-
scripts S (scalar),V (vector), TV (isovector) are coupling
constants (adjustable parameters) in which α refers to
the four-fermion term, β and γ respectively to the third-
and fourth-order terms, and δ to the derivative couplings.

Following the prescription in Ref. [30], where the BCS
limit of the finite-temperature Hartree-Fock Bogoliubov
equations is derived, we obtain the finite-temperature
CDFT + BCS equation. The finite-temperature Dirac
equation for single nucleons reads

[γµ(i∂µ−V µ)−(m+S)]ψk=0, (2)

where m is the nucleon mass. ψk(r) denotes the Dirac
spinor field of a nucleon. The scalar S(r) and vector

potential V µ(r) are

S(r)=αSρS+βSρ
2
S+γSρ

3
S+δS4ρS, (3)

V µ(r) = αV j
µ
V +γV (jµ

V )3+δV 4j
µ
V

+τ3αTV
~jµ

TV +τ3δTV 4~j
µ
TV +eAµ (4)

respectively. The isoscalar density, isoscalar current and
isovector current are denoted by ρS, jµ

V , and ~jµ
TV respec-

tively, and have the following form,

ρS(r) =
∑

k

ψ̄k(r)ψk(r)[v2
k(1−2fk)+fk], (5)

jµ
V (r) =

∑

k

ψ̄k(r)γµψk(r)[v2
k(1−2fk)+fk], (6)

~jµ
TV (r) =

∑

k

ψ̄k(r)~τγµψk(r)[v2
k(1−2fk)+fk]. (7)

fk is the thermal occupation probability of quasiparti-
cle states, which has the form fk = 1/(1+eβEk). Ek is
the quasiparticle energy for single particle (s.p.) state k,
and Ek=[(εk−λ)

2+(∆k)
2]

1

2 . β=1/(kBT ) where kB is the
Boltzmann constant. The BCS occupation probabilities
v2

k and related u2
k=1−v2

k are obtained by

v2
k =

1

2
(1−

εk−λ

Ek

) (8)

u2
k =

1

2
(1+

εk−λ

Ek

). (9)

∆k is the pairing gap parameter, which satisfies the gap
equation at finite temperature:

∆k=−
1

2

∑

k′>0

V pp

kk̄k′k̄′

∆k′

Ek′

(1−2fk′). (10)

The particle number Nq is restricted by Nq=2
∑

k>0

[v2
k(1−

2fk)+fk].
Here we take the δ pairing force V (r) = Vqδ(r),

where Vq is the pairing strength parameter for neu-
trons or protons. A smooth energy-dependent cutoff
weight gk is introduced to simulate the effect of finite
range and is determined by an approximate condition
∑

k

2gk=Nq+1.65N 2/3
q related to the particle number Nq.

The internal binding energy for the nuclear system E
is

E=Epart+Eint+Epair+Ec.m.−AM, (11)

where Epart is the total single-particle energy,

Epart = 2
∑

k

εk[v
2
k(1−2fk)+fk]; (12)
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Eint is the mean-field potential energy,

Eint = −

∫

dr

[

αS

2
ρ2

S+
βS

3
ρ3

S+
γS

4
ρ4

S+
δS

2
ρS∆ρS

+
αV

2
jµj

µ+
γV

4
(jµj

µ)2+
δV

2
jµ4j

µ

+
αTV

2
~jµ

TV (~jTV )µ+
δTV

2
~jµ

TV 4(~jTV )µ

]

−

∫

dr

[

1

4
FµνF

µν−F 0µ∂0Aµ+eAµj
µ
p

]

; (13)

Epair is the pairing energy,

Epair=−
∑

k

∆kukvk(1−2fk); (14)

and Ec.m. is the central of mass correction energy.
The internal binding energy E at different

quadrupole deformation β2 can be obtained by applying
constraints. The entropy of the system is evaluated by

S=−kB

∑

k

[fklnfk+(1−fk)ln(1−fk)], (15)

and the free energy is F =E−TS. For convenience, the
temperature used is kBT in units of MeV and the entropy
used is S/kB and is unitless. The specific heat is defined
as the derivative of the excitation energy by

Cv=∂E∗/∂T (16)

where E∗(T )=E(T )−E(T=0) is the internal excitation
energy, and E(T ) is the internal binding energy for the
global minimum state in the free energy curve at certain
temperature T .

3 Results and discussion

The point-coupling density functional parameter set
PC-PK1 is used in our calculation due to its success in
the description of finite nuclei for both ground state and
low-lying excited states [52]. The pairing correlations
are taken into account by the δ force BCS method with
a smooth cutoff factor. The value of the pairing strength
for neutrons (protons) Vq is taken from Ref. [52], that is,
-349.5 (-330.0) MeV fm3. A set of axial harmonic oscil-
lator basis functions with 20 major shells is used.

The relative free energies as functions of β2 at differ-
ent temperatures from 0 to 4 MeV for isotopes 72,74Kr
are plotted side by side in Fig. 1. In order to see the en-
ergy curves clearly, the free energy of the ground state is
chosen as zero, and it is shifted up by 4 MeV for every 0.5
MeV temperature rise. Let us first analyze the behavior
of the free energy curves for 72,74Kr at zero temperature.
For 72Kr, there are four local minima at β2= -0.34, -0.19,
0.14, and 0.39. The corresponding energies relative to
the ground state at β2=-0.34 read 0, 1.36, 2.82, and
2.24 MeV, respectively. So the minimum at |β2|=0.19,

Fig. 1. (color online) The relative free energy curves for 72Kr (a) and 74Kr (b) at different temperatures from 0 to 4
MeV with step size 0.5 MeV, obtained by the constrained CDFT+BCS calculations using PC-PK1 energy density
functional. The ground state free energy at zero temperature is set as zero, and it is shifted up by 4 MeV for every
0.5 MeV temperature rise. The absolute ground state binding energy as well as the excitation energies at higher
temperatures are shown by the labels. The shaded areas are marked for states whose energies are no more than
0.5 MeV above the global minimum of the free energy curves at the corresponding temperature.
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γ = 60◦ is actually a saddle point in the (β2, γ) plane.
The quadrupole deformations of both calculations are
consistent with the experimental value |β2|=0.330 [53].
triaxial calculations with the same parameter set [12],
the global minimum is at |β2|=0.35, γ=60◦ (equivalent
to β=−0.35 in axial deformation system), while at zero
temperature, the energy curve is not flat, and the global
minimum is well distinguished from other local minima.
For

For 74Kr, similar to 72Kr, there are also four local
minima at β2= -0.36, -0.14, 0.07, and 0.47. Although
there is a 3.3 MeV barrier, well separating the prolate
minimum at β2 = 0.47 and the other minima, the two
minima with lower energies are located at β2= -0.14 and
0.47 with only an energy difference of 0.20 MeV, which
shows the possible shape coexistence in this nucleus. In
the present calculation, the state at β2 =-0.14 has the
lowest energy. This global minimum differs from that
of the triaxial calculation [12], which prefers the other
minimum at |β2| = 0.50, γ=0◦. Since different kinds of
pairing forces are applied, the delta pairing force in our
case and the separable pairing force in Ref. [12], it is not
surprising that the global minimum changes with such a
small energy difference. In such a case where the ener-
gies of the prolate and oblate shapes are so close to each
other, a proper treatment like GCM theory is needed to
describe the mixing between prolate and oblate shapes.
However, from our mean-field calculation, the potential
curve qualitatively supports the physical picture of such
shape coexistence, which is consistent with the experi-
mental data [8, 9]. The experimental deformation for
the 74Kr ground state reads |β2| =0.419 [54]. The op-
posite signs of spectroscopic quadrupole moments are
found for the ground-state bands and the bands based
on excited 0+

2 states, with 508 keV energy difference be-
tween the corresponding bandheads [9]. The assumption
of maximum mixing between a strongly prolate (β2 ∼
0.4) and a weaker oblate configuration (β2 ∼ -0.1) for
the 0+ states of 74Kr is supported by the two-level mix-
ing model, which is consistent with the experimental
data [9]. For non-relativistic Total Routhian Surface cal-
culations [20], the ground state deformations for 72Kr
and 74Kr are -0.333 and 0.381 (γ=2◦) respectively.

With the temperature increasing, the barrier that
separates the prolate and oblate shapes becomes weaker
and finally vanishes at T∼ 2.1 MeV and 1.7 MeV for 72Kr
and 74Kr respectively, where large flat curve segments are
developed, indicated by the shaded areas. For example,
the states with energy no more than 0.5 MeV higher than
the minimum at T=1.8 MeV for 72Kr are located in the
deformation interval −0.276β2 6 0.17. When the tem-
perature rises, more nucleons are distributed to single-
particle levels with high energies, which smears the en-
ergy differences at different deformations, and thus a soft

area is developed. It is clear that the nuclei 72,74Kr share
similar soft free energy areas at high temperatures, since
the differences between the two nuclei are also smeared
by the high temperature.

Before the free energy potential curve for 72Kr and
74Kr becomes soft, the two nuclei start to evolve with
temperature from different ground state properties. For
72Kr, the nucleus changes from oblate to a soft curve
with the spherical shape as its minimum at T∼2.1 MeV.
Instead of a well localized minimum at zero temperature
in 72Kr, 74Kr has two shapes, one oblate and the other
prolate, with similar energies for low temperatures. With
the temperature increases, the energy difference between
the oblate and prolate minima gradually becomes larger,
e.g. the prolate minimum at β2∼0.47 is 0.5 MeV higher
than the oblate minimum at β2∼−0.14 at T=0.75 MeV,
and 1 MeV higher at T =1.05 MeV. At the same time,
the local minimum at β2∼0.47 becomes shallower rela-
tive to its neighboring states and eventually vanishes at
T=1.45 MeV. With the temperature further increasing,
the nucleus 74Kr changes from oblate to a soft curve with
the spherical global minimum at T=1.7 MeV, as 72Kr at
T = 2.1 MeV.

To analyze the shape properties of the nuclei as func-
tions of temperature in more detail, the evolutions of
deformation and relative energy to the global minimum
of all minima with temperature for 72,74Kr are plotted
in Fig. 2. Both 72Kr and 74Kr have four local minima,
and the evolutions of these four local minima with tem-
perature are similar for 72Kr and 74Kr. However, the
relative energies between different minima are different
for these two nuclei, which leads to the different evolu-
tion behavior of the nuclear shape. For 72Kr, the energies
of other minima are much higher than that of the global
minimum, normally above 1.3 MeV, which can be seen
in Fig. 2(c). This situation isolates the global minimum
at β2 ∼−0.34. This oblate minimum gradually evolves
to spherical with two quick deformation changes, one at
T ∼ 0.9 MeV, the other at T ∼ 2.1 MeV. For 74Kr, the
oblate and prolate minima at β2 ∼−0.14 and β2 ∼ 0.47
compete strongly at low temperatures. The local mini-
mum β2 ∼−0.14 becomes the global minimum, not the
more oblate minimum β2 ∼ −0.36, which corresponds
to the global minimum of 72Kr. This global minimum
is stably located at β2 = −0.14 for T 6 0.5 MeV, and
slightly wobbles around β2 =−0.14 for higher tempera-
tures 0.5 6 T 6 1.7 MeV. In Fig. 2(d), the relative free
energy differences between the local minima and global
minimum for 74Kr share similar behavior to those of 72Kr
shown in Fig. 2(c), but with small amplitudes. It can
be seen in Fig. 2 that 72Kr experiences one continuous
deformation change at T=0.9 MeV and one abrupt de-
formation change at T=2.1 MeV while 74Kr experiences
one abrupt shape change at T=1.7 MeV.
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Fig. 2. (color online) The local minima deformation β2 and their free energies relative to the global minimum (in
MeV) as functions of temperature (in MeV) for 72Kr (a,c) and 74Kr (b,d), obtained by the constrained CDFT+BCS
calculations using PC-PK1 energy density functional.

Fig. 3. (color online) The excitation energy E∗ (in MeV) (a), pairing gaps ∆n, ∆p (in MeV) (b), the specific heat
Cv (c), and the global minimum deformation β2 (d) as functions of temperature (in MeV) for 72,74Kr, obtained by
the constrained CDFT+BCS calculations using PC-PK1 energy density functional.

Additionally, the bulk properties of the nuclei 72,74Kr
as functions of temperature, including the excitation en-
ergy, the pairing gaps, the specific heat as well as the
global minimum deformation, are shown in Fig. 3. In
Fig. 3(a), the relative excitation energies E∗ for 72,74Kr
are very similar, while the absolute values are as shown
in the keys in Fig. 1. For pairing gaps, it is well-known
that, at a fixed temperature, the pairing gaps may vary

a lot at different deformations, depending on the spe-
cific neutron or proton single-particle level structures.
In Fig. 3(b), both the neutron and proton pairing gaps
near β2 ∼−0.34 for 72Kr as well as the neutron pairing
gap near β2 ∼−0.14 for 74Kr are zero due to the large
shell gaps (cf. Fig. 5 and 6). The proton pairing gap
near β2 ∼−0.14 for 74Kr gradually decreases to nearly
zero, basically following the rule Tc = 0.6∆p(0), where
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Fig. 4. (color online) Neutron single-particle levels and energy potential curves as a function of deformation β2 for
the nucleus 74Kr at T=0 (a), and 2 MeV (b), obtained by the constrained CDFT+BCS calculations using PC-PK1
energy density functional. The dash-dot lines denote the corresponding Fermi surfaces.

Tc = 0.60 MeV is the critical temperature for a pairing
transition and ∆p(0) = 1.03 MeV is the proton pairing
gap at zero temperature, since the deformation and as-
sociated single particle levels for this minimum change
little with rising temperature. In Fig. 3(c), two discon-
tinuities can be found for both 72,74Kr. For 72Kr, the
discontinuities at T=0.9 MeV and 2.1 MeV in Fig. 3(c)
match the two deformation changes in Fig. 3(d). For
74Kr, the discontinuity at T=0.6 MeV matches the pro-
ton pairing transition temperature in Fig. 3(b) while the
discontinuity at T = 1.7 MeV matches the deformation
change in Fig. 3(d). Based on these figures, the specific
heat is a good signature in the search for pairing tran-
sitions or shape changes. However, in experiment the
specific heat usually exhibits a smoother behavior than
the sharp discontinuity obtained here. This is attributed
to the finite size of the nucleus and, therefore, realistic
description of statistical and quantal fluctuations.

For a more microscopic study, we check the temper-
ature effects on the shell structure, so the Nilsson dia-
grams for neutrons of 74Kr at temperatures T =0 and
2 MeV are plotted in Fig. 4, together with the free en-
ergy curves at corresponding temperatures. It can be
seen that the Nilsson diagrams are almost the same at
different temperatures, which shows that the tempera-
ture has a small effect on the single particle energy at
the same deformation. The Fermi energy is largely mod-
ified since the occupation of s.p. levels changes a lot
with increasing temperature. Such an effect is similar
to shape transition with increasing nucleon number. For
shape transitions between nuclei, due to the abundance
of low nucleon level densities, or subshell gaps in the

Nilsson diagram, adding or removing only a few nucle-
ons might have a dramatic effect on the particle energies
and consequently change the ground state shape. Here
the temperature promotes nucleons from levels below the
Fermi surface to levels above it, crossing the pronounced
subshell gaps at nucleon numbers 38 (oblate β2 ∼ -0.14
or prolate β2∼ 0.47) in Fig. 4, and may demonstrate the
changes of dominant shapes in one nucleus. Through
the alignment between the energy potential curve and
the s.p. structure, it is very clearly seen that the gaps
that the Fermi surface goes through coincide with the
local minima in the potential curves at zero tempera-
ture. The existence of these intruder states which form
the gap structure in the Nilsson diagram is responsible
for the deformed ground state. However, at T=2 MeV,
the shell structure of the Nilsson diagram no longer influ-
ences the position of the minimum, due to the diffusion
of nucleons on the s.p. levels, and the spherical shape is
always preferred. With increasing temperature, the shell
effects on the nucleus gradually fade away.

In the following Fig. 5 and Fig. 6, we plot the s.p.
levels of neutrons and protons at the global minimum
obtained from our mean-field calculation as a function
of temperature for 72Kr and 74Kr respectively. For 72Kr,
shown in Fig. 5, the s.p. level evolutions for neutrons and
protons with temperature are very similar to each other
since the neutron and proton number are the same. From
zero temperature to high temperature, the intruder level
9/2+[404] from the 1g9/2 orbital, which drives the nucleus
oblate, gradually goes above the Fermi surface. The oc-
cupation on this intruder level becomes less and less with
increasing temperature. Correspondingly, the oblate de-
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formation becomes smaller and smaller, and eventually
goes to zero at T ∼ 2.1 MeV, where the s.p. levels of
the same angular momentum quantum number become
degenerate and spherical s.p. levels are formed. The
large subshell gaps developed at N(Z)=36 contribute to
stabilizing the minimum states before the continuous de-
formation change at 0.9 MeV.

In Fig. 6, the s.p. levels of 74Kr behave differently
from those of 72Kr. Since the global minimum is near
β2=−0.14 before temperature 1.7 MeV, and near spher-
ical after that temperature, this evolution is basically a
direct jump from oblate to prolate at T=1.7 MeV. The
large subshell gap developed at N =38 contributes to
stabilizing the minimum states at lower temperatures.

To understand the changes of dominant shape with
temperature in 74Kr, we study the evolution of the ener-
gies composing the free energy with rising temperatures
in Fig. 7. Firstly we decompose the free energy into

two parts, the particle energy Epart and F−Epart. The
particle energy Epart is the total sum of the occupied
single-particle energies, which reflects the shell effects of
the Nilsson diagram in the zero temperature case, as well
as the decreasing shell effects by the changing thermal
occupation probabilities in finite temperature cases. At
zero temperature, the particle energy usually gets mini-
mized at the deformation where a shell gap above the last
occupied nucleons appears in the Nilsson diagram. So we
can see that the particle energy for the minimum at β2∼-
0.14, where there is a big shell gap at N=38 in Fig. 6, is
indeed smaller than that at spherical from Fig. 7(a). Fur-
thermore, the second part F−Epart can be decomposed
into two parts, the field energy F+TS−Epart=E−Epart

and the product of the temperature and the entropy
−TS. The field energy mainly represents the mean
field potential energy, namely the contributions from the
isoscalar-scalar, isoscalar-vector, isovector-vector, and

Fig. 5. (color online) Neutron (a) and proton (b) single-particle levels as a function of temperature (in MeV) for the
nucleus 72Kr, obtained by the constrained CDFT+BCS calculations using PC-PK1 energy density functional. The
dash-dot lines denote the corresponding Fermi surfaces. The levels near the Fermi surface are labeled by Nilsson
notations Ωπ[Nnzml] of the first leading component at zero temperature.

Fig. 6. (color online) Same as Fig. 5, but for 74Kr.
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Fig. 7. The particle energies (a), energy difference between the free energy and particle energy (b), energy difference
between the internal binding energy and particle energy (c), entropy (d), internal energy (e), and free energy (f)
for the global minimum near β2 ∼−0.14, the state at exactly β2 =−0.14, and the spherical state, as functions
of temperature (in MeV) for 74Kr, obtained by the constrained CDFT+BCS calculations using PC-PK1 energy
density functional.

electromagnetic fields, as was explained in Section 2.
The field energy normally prefers the spherical shape, so
we would expect to observe in Fig. 7(c) that the spherical
shape has a smaller field energy than the deformed shape.
From the curves of the spherical shape in Fig. 7(a)-(e),
we notice that there is a kink at T ∼ 0.6 MeV, which
actually corresponds to the disappearance of the pair-
ing gap at spherical shape with increasing temperature.
This disappearance of the pairing gap at spherical shape
actually boosts the entropy in Fig. 7(d) at T∼0.6 MeV.
As a result, it lowers the F −Epart in Fig. 7(b), even
if the field energy of the spherical shape in Fig. 7(c) in-
creases at the kink. If we compare Fig. 7(e) and Fig. 7(f),

we can notice that without the inclusion of entropy, the
spherical shape becomes lower in energy than the oblate
shape at a higher temperature T ∼ 2.5 MeV. The kink
behavior of the entropy at pairing transition temperature
T∼0.6 MeV for the spherical shape substantially affects
the transition temperature T ∼1.7 MeV from oblate to
spherical shape.

4 Summary

In summary, a finite-temperature axially deformed
CDFT + BCS theory based on the relativistic point-
coupling density functional was developed in this paper,
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and applied to the shape evolution study of 72,74Kr with
temperature. For 72Kr, with increasing temperature,
the nucleus changes from an oblate to a spherical shape
at T ∼ 2.1 MeV with a relatively quick deformation
change at T ∼ 0.9 MeV. For 74Kr, its global minimum
is at β2 = −0.14 and abruptly changes to spherical at
T ∼ 1.7 MeV. The proton pairing transition occurs at
T=0.6 MeV following the rule Tc=0.6∆p(0), due to sta-
ble deformation of the global minimum with rising tem-
perature. The signatures of the above pairing transitions
or shape changes can be found in the specific heat curve.
The single-particle level evolutions with the tempera-
ture as well as the deformation are presented. The large
subshell gap developed at N(Z)=36 or 38 contributes

to stabilizing the minimum states for low temperatures
for 72Kr or 74Kr respectively. As an initial work on the
investigation of shape evolution with temperature for
these complicated nuclei, our study provides a qualita-
tive understanding of the evolution picture. However,
to quantitatively describe these phenomena, one needs
to go beyond mean-field approximation, for example, by
developing the finite-temperature GCM theory. Corre-
sponding future work is envisaged.
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