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Beam distribution reconstruction simulation for electron beam probe
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Abstract: An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron

beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with

small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction.

This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment.

In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some

simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a

simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan

method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution,

Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is

implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well

as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio

Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the

electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the

beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile

simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and

High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is

described.
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1 Introduction

Beam profile measurement is of prime importance for
all accelerators, especially for high intensity machines,
as it can reveal the beam width in locations with small
aperture and further match phase space between differ-
ent parts of an accelerator facility. Conventional tech-
niques [1] for measuring beam distribution involve a very
large variety of devices depending on the beam particles,
intensity and energy, such as scintillator screens, sec-
ondary electron emission grids and wire scanners. These
devices typically need to insert a physical object into the
beam path. Such an object is easily destroyed under in-
creasing beam intensity and in turn can result in beam
loss. So, some kinds of non-interceptive profile monitors
have been launched based on different principles, such as
the ionization profile monitor [2] (IPM), beam induced
fluorescence monitor [3] (BIF) and electron beam probe

(EBP).
The application of charged particles as a probe beam

to determine charge distribution, and thus the beam pro-
file, has been raised since the 1970s [4, 5]. In those days,
electron beams were used to diagnose plasma charge
distribution. The development of this idea prompted ac-
celerator scientists to study the potential of this emerg-
ing technique as an alternative approach to practically
non-invasive profile monitors for accelerator beams, es-
pecially for high intensity beam. Since then, many lab-
oratories worldwide have studied and improved EBPs
and obtained some very valuable results. Among these
labs, TRIUMF [6], Lawrence Berkeley National Labora-
tory (LBNL) citebib7, the US Spallation Neutron Source
(SNS) [8–10] and Fermi National Accelerator Laboratory
(FNAL) [11, 12] use electron beams as a probe to de-
tect ion beam profiles. The Budker Institute of Nuclear
Physics (BINP) [13–16] in Russia uses electron beams
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to measure ultra-relativistic electron bunch length and
beam distribution. In addition, some labs, e.g. the Eu-
ropean Organization for Nuclear Research (CERN) [17],
employ ion beams as a probe to extract ion beam profiles,
and even some use ion beams to detect electron beams,
e.g. Stanford Linear Accelerator Center (SLAC) [18].

The principle behind EBPs is that a low energy, low
current electron beam is injected across the target beam
perpendicularly and then deflected by the target beam
collective field (mainly electric field). A screen and CCD
located downstream capture the deflected electron beam
trace, and then, by some mathematical treatment, i.e.
derivative, the beam profile can be reconstructed accu-
rately. Since the measurement should not significantly
disturb the field generated by the target beam, the cur-
rent of the electron beam must be low compared to the
target beam.

EBPs are suitable for both circular and linear ac-
celerators and mainly used for high intensity beams.
Two next-generation accelerator facilities, the High
Intensity Heavy Ion Accelerator Facility (HIAF) [19]
and the China Accelerator Driven Sub-critical System
(CADS) [20], have been proposed by the Institute of
Modern Physics (IMP). Both systems have high inten-
sity or high power, energy 1.2 GeV/u with intensity 5
×1011 ppp (particles per pulse) for HIAF and 10 MW
for CADS phase I. Measuring the beam parameters of
these high power accelerators is challenging and usually
depends on non-invasive instruments. An EBP detector
may provide the capacity for fine accelerator tuning and
online control of beam stability.

The purpose of this article is to present the study
and simulation of an EBP under various target beam
profile distributions. Some interesting results have been
achieved with fast scan and slow scan. An example is also
presented to deepen the understanding of the EBP. This
simulation is expected to provide the theoretical basis
for testing and construction of an EBP in the future.

2 Principle

An EBP uses the deflection of a low energy probe
beam in the target beam electromagnetic field to infer
the profile information of the target beam. Measuring
the deflection angle as a function of different impacts,
one can reconstruct the beam distribution in the x or y

direction. The theory of profile reconstruction and the
validity of this theory are presented below.

2.1 Theory of profile reconstruction

Without loss of generality, assume electron beam has
a tilted incident angle [21] with an impact parameter ρ,
as depicted in Fig. 1. The target beam moves along the
z direction, centered at x = y =0. Neglecting magnetic

field, the transverse electric field can be divided into per-
pendicular and parallel components.

E⊥=Excosφ+Ey sinφ, E‖=Exsinφ−Eycosφ, (1)

where Ex and Ey are the horizontal and vertical compo-
nents of the target beam space charge electric field re-
spectively. φ is the angle between the impact parameter
and x direction, and φ=0 means the incident direction
is y, φ= π

2
for x. In the case of steady beam current, ac-

cording to the Maxwell-Faraday equation, electric field
is curl free.

∇×E=0. (2)

Assume electron beam is injected at −x0 and ended at
x0. Then, Eq. (2) becomes

∫ x0

−x0

E‖d‖=0. (3)

The net energy change along the electron trajectory is
zero if we use the above-mentioned hypothesis. Hence,
we can assume the electron beam has a constant velocity
v, which is important for this theory and is also reason-
able in some sense (see Section 2.2).

Fig. 1. (color online) Schematic of electron beam
deflection by the target beam.

Next, we investigate the perpendicular direction.
Combining Newton’s second law of motion and some sim-
ple mathematical treatment, we obtain

d⊥
d‖ =

e

mv2

∫

(Excosφ+Ey sinφ)d‖, (4)

where e and m are the electron charge and mass, respec-
tively. For small deflection angles,

θ=
e

mv2

∫

(Excosφ+Ey sinφ)d‖. (5)

Letting φ= π

2
, we can obtain the deflection angle along

the y direction.

θy=
e

mv2

∫

Eydx. (6)
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After differentiating,

dθy

dy
=

e

mv2

∫

dEy

dy
dx. (7)

Using Gauss’s law ∇E= σ(x,y)

ε0
, we obtain

dθy

dy
=

e

mv2

(∫

σ(x,y)

ε0

dx− d

dx

∫

Exdx

)

. (8)

Using Eq. (3),

dθy

dy
=

e

ε0mv2

∫

σ(x,y)dx, (9)

where
∫

σ(x,y)dx is the profile of the y direction. The
above formula states that the derivative of the probe
beam deflection angle with respect to impact parameter
gives the projection profile of the beam cross-section dis-
tribution in the y direction, which does the same thing
as the wire scanner did.

2.2 Validity of theory

In deriving the profile reconstruction procedure
above, we introduced three important hypotheses.
Firstly, we neglect the magnetic field of the target beam,
because the magnetic field is around the φ direction,
which has no influence on the deflection angle along the
y direction. In addition, for a non-relativistic beam, the
magnetic field is much smaller than the electric field.
We further consider that the electron beam velocity re-
mains constant throughout the scan. However, since the
electric field component along the x direction exerts a
force on the electron, the electron beam velocity will
change slightly during its passage, although the net en-
ergy change is always zero according to symmetry. To
get rid of the error due to velocity change as much as pos-
sible, the electron beam energy should be much higher
than the target beam potential. We also assume that
the deflection angle is small, which can be achieved with
high electron beam energy. Errors will inevitably be in-
troduced due to each of these hypotheses. Therefore,
computer simulation is urgently needed.

3 Producing parallel electron beam

To obtain the profile of the y or x direction, the elec-
tron beam should be scanned along x or y with varying
y or x values. The key point to reconstruct beam pro-
file is that electron beam has to be parallel to either
axis and perpendicular to the target beam. In general,
there are two ways of producing parallel electron beams.
Lawrence Berkeley National Laboratory use four dipole
magnets of equal strengths to form a chicane system [7],
which is similar to a bump system. By virtue of this ar-
rangement, the electron beam can be swept in the y axis
while remaining parallel to the x axis in the gap between
the middle two magnets. Although the technology has

been successfully applied and ion beam profiles recon-
structed, it cannot be used for fast scans and thus the
profile cannot be measured automatically and rapidly.
This situation will change with the development of an-
other method to produce parallel electron beam, which
is shown in Fig. 2. It is an advanced configuration used
by several labs, such as SNS, BINP and FNAL.

Fig. 2. (color online) Layout of electron beam
probe: 1. electron gun; 2. solenoid; 3. Radio
Frequency deflector; 4. defocusing quadrupole; 5.
focusing quadrupole; 6. target beam; 7. YaG:Ce
screen; 8. CCD.

This system consists of an electron gun for electron
beam generation, solenoid for electron focusing, RF de-
flector for fast scan, two thin quadrupoles for forming
parallel electron beam, and an optical image system. To
separate the deflected and undeflected trajectories, elec-
trons are scanned through the target beam at a tilted
angle, i.e. 45◦. If the scan is aligned vertically, one
has to analyze the density distribution of the projected
electron beam, and through simulations, this gives poor
quality results [10].

The mathematical model [22] to simulate a parallel
electron beam is presented below. For simplicity, we re-
gard the electron beam as a point charge with no trans-
verse momentum. We assume that electrons start off at
the center of the RF deflector with initial phase space
coordinates at the y axis,

(

y0

y′
0

)

=





0
U

2V d
x0



, (10)

where U =200 V is the voltage of the RF deflector, which
can be adjusted from 0 to maximum to obtain various
initial angles. V is the high voltage of the electron gun
cathode, which can be changed from 1 kV to 20 kV ac-
cording to different target beam intensities. For high
beam current, V should be large in order to keep the
electron beam in the screen area. d = 4 mm is the RF
deflector gap and x0=4 cm the deflector length.

To observe the focusing behaviour at the z axis, we
let the initial phase space coordinates of the z direction
be

(

z0

z′
0

)

=

(

0

0.05

)

. (11)
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The transfer matrix along the transfer line is given by

My=

(

1 l3

0 1

)(

1 0

K2 1

)(

1 l2

0 1

)(

1 0

K1 1

)(

1 l1

0 1

)

, (12)

Mz=

(

1 l3

0 1

)(

1 0

−K2 1

)(

1 l2

0 1

)(

1 0

−K1 1

)(

1 l1

0 1

)

, (13)

where K1 and K2 are the integrated gradients of the
first and second quadrupoles respectively, l3 is the dis-
tance from the focusing quadrupole center to the screen,
l2 is the distance from the defocusing quadrupole center
to the focusing quadrupole center, and l1 is the distance
from the center of the RF deflector to the defocusing
quadrupole center. According to the condition of point
to parallel transport in the xy plane and point to point
transport in the xz plane, we have

My(22)=K1l1(1+K2l2)+K2(l2+l1)+1=0, (14)

Mz(12) = −K2(l1l3+l2l3)−K1(l1l3+l2l2)

+K1K2l1l2l3+(l1+l2+l3)=0. (15)

From Eq. (14) and Eq. (15), K1 and K2 can be ex-
pressed as an explicit function of l1, l2 and l3. For a
quadratic equation, there exists exactly two sets of solu-
tions,


















K1=

√
l1+l2

√
l1+l2+2l3

l1
√

l2(l2+2l3)
,

K2=
l1l2+l22−

√

l2(l1+l2)(l2+2l3)(l1+l2+2l3)

2l2(l2+l2)l3

(16)

and


















K1=−
√

l1+l2
√

l1+l2+2l3

l1
√

l2(l2+2l3)
,

K2=
l1l2+l22+

√

l2(l1+l2)(l2+2l3)(l1+l2+2l3)

2l2(l2+l2)l3

, (17)

which represent the totality of all possible cases of the
system. In this simulation, l1 =0.15 m, l2 =0.1 m, and
l3=0.7 m. The corresponding integrated gradients of the
quadrupoles are K1=11.055 m−1, K2=−6.393 m−1, and
K1=−11.055 m−1, K2=7.821 m−1.

The first solution, given by Eq. (16), indicates that
the first quadrupole is the defocusing one and the sec-
ond is the focusing one in the xy plane, and vice versa
in the xz plane. This can provide a wide range of par-
allel beam in the scanning plane and a focused beam in
the other plane, as shown in Fig. 3. The other solution,
given by Eq. (17), also provides a parallel beam in the xy

plane and a focused beam in the xz plane (see Fig. 4),
but the scan amplitude in the region of interaction is
much smaller than for the first solution. Furthermore, in
the xz plane, the second solution is large in the region

of interaction, which should be avoided to improve mea-
surement accuracy. Therefore, the first solution seems to
be better for forming parallel electron beam. We there-
fore focus our attention and base our simulation on the
first case.

x/m

z/
m

y
/m

(a)

 (b)

Fig. 3. (color online) (a) electron trajectory in the
xy plane with the first solution. (b) electron tra-
jectory in the xz plane with the first solution.

y
/m

z/
m

x/m

(a)

(b)

Fig. 4. (color online) (a) electron trajectory in the
xy plane with the second solution. (b) electron
trajectory in the xz plane with the second solu-
tion.

4 Profile reconstruction with fast scan

From Eq. (9), we know that the derivative of the
probe beam deflection angle with respect to impact pa-
rameter gives the projection profile of the beam cross-
section distribution on the y direction. When the scan
period is much shorter than the bunch length, we can
perform a fast scan, so the fine structure of the bunch
shape can be seen along the bunch. However, it is diffi-
cult to design a RF deflector with such high frequency,
i.e. GHz. An alternate approach, the slow scan, is con-
sidered in Section 5. Here, we will calculate the deflection
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angle with a traditional approach under various beam
distributions, such as KV distribution, waterbag distri-
bution, parabolic distribution, Gaussian distribution and
halo distribution. The maximum deflection occurs at the
boundary for a clear-boundary beam and at the 1.585σ

point for a Gaussian beam. This is verified by simula-
tion.

The momentum change in the target beam space
charge field in the y direction is given by

∆py=Fy∆t=−e

∫ xf

xi

Ey

ve

dx, (18)

where xi and xf represent the initial and final positions
of the electron beam respectively. Ey is the y component
of the target beam electric field and ve the velocity of the
electron. Hence, the deflection angle is

θy≈
∆py

px

, (19)

where px is the momentum of the electron beam. If we
calculate out the y component of the target beam electric
field, the deflection angle can be easily solved, and also
the derivative. For simulation, we select a proton beam
as the target beam, with kinetic energy 5 MeV/u, and
number of protons per unit length, λ, of 1.87×1010 m−1.
The beam radius, R, for the KV, waterbag and parabolic
distributions is 5 mm. Considering the low current of the
target beam, the electron gun cathode voltage, V , is se-
lected to be 5 kV.

4.1 KV distribution

The KV distribution is a well-known distribu-
tion which was discovered by I. Kapchinskij and V.
Vladimirskij [23] in 1959. The 2D real-space particle
number density is defined as

n(x,y)=
λ

πR2
, x2+y2

6R2, (20)

where λ is the particle density per unit length. The 1D
real-space profile is given by

n(y)=
2λ

πR

(

1− y2

R2

)0.5

(21)

and the y component of electric field is given by

Ey=
Ze

2πε0

γλ











y

R2
, y<R

y

x2+y2
, y>R

, (22)

where Z is the target beam charge, ε0 is the permittiv-
ity of vacuum and γ the relativity factor. The deflection
angle due to the target beam for the y>R region is

θy=2Karctan
|xi|
y

, with K=
−Ze

4πε0V
γλ. (23)

When xi → ∞, the anti-tangent value becomes
arctan |xi|

y
→ π

2
, so the maximum deflection angle is

θmax=|Kπ|= Ze

4ε0V
γλ=

Zγ

4ε0v

ib

V
, (24)

where v is the velocity of the target beam and ib is the
target beam current. Applying the parameters given be-
fore, the maximum deflection angle is

θmax=
1.6×10−19×1.87×1010

4×8.854×10−12×5000
≈17 mrad.

For a drift distance L = 1 m from gun exit to screen,
the deflection reached 17 mm, which requires that the
diameter of the screen should be 4 cm or even larger.
The deflected trajectory of the electron beam and re-
constructed profile of the target beam are illustrated in
Fig. 5.

d
ef

le
ct

io
n
 a

n
g
le

/m
ra

d
n
o
rm

al
iz

ed
 i

n
te

n
si

ty

y/mm

actual

reconstructed

(a)

(b)

Fig. 5. (color online)KV distribution. (a) deflected
trajectory of electron beam. (b) reconstructed
and actual profiles of target beam.

4.2 Waterbag distribution

The 2D real-space particle number density is defined
as

n(x,y)=
2λ

πR2

(

1− r2

R2

)

, x2+y2≤R2. (25)

The 1D real-space profile is given by

n(y)=
8λ

3πR

(

1− y2

R2

)1.5

. (26)

The y component of the electric field is given by

Ey=
Ze

2πε0

γλ
y

x2+y2











1−
(

1−x2+y2

R2

)2

, y<R

1, y>R

. (27)

The same as the KV distribution, the maximum deflec-
tion angle is also

θmax=|Kπ|= Ze

4ε0V
γλ=

Zγ

4ε0v

ib

V
, (28)
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which is decided by Gauss’s law. The deflected trajec-
tory of the electron beam and reconstructed profile of
the target beam are illustrated in Fig. 6.
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Fig. 6. (color online) Waterbag distribution. (a)
deflected trajectory of electron beam. (b) recon-
structed and actual profiles of target beam.

4.3 Parabolic distribution

The 2D real-space particle number density is defined
as

n(x,y)=
3λ

πR2

(

1− r2

R2

)2

, x2+y2
6R2 (29)

and the 1D real-space profile is given by

n(y)=
16λ

5πR

(

1− y2

R2

)2.5

. (30)

The y component of the electric field is given by

Ey=
Ze

2πε0

γλ
y

x2+y2











1−
(

1−x2+y2

R2

)3

, y<R

1, y>R

. (31)

The maximum deflection is identical to the kV distribu-
tion case,

θmax=|Kπ|= Ze

4ε0V
γλ=

Zγ

4ε0v

ib

V
. (32)

The deflected trajectory of the electron beam and re-
constructed profile of the target beam are illustrated in
Fig. 7.

4.4 Gaussian distribution

In this section, we present the simulation for a Gaus-
sian distribution, which has a complex mathematical ex-
pression. The calculation of electric field can be found
in Appendix A.
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Fig. 7. (color online) Parabolic distribution. (a)
deflected trajectory of electron beam. (b) recon-
structed and actual profiles of target beam.
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Fig. 8. (color online) Gauss distribution. (a) de-
flected trajectory of electron beam. (b) recon-
structed and actual profiles of target beam.

The 2D real-space particle number density can be
formulated as

n(x,y)=
λ

2πσxσy

e
− x2

2σ2
x
− y2

2σ2
y . (33)

The profile in the y direction is given by

n(y)=
λ√

2πσy

e
− y2

2σ2
y . (34)

The y component of the electric field is given by

Ey=Φ0

2

π

γy

σ0

∫ 1

κ

dξ
1

ξ2

1√
qz

e
−x2

qx
− y2

qy
− z2

γ2qz (35)

with σ0 =
√

2(σ2
x−σ2

y), Φ0 = Zeλ
2
√

πε0σ0
, κ=

σy

σx
, qx =q+2σ2

x,

qy = q+2σ2
y, qz = q+2σ2

z, ξ =
qy

qx
, and γ the relativistic

factor. For simulation, we select σx =7 mm, σy =5 mm
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and σz =10 cm. The deflected trajectory of the electron
beam and reconstructed profile of the target beam are
illustrated in Fig. 8.

4.5 Halo distribution

The calculation of electric field is given in Appendix
A.

The 2D real-space particle number density can be
formulated as

n(x,y)=
λ

πab

(

x2

a2
+

y2

b2

)

e−
x2

a2 − y2

b2 . (36)

The profile in the y direction is given by

n(y)=
2λ√
πb

y2

b2
e−

y2

b2 . (37)

The y component of the electric field is given by

Ey =
−Ze

6π2ε0

γλ

∫ ∞

0

dq
e
− x2

q+a2 − y2

q+b2
− z2

γ2(q+c2)

√
q+a2+

√
q+b2+

√
q+c2

× (qb2−q2+2b4)y−2b2y3

(q+b2)
3 . (38)

In this simulation, the parameters are a = 1 mm, b =
0.1 mm, c=5 mm. The deflected trajectory of the elec-
tron beam and reconstructed profile of the target beam
are illustrated in Fig. 9.
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Fig. 9. (color online) Halo distribution. (a) de-
flected trajectory of electron beam. (b) recon-
structed and actual profiles of target beam.

Up to now, accurate simulation results using fast
scans have been carried out with several well-known
beam distributions. Based on numerous examples, we
have further demonstrated the power of this method.
Next, we will explore some other interesting characteris-
tics of EBPs.

5 Profile reconstruction with step-by-

step scan

In the former section, we investigated the fast scan
and profile reconstruction with various target beam dis-
tributions. In this section, taking the Gaussian distri-
bution as an example, we present an alternate technique
to obtain the deflection angle, which is more easily real-
ized than the fast scan. This method involves the elec-
tron beam being slowly stepped through the target beam,
while the maximum deflection angle is recorded. More
specifically, the electron beam stays stationary each time
the target bunch passes and is then moved to the next
impact parameter by the deflector.

The electric field of a 3D Gaussian distribution can
be decomposed into three components, Ex, Ey and Ez.
In some sense, Ex can be neglected due to its limited
role. Hence, electrons are deflected by Ey and Ez, which
can be treated in the same way as the y direction was.
Referring to Eq. (18), the momentum change of electrons
in the z direction can also be expressed as

∆pz=−e

∫ xf

xi

Ez

ve

dx. (39)

To simulate the whole procedure of electron beam mo-
tion with a 3D Gaussian bunch, we developed a Python
code, which takes the transverse and longitudinal effects
into account at the same time. The simulation results
are illustrated in Fig. 10 and Fig. 11.

z/mm

y
/m
m

Fig. 10. (color online) Step-by-step scan with vary-
ing impact parameters. From top to bottom, the
impact parameters are 1 cm, 0.77 cm, 0.55 cm,
0.33 cm, 0.11 cm, −0.11 cm, −0.33 cm, −0.55 cm,
−0.77 cm, −1 cm, respectively.

Figure 10 shows the simulated deflection angle with
varing impact parameters, demonstrating a symmetry
about the z axis, since the bunch we chose is symmet-
ric. Figure 11 shows the reconstructed profile and actual
profile, which agree well. In the process of simulation,
we found that it is essential to scan with a large initial
impact parameter, i.e. 7σy, to obtain a nice result. The
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reconstruction errors corresponding to various initial im-
pact parameters are illustrated in Fig. 12.
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Fig. 11. (color online) Deflection curve and pro-
file reconstruction using step-by-step scan. In this
case, the electron beam stays stationary when the
target beam passes. Top: deflected trajectory of
electron beam corresponding to each impact pa-
rameter. Bottom: reconstructed, fitted and ac-
tual profiles of target beam.

initial impact parameter (σ)

er
ro

r 
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)

Fig. 12. (color online) Profile reconstruction errors
with different initial impact parameters.

6 Bunch shape reconstruction

The fast scan along the target bunch allows measure-
ment of the bunch structure. Furthermore, if we step
the electron beam across the target bunch with varying
impact parameters and record the maximum deflection
angle corresponding to every deflection, the beam profile
can also be extracted. To obtain a nice reconstruction,
the same as for the step-by-step scan, the initial impact
parameters should be large enough. Figure 13 shows
the bunch shape achieved from the fast scan along the
target bunch. The stepping scan with varying impact
parameters and the reconstructed profile are illustrated

n
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rm
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ed
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z/mm
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fitted
actual

Fig. 13. (color online) Reconstructed, fitted and
actual bunch shapes, showing good agreement.
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Fig. 14. (color online) Scan along bunch path with
varying impact parameters. From top to bot-
tom, the impact parameters are 8 mm, 6.22 mm,
4.44 mm, 2.66 mm, 0.88 mm, −0.88 mm,
−2.66 mm, −4.44 mm, −6.22 mm, −8 mm, re-
spectively.
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Fig. 15. (color online) Deflection curve and profile
reconstruction with the electron beam scanning
quickly along the direction of bunch motion. (a)
deflected trajectory of electron beam along bunch
path with various impact parameters. (b) recon-
structed, fitted and actual profiles of target beam.
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in Fig. 14 and Fig. 15, respectively. In order to accu-
rately describe and predict the bunch shape, y should
be as small as possible, i.e. 0.5σy. Figure 16 shows the
reconstruction errors corresponding to various y values.
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y (σ)

Fig. 16. (color online) Bunch shape reconstruction
errors with different initial values of y.

7 Simulation for cads and hiaf

CADS In this section, we present an example to verify
the sensitivity of the deflection angle corresponding to
target beam current and the profile reconstruction un-
der different electron gun energies. We first take the
LEBT of the China Accelerator Driven Sub-critical Sys-
tem (CADS) as an example. It accelerates proton beam
bunches to 5 MeV/u at macro pulse current of 15 mA
with a macro pulse length of 500 µs. The RF frequency
is 162.5 MHz and each bucket has a phase width of 1

3
π

with a micro bunch current ib ≈ 90 mA. Let the elec-
tron gun energy be 5 keV, so the maximum deflection
angle (see Eq. (24)) is about 17 mrad. If the distance
from bunch center to screen is 0.6 m, the diameter of
the screen should be at least 21 mm. Figure 17 shows

m
ax

. 
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n
g
le

/m
ra

d

electron gun energy/KeV

CADS

Ib = 45 mA
Ib = 90 mA

Ib = 180 mA

Fig. 17. (color online) Maximum deflection angle
with different target bunch currents under vari-
ous electron gun energies.

the maximum deflection angle with three different bunch
currents, 45 mA, 90 mA and 180 mA. Considering the
screen size, for the CADS LEBT current, a 5 KeV elec-
tron gun is enough. Figures 18 and 19 show various
deflection curves with several electron energies. The re-
constructed profile is exactly identical although the de-
flection curves are extremely different.
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1 KeV

9 KeV
7 KeV
5 KeV
 3 KeV

Fig. 18. (color online) Deflection angle under dif-
ferent electron gun energies with a Gaussian tar-
get beam. Clearly, with the increase of electron
gun energy, the deflection angle becomes smaller.
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Fig. 19. (color online) Reconstructed profiles from
Fig. 18. Although the deflection curves are ex-
tremely different for the five electron gun ener-
gies, there is good agreement between the recon-
structed beam profiles and the actual profiles.

HIAF Merging is an advanced technology to produce
supercritical atoms that is of great importance to inves-
tigate the spontaneous occurrence of electron-positron
pairs in a strong Coulomb field. The HIAF project em-
ploys two synchrotrons, SRing-A and SRing-B, to form
a special collider. A small angle collision is implemented
to merge two coasting beams together at the interaction
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point. To check the merging result, the beam distribu-
tion at the moment of merging is essential. An EBP
provides an effective way to reconstruct the beam dis-
tribution with arbitrary cross-section. Suppose that the
two beams both have a Gaussian distribution and an off-
set from the center. The 2D real-space particle number
density can therefore be formulated as

n(x,y)=
λ

2πσx

e
−x2

2σ2
x

(

1−α

σy1

e
−y2

2σ2
y1 +

α

σy2

e
−(y−y0)2

2σ2
y2

)

, (40)

where α is the scale factor and y0 is the offset in the y

direction. The profile in the y direction is given by

n(y)=
λ√
2π

(

1−α

σy1

e
−y2

2σ2
y1 +

α

σy2

e
−(y−y0)2

2σ2
y2

)

. (41)

The y component of the electric field is given by

Ey =
Ze

π3/2ε0

γλ

[

(1−α)y

σ2
01

∫ 1

κ1

dξ1

qx

qy1

e
− x2

qx
− y2

qy1

+
α(y−y0)

σ2
02

∫ 1

κ2

dξ2

qx

qy2

e
− x2

qx
− (y−y0)2

qy2

]

(42)

with

qx=
σ2

01

1−ξ2
1

, σ01=
√

2(σ2
x−σ2

y1), κ1=
σy1

σx

, qy1=
σ2

01ξ
2
1

1−ξ2
1

,

σ02=
√

2(σ2
x−σ2

y2), κ2=
σy2

σx

, and qy2=
σ2

02ξ
2
2

1−ξ2
2

.

In this simulation, σx =7 mm, σy1 =5 mm, σy2 =6 mm,
y0 =2 cm, and α =0.2. The deflected trajectory of the
electron beam and the reconstructed profile of the target
beam are illustrated in Fig. 20. It shows good agree-
ment, and also verifies that the EBP is able to detect
the profile of merging beams.
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Fig. 20. (color online) Bi-Gauss distribution. (a)
deflected trajectory of electron beam. (b) recon-
structed and actual profiles of target beam.

8 A potential EBP system design

Based on the simulation given above, a potential sys-
tem design for an electron beam probe is proposed as il-
lustrated in Fig. 21. At the electron gun exit, a solenoid
is employed to make electron beam profile as small as
possible in the screen. Then, a pair of deflectors, hori-
zontal and vertical, are applied to manipulate the elec-
tron beam. To measure the vertical profile of the target
beam, the vertical deflector should be powered by a RF
voltage. The RF frequency depends on the frequency of
the target beam if fast scan is implemented. In general,
both the deflectors can be powered by a static voltage to
calibrate the electron beam to pass the doublet center,
e.g. by BBA (beam based alignment). The quadrupole
doublet is arranged so that a parallel electron beam is
produced in the scanning direction. For offline testing,
a current-carrying wire can be applied to simulate the
target beam. The distance from the target beam to the
screen is related to electron gun energy and target beam
intensity. In principle, the deflected curve should stay in
the screen area, and the deflection angle should not be
too small, to improve resolution. So, it is necessary to
estimate these parameters in advance. We take a sim-
ple example to further understand this process. Assume
the particle number per unit length of target beam is
λ = 1.87×1010, and the distance from the target beam
to the screen is 50 cm. To reach a maximum deflection
of 1 cm on the screen, the required deflection angle is
20 mrad. Referring to the maximum deflection angle
formula, Eq. (24), we know that electron gun energy is
less than 5 keV. Since the electron beam is easily in-
fluenced by stray magnetic fields, e.g. the geomagnetic
field, especially for low energy electron beams, magnetic
shielding is essential for the whole system.

Fig. 21. Layout of EBP (side view): (1) electron
gun; (2) solenoid; (3) horizontal deflector; (4) ver-
tical deflector; (5) and (6) quadrupole doublet; (7)
test wire or beam; (8) screen; (9) view window;
(10) CCD holder.

9 Conclusions

In this paper, the EBP as a profile monitor and bunch
length detector has been simulated comprehensively for
the first time. The theoretical aspects of the technique
were analyzed in detail without loss of generality. A
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method to produce parallel electron beams was intro-
duced. A Python code has been developed to simu-
late the production of parallel electron beams with arbi-
trary arrangements of quadrupole doublet. Via fast scan,
transverse profile reconstruction has been implemented
under various well known beam distributions, such as
KV distribution, waterbag distribution, parabolic dis-
tribution, Gaussian distribution and halo distribution,
with good agreement. To reduce the requirement for
hardware, a slow scan is proposed, which also can obtain
a nice result via the presented simulation. The bunch

shape can be reconstructed from the electron beam de-
flection along the bunch path. Meanwhile, if we vary
the impact parameters continuously, the transverse pro-
file can also be extracted. As an example, we have also
shown how to select an electron gun under different tar-
get beam currents, and verified that it is possible to re-
construct the profile for merging beams. Finally, a po-
tential system design has been presented to put the the-
ory into practice. Next, we plan to do more studies and
fabricate a prototype EBP to verify the principle and
confirm the measurement accuracy.

Appendix A

The electric field described by Eq. (35) and Eq. (38)
can be computed using a method similar to that of K.
Takayama [24–26]. The Poisson equation with charge dis-
tribution ρ(~r)=ρ(~r′)δ(~r−~r′) can be expressed as

∇2
Φ(~r)=−ρ(~r)

ε0
. (A1)

The Green function corresponding to Eq. (A1) is well known
in the form

G(~r,~r′)=
1

4π|~r−~r′| , (A2)

which satisfies the Green equation

∇2
G(~r,~r′)=−δ(~r−~r

′) (A3)

and the general expression of potential can be formulated as

Φ(~r)=
1

ε0

∫ ∫ ∫

G(~r,~r′)ρ(~r′)d3
~r
′
. (A4)

To apply the Green function to a Gaussian charge distribution
conveniently, we can rewrite Eq. (A2) as an integral represen-
tation

G(~r,~r′)=
1

4π3/2

∫ ∞

0

dq
1

q3/2
e−

|~r−~r′|2

q . (A5)

So, the potential expressed by the Green function is

Φ(~r)=
1

4πε0

∫ ∞

0

dq
1

q3/2
√

π

∫

d3
~r
′
ρ(~r′)e

− |~r−~r′|2

q . (A6)

In principle, the potential generated by any Gauss-like charge
distribution can be solved by the formula.

3D Gaussian distribution The charge density for a 3D
Gaussian distribution is

ρ(x,y,z)=
Q

(2π)3/2
σxσyσz

e
−
(

x2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)

, (A7)

where Q=ZeN and N is the total particle number.
For simplicity, we firstly calculate the x direction compo-

nent.

Ix=

∫ ∞

−∞

1√
2πσx

e
− x′2

2σ2
x

1√
q
e−

|~x−~x′|2

q dx
′
. (A8)

After some simple mathematical treatment, we have

Ix=
1

√

q+2σ2
x

e
− x2

q+2σ2
x . (A9)

Doing the same as we did above, the electric potential of a
3D Gaussian distribution can be expressed as

Φ(x,y,z)=
Q

4πε0

1√
π

∫ ∞

0

dq
1

qxqyqz
e
− x2

qx
− y2

qy
− z2

qz , (A10)

where qx = q+2σ2
x, qy = q+2σ2

y and qz = q+2σ2
z . To im-

prove computing speed, we follow the method of the well
known Bassetti-Erskine formula [27], which is also used by
R. Wanzenberg [28] to simulate nonlinear motion of a point
charge in the 3D space charge field of a Gaussian bunch. A
formula can often be considerably simplified by a suitable
transformation of variables.

We replacing the old integration variable q with the new
one ξ in the following way

ξ
2=

qy

qx
=

q+2σ2
y

q+2σ2
x

, (A11)

or

q=
2σ2

x−2σ2
y

1−ξ2
−2σ

2
x, (A12)

since q∈(0,∞), ξ∈(κ,1). Assume σx>σy and introduce two
quantities

κ=
σy

σx
, σ0=

√

2
(

σ2
x−σ2

y

)

. (A13)

The relation between q and ξ can be written as

dq=
2q

3/2
x

√
qy

σ2
0

dξ. (A14)

Therefore, the electric potential of a 3D Gaussian distribution
in terms of these variables is

Φ(x,y,z)=
Q

4πε0

2√
π

1

σ2
0

∫ 1

κ

dξ
qx√
qz

e
− x2

qx
− y2

qy
− z2

qz (A15)
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with

qx=
σ2

0

1−ξ2
, qy=

σ2
0ξ2

1−ξ2
and qz =2

(

σ
2
z−σ

2
x

)

+
σ2

0

1−ξ2
.

To compare with the Bassetti-Erskine formula, we define a
constant

Φ0=
Q

2
√

πε0σ0
. (A16)

The potential is now

Φ(x,y,z)=Φ0
1

π

1

σ0

∫ 1

κ

dξ
qx√
qz

e
− x2

qx
− y2

qy
− z2

qz . (A17)

The y component of the electric field can easily be obtained:

Ey=− ∂

∂y
Φ(x,y,z)

=Φ0
2

π

y

σ0

∫ 1

κ

dξ
1

ξ2

1√
qz

e
− x2

qx
− y2

qy
− z2

qz .

(A18)

In the laboratory frame,

Ey=Φ0
2

π

γy

σ0

∫ 1

κ

dξ
1

ξ2

1√
qz

e
− x2

qx
− y2

qy
− z2

γ2qz . (A19)

3D halo distribution The charge density for a 3D halo
distribution [26] is

ρ(x,y,z)=
2Q

3π3/2abc

(

x2

a2
+

y2

b2
+

z2

c2

)

e
− x2

a2 − y2

b2
− z2

c2 . (A20)

Substituting Eq. (A20) into Eq. (A6), we obtain

Φ(x,y,z)=
1

4πε0

2Q

3π3/2abc

∫ ∞

0

dq
1

q3/2
√

π

∫

d3
r
′
(

x′2

a2
+

y′2

b2
+

z′2

c2

)

e
−





x′2

a2 +
(x−x′)2

q



−





y′2

b2
+

(y−y′)2
q



−





z′2

c2
+

(z−z′)2
q





. (A21)

For simplicity, we first consider the x direction:

Ix=
1

4πε0

2Q

3π3/2abc

∫ ∞

0

dq
1

q3/2
√

π

∫ ∫ ∫

x′2

a2
e
−





x′2

a2 +
(x−x′)2

q



−





y′2

b2
+

(y−y′)2
q



−





z′2

c2
+

(z−z′)2
q





dx
′dy

′dz
′
. (A22)

After some mathematical treatment, we have

Ix=
Q

6π2ε0

∫ ∞

0

dq
e
− x2

q+a2 − y2

q+b2
− z2

q+c2

√

q+a2+
√

q+b2+
√

q+c2

[

q

2

1

q+a2
+

(

ax

q+a2

)2
]

. (A23)

Therefore, the electric potential is now

Φ(~r)=
Q

6π2ε0

∫ ∞

0

dq
e
− x2

q+a2 − y2

q+b2
− z2

q+c2

√

q+a2+
√

q+b2+
√

q+c2

×
[

q

2

(

1

q+a2
+

1

q+b2
+

1

q+c2

)

+

(

ax

q+a2

)2

+

(

by

q+b2

)2

+

(

cz

q+c2

)2
]

.

(A24)

So, the y component of electric field in the laboratory frame is:

Ey=
γQ

6π2ε0

∫ ∞

0

dq
e
− x2

q+a2 − y2

q+b2
− z2

γ2(q+c2)

√

q+a2+
√

q+b2+
√

q+c2

(

qb2−q2+2b4
)

y−2b2y3

(q+b2)3
. (A25)
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