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Abstract: Producing high-brightness and high-charge (>100 pC) electron bunches at blowout regime requires

ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed

in this paper. The electron and lattice temperature is calculated using an improved two-temperature model, and an

extended Dowell-Schmerge model is employed to calculate the thermal emittance and quantum efficiency. A time-

dependent growth of the thermal emittance and the quantum efficiency is observed. For a fixed amount of charge,

the projected thermal emittance increases with decreasing laser radius, and this effect should be taken into account

in laser optimization at blowout regime. Moreover, laser damage threshold fluence is simulated, showing that the

maximum local fluence should be less than 40 mJ/cm2 to prevent damage to the cathode.
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1 Introduction

In recent decades, high-brightness electron beams
have been of central importance in many accelerator-
based applications such as free electron laser (FEL) light
sources [1], MeV ultrafast electron diffraction [2], and
Thomson scattering X-ray sources [3]. One of the po-
tential methods to achieve high brightness is to pro-
duce a beam with a three-dimensional uniformly filled
ellipsoidal charge distribution. This charge distribution
produces space-charge fields that have a linear depen-
dence on position within the distribution, and gives a
promising path to perfect emittance compensation per-
formance. Several schemes have been proposed to gen-
erate the 3D uniform ellipsoidal distribution, including
drive laser pulse shaping [4, 5] and longitudinal space
charge expansion [6]. The latter technique uses an ultra-
short laser illuminating a photocathode to create an ini-
tial charge distribution which is longitudinally thin and
radially wide. This initial bunch, also referred to as the
pancake bunch, will expand longitudinally under space
charge forces to create a uniformly filled ellipsoid distri-
bution. This space-charge-dominated expansion is usu-
ally referred to as the blowout regime. Producing 3D uni-
form ellipsoidal bunches at blowout regime is relatively

simple to implement because ultrashort laser pulses are
readily available and no more laser pulse shaping is re-
quired. Therefore, the blow-out regime scheme has at-
tracted a lot of attention in the past decade and some
experiments have been done to verify its performance in
3D uniform ellipsoidal bunch production [7, 8].

The blowout regime requires the characteristic image-

charge field strength (σ0/ε0) to be much smaller than
the initial cathode field [6], otherwise the image charge

force will deform the charge distribution and dilute the
transverse emittance [7]. Unfortunately, the accelerat-

ing field in emission phase at the photocathode is low
(∼60 MV/m) for convensional S-band RF guns, which
significantly limits the achievable maximum charge den-
sity. This restriction will be strengthened for applica-

tions requiring high-charge electron bunches (>100 pC),

like FEL applications. This is because for a limited

charge density, the blowout regime requires large trans-

verse laser spots at the photocathode with consequent
large thermal transverse emittance [9].

Recently, several photocathode RF guns with high ac-
celerating gradients have been developed. For example, a
200 MV/m cathode accelerating field has been achieved
in SLAC’s X-band gun [10], and even higher accelerating
fields are expected in some novel photocathode RF gun
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designs, such as the cryogenic electron source [11]. The
high accelerating field greatly eases the restriction of the
charge density of electron bunches produced at blowout
regime, and consequently, a small transverse emittance
can be achieved more easily in high-gradient RF guns.
Therefore, the blowout regime has become an important
operation mode to produce high-brightness and high-
charge bunches [10, 11].

The quantum efficiency is typically of the order of
10−5 for a conventional copper cathode. Producing high-
brightness and high-charge electron bunches at blowout
regime with such a low-quantum-efficiency cathode re-
quires a laser beam with high energy, ultrashort laser
pulses, and small transverse dimension, that is, the en-
ergy density of the laser beam is quite large. The heat-
ing effects of such a laser pulse on the electron bunch
emission process should be analyzed carefully. Recently,
a simulation of laser pulse heating of metallic photo-
cathodes has been done [12], showing a time-dependent
growth of quantum efficiency and thermal emittance due
to the ultrafast laser pulse heating effect. In this pa-
per, we use this model to calculate the effects of laser
pulse heating on high-brightness and high-charge elec-
tron bunch production at blowout regime. Given that
the energy density of the laser pulse needed for the pro-
duction of high-charge and ultrashort electron bunches
is quite high, the lattice and electron temperatures will
rise dramatically to a significantly high level. Therefore,
an improved two-temperature model is employed here to
calculate the lattice and electron temperatures more ac-
curately, considering the effects of lattice and electron
temperatures on the reflectivity coefficient, the electron
heat capacity, the electron thermal conductivity, and the
electron-phonon coupling.

2 Improved two-temperature model

The ultrashort laser pulse heating of the metallic
photocathode is a nonequilibrium energy transport pro-
cess, which consists of two stages [13]. The first stage
is photon energy absorption through electron-photon in-
teractions. It takes a few femtoseconds for electrons to
reestablish the Fermi distribution. The second stage
is lattice temperature growth through electron-phonon
interactions, which takes a few or tens of picoseconds.
Consequently, there exists a state in which the electrons
have reached an equilibrium state with very high electron
temperature Te (thousands of kelvin), while the lattice
temperature Tl is still low (close to room temperature).
This process is successfully described by the well-known
two temperature model. In this paper an improved two-
temperature model [14, 15] is employed, which consid-
ers the effects of lattice and electron temperatures on
the reflectivity coefficient, the electron heat capacity, the

electron thermal conductivity, and the electron-phonon
coupling over a wide range.

Generally, the diameter of laser beam used to illumi-
nate the cathode is much larger than the sum of the op-
tical penetration depth and the electron ballistic range.
Therefore, a one-dimensional model is accurate enough
to be used here, as given below:

Ce(Te)
∂Te

∂t
=

∂

∂z

[

Ke(Te,Tl)
∂Te

∂z

]

−G(Te−Tl)+Q(z,t)

Cl(Tl)
∂Te

∂t
= G(Te−Tl)

(1)
where Ce is the electron heat capacity, Cl is the lattice
heat capacity, Ke is the electron thermal conductivity,
G is the electron-phonon coupling constant, and Q(z,t)
represents the laser source term.

The parameters for Ce = γTe with γ = 96.6 J/cm3 ·
K2 and G = 1017 W/m3K are widely used in many
works [12, 15]. These estimations are only valid, how-
ever, at low electron temperature (0 < Te < 3000 K)[16].
As the electron temperature becomes significantly high
(>3000 K for copper), numerous d-band electrons are ex-
cited, leading to a significant increase of the electron heat
capacity and electron-phonon coupling. Hence, Zhibin
Lin’s modified values (see Fig. 3 (c)(d) in Ref. [16]) are
used in our model to estimate Ce and G in a wider elec-
tron temperature range.

The electron thermal conductivity can be described
by [15]

Ke(Te,Tl) = K0

BTe

AT 2
e +BTl

(2)

where K0 = 400 W/mK is the electron thermal conduc-
tivity at room temperature, A = 1.75×107 K−2 ·s−1 is the
coefficient of e-e collision frequency, and B = 1.98×1011

K−1 ·s−1 is the coefficient of e-ph collision frequency.
The lattice heat capacity is estimated by a Debye

model.

Cl = 9NkB

(

Tl

θD

)3 ∫ θD/Tl

0

dx x4 ex

(ex−1)2
(3)

where N is the atomic number density, kB is the Boltz-
mann constant, and θD is the Debye temperature (θD =
343.5 K for copper).

A laser beam with Gaussian longitudinal profile and
uniform radial profile is used in our model. The heat
source term Q(z,t) can be expressed as

Q(z,t) =
[1−R(Tl)]F0√

2πσtdp

exp[− (t− t0)
2

2σt
2

− z

dp

] (4)

where F0 is the laser fluence, σt is the rms laser pulse
width with t0 = 4σt, and dp = 1/α+λball is the effective
penetration depth, which is the sum of the optical pene-
tration depth 1/α and the ballistic electron penetration
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depth λball. Here we ignore the effect of temperature on
the optical penetration depth and assume 1/α to be a
constant, 1/α = 12 nm [12]. The measured value of bal-
listic electron penetration depth has shown a significant
difference in different groups [17, 18]. This value may
be affected by specific characteristics of the sample, such
as the crystallinity. We used the latest measured value
λball = 15 nm [18] in our model.

R is the reflection coefficient and it has a signifi-
cant dependence on the cathode temperature. Especially
when the lattice temperature gets close to the melting
point (1357.77 K for copper), the reflection coefficient
will become very small. Therefore, the dependence of R
on the lattice temperature Tl should be analyzed care-
fully. The reflectivity coefficient is determined as follows:

R =
(n−1)2 +k2

(n+1)2 +k2
(5)

where n+ik is the complex refractive index. The relation
between the complex refractive index and the complex
dielectric function is given as n+ik =

√
ε=

√
ε1 + iε2, i.e.,

n =
√

(ε1 +
√

ε2
1 +ε2

2)/2, k =
√

(−ε1 +
√

ε2
1 +ε2

2)/2.

The complex dielectric function ε of metals is deter-
mined by the Drude model [19] for free electrons, which
is written as

ε = 1− ω2
p

ωL(ωL− iν)
(6)

where ωp =

√

nee
2

meε0

is the plasma frequency (with ne

the electron number density), ωL is the laser frequency,
and ν is the electron collision frequency. The collision
frequency is usually calculated by Spitzer’s formula [20]
in many works about the metal ablation [21], in which
the free electrons are treated as an ideal gas. But this
assumption is valid only if the electron temperature is
much higher than the Fermi energy (Fermi temperature,
8×104 K for copper). Our concern in this study is only
with the lattice temperature below the melting point and
the electron temperature will not be so high. A formula
to describe the dependence of the collision frequency on
the lattice temperature above room temperature and be-
low the melting point can be found in Ref. [22]:

ν ≈ 2ks

e2
1kBTl

~2vF

. (7)

Here, e1 is electron charge in electrostatic units, ~ is
the reduced Planck constant, vF = ~(3π

2ne)
1/3/me is the

Fermi velocity, and ks is a numerical constant.
Considering a 266-nm laser beam illuminating a cop-

per cathode, the dependence of reflectivity coefficient R
on the lattice temperature is shown in Fig. 1. Here we
assume ks = 85 in Eq. (7) to make the reflectivity co-
efficient at room temperature calculated by Eq. (5)–(7)
consistent with the nominal value (R = 0.34 [12]).

Fig. 1. Dependence of reflectivity coefficient R on
the lattice temperature (from room temperature
to melting temperature) when a 266-nm laser
beam illuminates a copper cathode.

For equation set (1), the initial condition can be writ-
ten as

Te(z,0) = Tl(z,0) = T0 (8)

and the boundary conditions can be expressed as

∂Te

∂z
|z=0 =

∂Te

∂z
|z=d = 0

∂Tl

∂z
|z=0 =

∂Tl

∂z
|z=d = 0

. (9)

Here, T0 is the initial temperature, and d = 600 nm is
the boundary for numerical calculation, which is much
larger than the effective penetration depth.

Equation set (14) and Eqs. (8), (9) are numerically
solved by a pdepe [23] function in MATLAB. When a
266-nm laser beam with rms pulse width σt 30 fs and
laser fluence F0 10 mJ/cm2 illuminates the cathode, the
space- and time-dependence of the electron and lattice
temperature in the copper cathode are shown in Fig. 2.
For a fixed time, the electron and lattice temperature de-
crease along with depth, and the maximum temperature
appears at the cathode surface.

Figure 3 shows the temporal evolution of the elec-
tron and lattice temperature at the cathode surface with
different laser fluences. The electrons in the copper cath-
ode quickly absorb the energy of the laser beam through
electron-photon collisions and the electron temperature
increases to the maximum rapidly (in tens of femtosec-
onds). The temperature of the lattices rises much more
slowly than that of the electrons because the energy
transfer through electron-phonon collisions is much more
difficult than through electron-photon collisions. It will
take a few picoseconds for the electrons and lattices to
reach a thermal equilibrium.
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Fig. 2. (color online) Electron temperature distribution (left) and lattice temperature distribution (right) at different
times and positions for a copper cathode illuminated by a 266-nm laser beam with pulse width 30 fs, and laser
fluence 10 mJ/cm2.

Fig. 3. (color online) Temporal evolution of elec-
tron temperature (top) and lattice temperature
(bottom) for a copper cathode illuminated by
a 30-fs, 266-nm laser pulse at 5 mJ/cm2, 10
mJ/cm2, 15 mJ/cm2, respectively.

Electron bunch emission at blowout regime requires
that the acceleration-field-induced velocity-position cor-
relations associated with the finite duration τl of the pho-
toemission process should be negligible, i.e., the laser
pulse duration should be far less than the length of the
electron bunches after full expansion. This requirement
can be expressed as [6]

τl �
mc

eE0

(10)

where τl is the laser pulse duration, and E0 is the cathode
accelerating field in the emission phase.

For a high cathode accelerating field, the laser pulse
duration is required to be very short. For example, a
laser pulse with 60-fs FWHM length [10] was used in

SLAC’s X-band gun with a cathode accelerating field of
200 MV/m. In Fig. 4 we scan the rms laser pulse width
σt around the length of the laser used in SLAC’s X-band
gun, and get the dependence of the lattice and electron
temperature on the rms laser pulse width. The maxi-
mum temperature of lattice and electrons changes little
in the range of 15 fs 6 σt 6 80 fs. As a result, we almost
cannot reduce the pulse heating effect by increasing the
laser length at blowout regime in a high-accelerating-field
gun.

Fig. 4. (color online) Maximum temperature of lat-
tice and electrons as a function of rms laser pulse
width. The laser fluence is fixed at 10 mJ/cm2.

3 Quantum efficiency and thermal emit-

tance

An extended Dowell-Schmerge model, which includes
the effect of the finite temperature on the Fermi-Dirac
distribution of the electrons in metals, is used here to
calculate the quantum efficiency and the thermal emit-
tance [24]. In this model the quantum efficiency can be
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expressed as

QE = S12

Li2(−exp[Eex/kBTe])

Li2(−exp[Ef/kBTe])
(11)

and the thermal emittance can be expressed as

εn,x = σl,x

√

kBTe

mec2

√

Li3(−exp[Eex/kBTe])

Li2(−exp[Eex/kBTe])
(12)

where Te represents the electron temperature, and Eex =
hν−φeff represents the excess energy of electron emission,
Ef is the Fermi energy (7 eV for copper), S12 is a con-
stant related to the penetration probability for electrons
through the cathode surface, and Lin is a poly-logarithm
function defined as

Lin(z) =
(−1)

n−1

(n−2)!

∫ 1

0

1

t
lgn−2(t)lg(1−zt)dt. (13)

The photon absorption and electron emission occur
mainly in a few optical penetration depths, which is small
enough to assume that the electron temperature is uni-
form in this depth, and the electron temperature at the
cathode surface is used in Eq. (11) and Eq. (12) to calcu-
late the quantum efficiency and the thermal emittance.
For instance, Fig. 5 shows the quantum efficiency and
thermal emittance as a function of time for a 266-nm
laser pulse with rms pulse width 30 fs and fluence 10
mJ/cm2 illuminating the cathode.

Fig. 5. (color online) Thermal emittance (top) and
quantum efficiency (bottom) as a function of time
for different excess energies Eex. The laser pro-
file is plotted by the black dashed line. The rms
laser pulse width σt is 30 fs and the laser fluence
F0 is 10 mJ/cm2. The QE is normalized to the
maximum at Eex = 0.8 eV.

As shown in Fig. 5, with the laser incidence and
the corresponding electron temperature growth, the
quantum efficiency and the thermal emittance increase
rapidly. This effect is more pronounced in the case of
low excess energy. When t =0 and the electron tem-
perature is at room temperature, the thermal emittance

can be approximated as σx

√

Eex

3mec2
, which is determined

by the excess energy Eex. When the electron tempera-
ture becomes significantly high, the excess energy can be
ignored (set Eex=0), and the thermal emittance can be

approximated as σx

√

kBTe

mec2
, which is determined only by

the electron temperature. In Fig. 5 we find that the max-
ima of thermal emittance become similar for different ex-
cess energies, which means that the thermal emittance
mainly comes from electron thermalization, instead of
excess energy Eex, when the electron temperature be-
comes significantly high.

The excess energy Eex depends on the laser wave-
length, the cathode work function, the accelerating field,
and the field enhancement factor. An excess energy of
0.6 eV is assumed in the following simulations, equiv-
alent to a thermal emittance of 0.63 mmmrad/mm at
room temperature. Besides, the quantum efficiency at
room temperature is assumed to be 2× 10−5 [10] and
the rms laser width is fixed at 30 fs in the following cal-
culation. In Fig. 6 we plot the longitudinal profile of
the electron bunch by multiplying the laser longitudi-
nal profile by the time-varying quantum efficiency. As
shown in Fig. 6, although the quantum efficiency varies
with time, the longitudinal profile of the electron bunch
does not change much compared to the laser profile. The
longitudinal profile of the electron bunch can still be ap-
proximated as a Gaussian distribution.

Fig. 6. (color online) The blue line is the normal-
ized QE as a function of time. The red dashed
line is the laser longitudinal profile, and the red
solid line is the electron bunch longitudinal pro-
file. The rms laser pulse width σt is 30 fs and the
laser fluence F0 is 10 mJ/cm2. The excess energy
is assumed to be 0.6 eV.
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The charge density of the electron bunch as a func-
tion of the laser fluence is plotted in Fig. 7. For a fixed
QE at room temperature (2×10−5), the charge density
should be proportional to the laser fluence. However, a
time-varying QE has to be taken into account when the
laser fluence is large. In this case, the average QE will be
larger than 2×10−5 and the curve of the charge density
varying with the laser fluence becomes nonlinear.

Fig. 7. (color online) The charge density of the
electron bunch as a function of the laser fluence.
The blue line indicates that the quantum effi-
ciency is fixed at 2× 10−5. The red line takes
the time-varying QE into account, and the initial
QE at room temperature is 2×10−5.

The laser’s longitudinal and transverse dimensions
should be carefully optimized to produce high-brightness
and high-charge electron bunches at blowout regime. For
instance, the laser pulse length should be short based on
the accelerating field limitation (see Eq. (10)). Moreover,
the laser radius needs to be carefully weighed, since a
large laser radius results in a large thermal emittance,
whereas a small laser radius results in bunch spatial dis-
tortion induced by the image charge.

In addition to the above factors, the impact of laser
pulse heating also needs to be considered in optimiza-
tion of the laser’s longitudinal and transverse dimensions.
From the point of view of laser pulse heating, there is no
significant limit to the laser pulse length because the elec-
tron and lattice temperatures change little with the laser
pulse length at blowout regime (see Fig. 4). However, the
laser radius optimization under the effect of laser pulse
heating should be analyzed carefully. Here we take an
example of a 150-pC electron bunch produced at blowout
regime, with a uniform laser transverse distribution as-
sumed. As shown in the upper plot of Fig. 8, a small
laser radius implies a large charge density for a fixed
amount of charge, and correspondingly, a large laser flu-
ence is required. Here we select two laser radii 0.25 mm
(a) and 0.6 mm (b) as an example. The electron bunch

distributions for these two radii are shown in the bottom
plot, in which the position distribution is obtained by
the process shown in Fig. 6. The thermal emittance is
marked with a color map and two bunches are drawn un-
der the same axis in order to share the same color map.
The thermal emittance increases with time for both laser
radii, but the thermal emittance increases more for the
smaller radius because a larger laser fluence is required
for a smaller radius.

Fig. 8. (color online) Upper plot: the laser fluence
required to produce a 150-pC electron bunch for
different laser radii. Here we select two laser radii
0.25 mm (a) and 0.6 mm (b), and plot the ther-
mal emittance distribution in the bunch for these
two points, as shown in the bottom plot. Here the
unit of thermal emittance is mmmrad/mm.

A projected thermal emittance is calculated to char-
acterize the thermal emittance of the entire bunch, which
is written as

εproj =

∫

ε(ζ)I(ζ)dζ
∫

I(ζ)dζ

(14)

where ζ is the relative position within the bunch, and
I(ζ) represents the longitudinal current profile of the
bunch.

The projected thermal emittance dependence on the
laser radius is shown in Fig. 9.

The projected thermal emittance increases with de-
creasing laser radius, and this effect should be taken into
account in laser optimization at blowout regime.

4 Damage threshold fluence

A laser beam with high energy density is used to pro-
duce high-charge electron bunches at blowout regime,
which has the potential to damage the cathode. The
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damage threshold laser fluence should therefore be an-
alyzed carefully. A 266-nm laser beam with rms pulse
width of 30 fs is used to calculate the lattice tempera-
ture, and the lattice temperature as a function of the
laser fluence is shown in Fig. 10.

Fig. 9. The projected thermal emittance as a func-
tion of the laser radius.

Fig. 10. (color online) Blue solid line: the lattice
temperature increases with the increase of the
laser fluence. Blue dashed line: melting temper-
ature of the cathode, 1357.77 K for copper. Red
line: the charge density as a function of the laser
fluence.

By assuming the damage starts when the maximum
lattice temperature reaches the melting temperature,
1357.77 K for copper, our model gives 40 mJ/cm2 for
the threshold fluence. The charge density of the ex-
tracted electron bunch for the corresponding laser fluence
is also plotted in Fig. 10. According to our simulation,
the charge density of the extracted bunch will be as high

as 5200 pC/mm2 when cathode damage occurs. Such a
high charge density requires at least 600 MV/m of accel-
erating field for the electron bunch to be extracted from
the cathode according to Gauss’s law. Such a high ac-
celerating field is very difficult to achieve in the present
gun design. Therefore, the concern about cathode dam-
age is not necessary for an ideal transverse uniform laser
beam. However, the transverse distribution of the laser
beam generated in the laboratory is usually nonuniform.
In this case, the charge density will be determined by
the average laser fluence, whereas the damage threshold
will be calculated by the maximum local fluence. That
is to say, the maximum local fluence, rather than the
average fluence, should be less than 40 mJ/cm2. For ex-
ample, in Ref. [25] two ablation points were found on
a cathode illuminated by a laser beam with an average
fluence of 10 mJ/cm2, which is much smaller than the
damage threshold calculated here, and that is because
of the nonuniform energy distribution of the laser beam.
Therefore, the transverse distribution of the laser beam
should be as uniform as possible and the maximum lo-
cal fluence should be less than 40 mJ/cm2 to prevent
damage to the cathode.

5 Conclusion

Producing high-brightness and high-charge (>100
pC) electron bunches at blowout regime requires ultra-
short laser pulse with high fluence. Given that the energy
density of the laser pulses is quite high, the effects of laser
pulse heating of the copper photocathode on the electron
bunch emission process were analyzed in this paper. The
electron and lattice temperature distributions were cal-
culated using an improved two-temperature model. In
this model the effects of lattice and electron temperature
on the reflectivity coefficient, the electron heat capac-
ity, the electron thermal conductivity, and the electron-
phonon coupling were considered over a wide range. An
extended Dowell-Schmerge model was employed to cal-
culate the thermal emittance and quantum efficiency. A
time-dependent growth in thermal emittance and quan-
tum efficiency was observed. Since the average QE in-
creases with the increase of laser fluence, a nonlinear
dependence of the charge density on the laser fluence is
observed in our simulation. For a fixed amount of charge,
the projected thermal emittance increases with decreas-
ing laser radius, and this effect should be taken into ac-
count in laser optimization at blowout regime. Moreover,
laser damage threshold fluence was simulated, showing
that the maximum local fluence should be less than 40
mJ/cm2 to prevent damage to the cathode.
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