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Calculations of the β-decay half-lives of neutron-deficient nuclei *
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Abstract: In this work, β+/EC decays of some medium-mass nuclei are investigated within the extended quasipar-

ticle random-phase approximation (QRPA), where neutron-neutron, proton-proton and neutron-proton (np) pairing

correlations are taken into consideration in the specialized Hartree-Fock-Bogoliubov (HFB) transformation. In ad-

dition to the pairing interaction, the Brückner G-matrix obtained with the charge-dependent Bonn nucleon-nucleon

force is used for the residual particle-particle and particle-hole interactions. Calculations are performed for even-even

proton-rich isotopes ranging from Z=24 to Z=34. It is found that the np pairing interaction plays a significant role in

β-decay for some nuclei far from stability. Compared with other theoretical calculations, our calculations show good

agreement with the available experimental data. Predictions of β-decay half-lives for some very neutron-deficient

nuclei are made for reference.
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1 Introduction

The neutron or proton drip line defines one of the
limits of nuclear stability, and many nuclei lying be-
tween this line and the β-stable line are generally un-
stable against β-decay, with a natural tendency for a
neutron to convert into a proton or vice versa. β-decay
is of the most important decay channels of the unstable
nuclei [1–4], and the properties of β-decay are useful to
understand nuclear structure [5–7].

The properties of β-decay for nuclei far from the β-
stable line have been measured by radioactive nuclear
beam facilities over the last decade. Some updated
data about β-decay half-lives have been measured with a
higher degree of accuracy and some have been detected
for the first time [8–11]. Along with the enhancement of
the experimental facilities and the improvement of the
sensitivity of experimental devices, it is expected that
new β-decays of unstable nuclei approaching the proton
drip line will be measured in the future. Experimental
studies [12–14] of nuclei far from the β-stable line have
made abundant progress and lots of β+/EC-decay data
have been accumulated. To accurately reproduce avail-

able experimental data and to reliably predict the half-
lives of β+/EC-decay of some unknown unstable nuclei
is a stringent challenge, but also a good opportunity, for
theorists.

Various theoretical models have been developed to
describe nuclear β-decay. The phenomenological analy-
sis [15–18], which is known for its simplicity, including
gross theory [15] and semi-gross theory [17], can interpret
some key properties of decay phenomena satisfactorily.
The shell model [19–22] is based on the mean field theory,
where nuclear structure properties can be reproduced us-
ing effective interactions and abundant basis states. The
shell model calculations can be accurate for light nuclei,
but are difficult for medium or heavy nuclei, because a
very large shell-model basis is needed for calculation. Fi-
nally, the proton-neutron quasiparticle random phase ap-
proximation (pnQRPA) can describe the structure of nu-
clear collective excitations [23–26], and has been widely
used for medium mass and even heavy nuclei. One
can notice that the calculations of β-decay half-lives
proceed from simple pictures to complex systems, and
from empirical mean-field potentials to self-consistent
models.
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The purpose of this work is to present detailed calcu-
lations of β+/EC-decay half-lives for even-even proton-
rich medium nuclei based on the extended QRPA with
np pairing. Compared with some other pnQRPA calcu-
lations of β-decay half-lives [27, 28], there are two main
differences. First, the two-body interactions matrix is
obtained with charge-dependent Bonn forces instead of
the simple δ-form or separable schematic interactions.
Second, besides proton-proton and neutron-neutron pair-
ing correlations, neutron-proton (np) pairing correlations
are taken into consideration in the HFB calculation. As
a result, one has to solve the extended QRPA matrix
equations where pp, nn, and np residual interactions are
taken into account. Moreover, numerical calculations re-
quire good stability for program codes with np pairing,
and the computation time increases greatly because the
dimensions of the QRPA matrix equations become large.
In this article, we pay special attention to the effect
of np pairing for β+/EC-decay half-lives. The T = 1,
J = 0 pairing interaction has been introduced into the
HFB equation, and meanwhile the T = 0, J = 1 pairing
interaction effect has been considered by renormalizing
the np pairing gap to the empirical pairing gap. This
paper is organized as follows. In Section 2, we briefly
present the formulas for the evaluation of β-decay half-
lives in the framework of the extended QRPA. In Sec-
tion 3, the residual interactions are explained in detail,
together with the sensitivity of the results to some quan-
tities used in the calculations, and the theoretical results
of our calculations compared with the available experi-
mental data and other theoretical results are also shown.
A summary is given in Section 4.

2 Theoretical framework

The process of β-decay generally occurs from an ini-
tial ground state i of the parent nucleus to some possi-
ble final states f in the daughter nucleus. The β-decay
half-life for allowed Gamow-Teller decay is given by the
following formula [29, 30]:
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2π3
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where gA is the weak interaction coupling constant, E0

is the maximum energy of the β particle and Ef is the
excitation energy of the mth excited |1+〉 state in the
daughter nucleus. In this work, we set the constant gA

to 1 rather than its actual value of 1.26, to account for
the near-universal quenching of iso-vector spin matrix
elements in nuclei [31]. The quantity B(1+,Ef) is the so-
called reduced transition probability for the mth excited

|1+〉 state. Its expression is as follows:
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where τ± is the isospin raising/lowering operator, τ−|p〉=
|n〉 and τ+|n〉 = |p〉, σ is the Pauli spin matrix, and the
sum is taken over all nucleons in the nucleus. The phase-
space factor f (Z,R,E0) is also called the integrated Fermi
function describing the size of the phase space. It incor-
porates infinite nuclear size and Coulomb screening cor-
rections. The f -values are evaluated with the following
formula [29, 30] :

f(Z,R,E0) =

E0
∫

1

dE(E0−E)2E
√

E2−1F (Z,R,E), (3)

where E is the total energy of the β particle including its
rest energy, Z and R are, respectively, the atomic num-
ber and the nuclear radius of the daughter nucleus and
F (Z,R,E ) is the Fermi function which accounts for the
Coulomb interaction between the charged β particle and
the residual daughter nucleus [30, 32]

We need to know the initial and final nuclear states,
|0+〉 and |1+

m〉, so as to evaluate the half-life. In our
calculations, they are treated with the extended QRPA
[33–36] introduced by Cheoun, Faessler et al. The for-
malism of the extended QRPA has been given in the
works of Cheoun, Faessler et al, but for completeness we
will briefly present the theoretical basis, which is of sig-
nificance for this work. The first step of our calculations
is to deal with the T = 1, J = 0 proton-proton, neutron-
neutron and neutron-proton (np) pairing correlations us-
ing the HFB equations, which change the description pic-
ture from the simple single-particle mean-field to quasi-
particle states for the decaying ground state. The quasi-
particle states are made by an admixture of neutron and
proton single-particle states. Then the particle-hole and
particle-particle excitations are taken into account using
the extended QRPA equations, which admix the pure
quasiparticle states for the excitation states of residual
daughter nuclei.

2.1 Hartree-Fock-Bogoliubov equations with np

pairing

With the restrictions on spherical and time-reversal
symmetry, the general HFB transformation is reduced to
the following simple form [33, 34]:
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where the subscript c stands for the single nucleon state
of (nc, lc, jc). The operators b†cα′ and bcα′ are creation and
annihilation operators of the quasiparticle in the state c
with an isospin α′. The operators a†

cα and acα are cre-
ation and annihilation operators of the nucleon in the
state c with an isospin α. In this article, a Greek let-
ter always denotes the isospin of nucleons and this letter
with a prime denotes the isospin of quasiparticles. The
coefficients u and v are obtained by solving the HFB
equation as follows [33–35]:
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where εcα is the energy of the nucleon with isospin α in
state c and Ecα′ is the energy of the quasiparticle with
isospin α′ in state c. Here, the single-particle energies
are obtained by solving the Schrödinger equation with
the Coulomb-corrected Woods-Saxon mean-field poten-
tial. If we ignore np pairing (i.e. ∆np̄ = 0), Equation
(5) reduces to the usual BCS equation, naturally. The
pairing gap ∆cαc̄β is expressed as [33–35]:

∆cαc̄β =− 1

2(2jc+1)1/2
dαβ

×
∑

e

G(ccee,J = 0,T = 1)(2je +1)1/2

×(ue1βve1α+ue2βve2α), with αβ= pp,nn,np

(6)
In this expression, dαβ is mainly used to renormalize the
pairing potential gaps to the empirical pairing gaps. G
are the two-body matrix elements, and they are eval-
uated based on the Brückner matrix with the charge-
dependent Bonn nucleon-nucleon force and the Coulomb
interaction. The detailed calculations are described in
[36], as well as the parameters used in the calcula-
tions. The matrices of particle-particle interaction for
the QRPA phonons are also evaluated using the same
calculation procedure. Then the matrices of particle-hole
interaction for the QRPA phonons are obtained from the
matrices of particle-particle interaction by the Pandya
transformation [33–35].

2.2 Extended QRPA equations with np pairing

As a result of neutron-proton (np) pairing correla-
tions used in the HFB calculation, one has to solve the
extended QRPA matrix equations with pp, nn, and np

residual interactions. The extended QRPA equation has
the following form [33–35]:
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The details of the matrices A and B and the treat-
ment of the particle-particle and particle-hole matrix el-
ements can be found in Refs. [33–35]. The forward and
backward-going amplitudes X, Y, as well as the QRPA
energies ω, can be obtained by solving the extended
QRPA Eq. (7).

Next, the reduced transition probability for the tran-
sition from the ground state |0+

g.s.〉 of an even-even nu-
cleus to the mth one-phonon state |1+〉 of the nearby
odd-odd nucleus is given by B(1+

m , Ef) =|Z
ω
(m)|2, with

Zω(m)=
∑
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In order to compute the excitation energy Ef , we take the
sum of the lowest two quasiparticle energies (E1+E2)lowest

obtained from Eq. (5) as the ground-state energy of the
residual odd-odd nucleus. Hence the excitation energy of
the mth state |1+〉 is given by Ef =ωm − (E1+E2)lowest.
The reason why we choose the energy Ef instead of di-
rectly using the QRPA energy ωm

1 is that the excitation
energies have a considerable influence on the phase-space
factor f (Z, R, E0) in Equation (3) by the expression
E0 = Qβ−Ef [36].

3 Numerical results and discussion

The HFB equation (5) is iteratively solved until the
pairing gaps are exactly equal to the empirical pairing
gaps. In some articles [27] the empirical pairing gaps are
simply taken as ∆pp, ∆nn = 12.2/

√
A and ∆np=20.0/A,
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respectively. However, here, the empirical pairing gaps
∆pp, ∆nn and ∆np are extracted from the proton and
neutron separation energies in the following way [37]:

∆pp =
1

4
(−1)Z+1[Sp(A+1,Z +1)

−2Sp(A,Z)+Sp(A−1,Z−1)],

∆nn =
1

4
(−1)A−Z+1[Sn(A+1,Z)

−2Sn(A,Z)+Sn(A−1,Z)],

∆np =
1

4
(−1)A{[Sn(A+2,Z +1)−Sn(A+1,Z +1)]

−2[Sn(A+1,Z)−Sn(A,Z)]

+[Sn(A,Z−1)−Sn(A−1,Z−1)]}.
(11)

In the HFB calculation, the pairing parameters dpp, dnn

and dnp are used to renormalize the Brückner G-matrix
elements to reproduce the empirical pairing gaps. The
following two steps are taken. First, in the usual BCS
equation, the parameters dpp and dnn are determined by
fitting the lowest proton and neutron quasiparticle ener-
gies to the empirical pairing gaps ∆pp and ∆nn. Second,
with the fixed dpp and dnn values, we adjust dnp to re-
produce the empirical np pairing gap ∆np. That means
the pairing parameter dnp is varied until the following
condition is nearly satisfied [33]:

∆np = (H0 +E1 +E2)−(H
′

0 +E
′

1 +E
′

2), (12)

where H0+E1+E2(H
′

0+E
′

1+E
′

2) is the sum of ground-state
energy and the lowest two quasiparticle energies without
(with) np pairing.

The results of the HFB calculations for Fe and Zn
isotopes are displayed clearly in Table 1. The values
of the strengths dpp, dnn and dnp are obtained by re-
producing the empirical gaps. These gaps are obtained
from the relationship (11), where some nucleon separa-
tion energies are estimated by mass systematics [37] or
theoretical extrapolation for some nuclei far from the β-
stability line. The first column of Table 1 stands for
the investigated nucleus. The second, third, and fourth
columns display the values of the pairing parameters dpp,
dnn and the total ground-state energy calculated without
np pairing. The fifth and sixth columns give the values
for the parameter dnp and the total ground-state energy
calculated with np pairing, while the empirical gaps ∆pp,
∆nn and ∆np are listed in the last column. One can find
from Table 1 that the dnp values are generally larger than
the dpp and dnn values. The reason for this is that the
T = 0,J = 1 pairing contribution is compensated by en-
hancing the T = 1,J = 0 pairing strength dnp. Comparing
the fourth and sixth columns, one can also notice that
the total ground-state energies calculated with np pair-
ing (E

′

total) are generally lower than without np pairing
(Etotal) for all nuclei listed in Table 1.

Table 1. Proton-proton (pp), neutron-neutron (nn) and neutron-proton (np) pairing parameters for the even-even
Fe and Zn isotopes. These values are obtained by reproducing the empirical pairing gaps listed in the last column.
The total ground-state energies calculated with and without np pairing are listed as well.

nucleus dpp dnn Etotal/MeV dnp E
′

total/MeV (∆pp,∆nn,∆np)/MeV
46Fe 1.298 1.264 −783.914 2.264 −784.347 (1.582,2.027,0.432)
48Fe 1.357 1.635 −849.316 2.392 −849.911 (1.675,1.785,0.595)
50Fe 1.304 1.635 −909.491 2.547 −909.944 (1.509,1.855,0.453)
56Zn 1.946 1.575 −993.771 2.264 −993.921 (1.350,1.710,0.147)
58Zn 1.837 1.735 −1053.631 2.469 −1053.738 (1.227,1.900,0.107)
60Zn 1.117 1.015 −1110.314 2.725 −1111.163 (1.635,1.706,0.849)
62Zn 1.916 1.635 −1160.855 2.877 −1161.420 (1.369,1.604,0.608)

In Fig. 1, the variation of the calculated half-life as
a function of the empirical pairing gap is shown for the
β+-decay of 58Zn. Minor changes in the calculated half-
life are found as the empirical pairing gaps are varied,
and it shows the weak dependence of the half-life on the
pairing gap energy. This feature is in accordance with
the other theoretical investigation [28].

The particle-hole interaction strength gph is deter-
mined in QRPA calculations by reproducing the posi-
tion of Gamow-Teller giant resonances (GTGR) at a high
excitation energy [29, 38], which is observed by (p, n)
and (n, p) charge-exchange reactions. It is found that
the value of gph can be reasonably set to a common
value of 0.60 for medium-mass nuclei. In order to set

the particle-particle interaction strength gpp, one needs
to choose a physical quantity which is sensitive to the
particle-particle interaction. In this work, the gpp value
is varied until the calculated β-decay half-lives gets close
to the experimental one. It is found that our calcula-
tions work well when the value of gpp is nearly equal to
the half of the gph value.

The Qβ value not only affects the β-strength func-
tion, but also the evaluation of the phase-space factor, as
shown in Eq. (1). In our calculations, the β-decay energy
Qβ is set by experiments [37]. For some nuclei far from
the β-stable line, the experimental data are still unknown
and instead the theoretical values obtained by extrapo-
lation are used. As the Qβ value of 42Cr is changed from
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12.0 to 14.0 MeV, the calculated half-life is decreased by
a factor of roughly 3.5. Also, we discuss the theoretical
uncertainty resulting from the uncertainty in Qβ value.
The Qβ value for 60Ge is currently taken as 12.18(0.28)
MeV [37]. The uncertainty of 0.28 MeV brings an uncer-
tainty of −1.8/+2.0 ms for the calculated half-life, cor-
responding to an effect of about −12% and +14%. Sim-
ilarly for 64Se, the Qβ value taken as 12.72(0.59) MeV
leads to an uncertainty in the half-life of −7.6/+3.1 ms,
corresponding to an effect of about −27% and +16%.

In Table 2, the theoretical results of some very
neutron-deficient nuclei are given. The first column
in Table 2 stands for the investigated parent nucleus
with proton excess. The second and third columns are,
respectively, the calculated half-lives with and with-
out np pairing. The comparisons with some available
experimental data [14], the theoretical predictions of
Möller et al. [39] based on the finite range droplet
model (FRDM), and the Qβ values [37] are listed in
the last three columns. It is found that both our cal-
culations and the results of the FRDM are of the same
order of magnitude as the available experimental data.
An interesting phenomenon that comes from the nu-
merical calculations is that the half-lives of the nuclei
close to the β-stable line are obviously less accurate
than those approaching the proton drip line. The Qβ

value decreases with increasing neutron number, leading
to an increase in the half-life. β-decay rates are the
weighted strength with the phase space factor in the Qβ

window. Moreover, the phase space factor f generally
increases with the energy of the β particle and hence the

Fig. 1. Ratios of the calculated half-life to the ex-
perimental value [14, 37] versus the pairing gaps
∆nn=∆pp for the β+-decay of 58Zn, showing the
weak sensitivity of the half-life to the pairing gap
energy.

Table 2. β+/EC-decay half-lives of some very neutron-deficient nuclei are predicted where the experimental data
are still estimated values or not measured. Predictions of the work of Möller et al. [39] based on the finite-range
droplet model (FRDM) are also given, and the Qβ values are listed as well. The half-life is given in seconds.

nucl. T1/2(with np) T1/2(without np) T exp
1/2

[14] FRDM [39] Qβ/MeV [37]

42Cr 0.0121 0.0134 0.0133 0.0450 13.860
44Cr 0.0386 0.0560 0.0428 0.1186 10.480
46Cr 0.3755 0.4040 0.2570 0.6710 7.6010
46Fe 0.0106 0.0147 0.0130 0.0180 13.540
48Fe 0.0344 0.0372 0.0453 0.0595 10.910
50Fe 0.3006 0.3007 0.1550 0.5418 8.1400
48Ni 0.0021 0.0046 0.0028 0.0054 15.610
50Ni 0.0168 0.0185 0.0185 0.0168 12.880
52Ni 0.0527 0.0565 0.0408 0.0767 10.520
54Ni 0.2991 0.3291 0.1040 0.6459 8.7900
56Zn 0.0210 0.0254 0.0300 0.0830 12.660
58Zn 0.1620 0.1927 0.0860 0.5971 9.3700
60Zn 60.290 268.30 142.80 >100 4.1700
62Zn 31372 39372 33094 >100 1.6200
60Ge 0.4240 0.4940 – 0.0820 12.180
62Ge 0.1015 0.1256 0.1290 0.8684 10.090
64Ge 665.62 752.20 63.700 80.880 4.5170
66Ge 23144 25125 8136.0 >100 2.1170
64Se 0.0200 0.0220 – 0.0971 12.720
66Se 0.0650 0.0730 0.0330 0.6486 10.660
68Se 17.680 17.690 35.500 42.320 4.7050
70Se 3387.3 3388.4 2466.0 >100 2.4100
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Fig. 2. (color online) Comparison of the calculated half-lives in this work with the experimental data for the neutron-
deficient Cr-Fe-Ni-Zn-Ge-Se isotopes. The experimental β-decay half-lives of 60Ge and 64Se are still unknown in
experiments. The theoretical results of Möller et al, in which they only give the half-life limits>100 s for long-lived
nuclei, are also given for comparison.

strengths located at low excitation energies have more
contributions. For the isotopes close to the β-stable line
with small Qβ values, some uncertainties, which could
be ignored for exotic isotopes far from the β-stable line,
may cause large variations of the theoretical results. So
it is not surprising that there exist relatively large de-
viations from the experimental data near the β-stable
line.

In Figure 2, the data of which come from Table
2, we show the comparison of half-lives of our calcula-
tions with the available experimental data and Möller’s
results for the neutron-deficient Cr-Fe-Ni-Zn-Ge-Se iso-
topes. Squares, circles, up-triangles and down-triangles
respectively stand for the results of our work with np
pairing, without np pairing, the available experimental
data, and the theoretical results of Möller’s work. Most
of our calculations show good agreement with experimen-
tal data for short-lived nuclei far from the stability line.
The calculated half-lives with np pairing are shorter than
without np pairing and closer to the experimental data.
This not only confirms the validity of our work but also
allows us to make some predictions of β-decay half-lives
for 60Ge and 64Se. One can expect that the np pair-
ing plays a significant role in calculating the half-lives of
short-lived neutron-deficient nuclei. This will give valu-
able guidance for β-decay of proton-rich nuclei far from
β-stable line. One can also notice that the results of
Möller et al. are generally longer than our calculations
and the experimental data. There are abnormal cases for
64Ge and 68Se, where the FRDM results are smaller than

the present calculations and closer to the experimental
data. The reason for this is that those two isotopes are
located near the shape transition region. Nuclear de-
formations may have a large influence on their β-decay
properties, which is beyond the scope of the present cal-
culation.

4 Summary

In summary, we have presented in this article the
calculations of β+/EC-decay half-lives for even-even
neutron-deficient medium-mass nuclei based on the ex-
tended QRPA with np pairing. The Brückner G-matrix
with the charge-dependent Bonn nucleon-nucleon force
is used for the residual particle-particle and particle-hole
interactions along with the pairing interaction. To test
the validity and application of this model, we also ana-
lyze the dependence of the calculated half-lives on some
physical quantities used in calculations. The calculated
results in Fig. 2 show agreement with the available ex-
perimental data. It is demonstrated that the np pairing
correlations play a vital role, in particular for short-lived
neutron-deficient nuclei. We also predict the half-lives
of nuclei 60Ge and 64Se, for which experimental data are
unclear or unmeasured. It is hoped that these predic-
tions will be useful for future measurements. Besides,
some large deviations from experimental data are seen
for long-lived nuclei, and this is worth further investiga-
tion.
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