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Nuclear longitudinal form factors for axially deformed charge

distributions expanded by nonorthogonal basis functions *
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Abstract: In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge

multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge dis-

tributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal

form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors

are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form

factors of 12C indicates that the C0 multipole reflects the contributions of spherical components of all nonorthogonal

basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C0 measure-

ment. The studies in this paper examine the model-independent properties of electron scattering, which are useful

for interpreting electron scattering experiments on exotic deformed nuclei.
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1 Introduction

Electron scattering is an effective tool to probe
the sizes and shapes of nuclei [1–6]. Interactions be-
tween electrons and nucleons are mainly via the electro-
magnetic force, which makes electrons relatively clean
probes. Since the 1950s, the charge densities of many
stable nuclei have been determined accurately by the
electron scattering experiments [7, 8]. More recently,
some new properties have been found in the exotic nu-
clei far away from the β stability line [9, 10], for example
the neutron and proton halos, which are all related to the
nucleon density distributions. Therefore, it is significant
to explore the charge distributions of exotic nuclei with
electron scattering. For this purpose, new experiments
studying elastic electron scattering off exotic nuclei are
now under way at RIKEN and GSI [11–15].

Meanwhile, much effort in the last decade has been
devoted to theoretical studies [16–23]. Many methods
have been developed to study electron scattering. The
plane-wave Born approximation (PWBA) is a simple
method which is widely used in calculating Coulomb

multipoles Cλ [24–31] and magnetic multipoles Mλ [32–
35] of form factors. The distorted-wave Born approxima-
tion (DWBA) method is more accurate than PWBA be-
cause the Coulomb distortion effect is considered [36, 37].
Many DWBA calculations have been performed study-
ing the C0 multipoles of exotic nuclei [19–23]. Further-
more, C2 multipoles of inelastic electron scattering have
also been investigated based on DWBA calculations in
Refs. [38, 39].

The nuclear form factors are closely related to the in-
trinsic charge and current mutipoles [3, 40, 41]. The C0

multipoles are attributed to the spherically symmetric
ground state charge distribution and the C2 multipole
is proportional to the nuclear quadrupole moment Q.
Most nuclei have deformation in their ground states [42–
48]. The charge distributions of axially deformed nuclei
can be described by the multiple expansion of spherical
harmonics [49, 50]. Based on this expansion, the Cλ of
longitudinal form factors can be investigated [3]. Besides
the orthogonal bases, the deformed charge distributions
can also be constructed with the nonorthogonal bases in
some special case. In Ref. [30], the angular dependence

Received 22 November 2016, revised 26 January 2017

∗ Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226),
by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities
(15CX02072A).

1) E-mail: liujian@upc.edu.cn
©2017 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

054101-1



Chinese Physics C Vol. 41, No. 5 (2017) 054101

of charge distributions are described by the term
|Y20(θ,ϕ)|2. With this formalism, the author studied the
parity-violating electron scattering off 27Al [30]. By the
comparative analysis in charge multipoles Cλ of Refs.
[3, 30], one can see that for charge distributions de-
scribed by different density profiles, charge multipoles
Cλ always have different expressions. Therefore, in this
paper we construct axially deformed charge distribu-
tions with different basis functions and analyze the cor-
responding longitudinal form factors. In this way the
model-independent properties of electron scattering can
be examined.

In this paper, we investigate the nuclear longitudi-
nal form factors. For nuclei with axial deformation, the
angular dependence of charge density distributions are
expanded by the orthogonal bases and nonorthogonal
bases, respectively. Then the C0 and C2 multipoles of
longitudinal form factors are derived under the PWBA
method for two different types of density profiles. By
comparing the results, the validity of electron scattering
is examined, and indicates that electron scattering is a
model-independent way to study the nuclear charge dis-
tributions. With the derived formula, the longitudinal
form factors of 12C are investigated by both the PWBA
and DWBA methods, where the corresponding charge
distributions are described by the nonorthogonal bases.
Numerical results show that by the C0 measurements,
spherical components of deformed charge distributions
together with nuclear charge RMS radii can be accu-
rately determined.

The paper is organized as follows. In Section 2 the
longitudinal form factors of deformed nuclei are pre-
sented. In Section 3, the longitudinal form factors are
calculated by both the PWBA and DWBA methods, and
the results are compared with the experimental data. 12C
is chosen as the candidate. A summary is given in Sec-
tion 4.

2 Theoretical framework

According to the contributions from Coulomb and
magnetic interactions, the nuclear electromagnetic form
factors F (q) can be developed as the superposition of lon-
gitudinal terms F 2

L(q2) and magnetic terms F 2
M(q2). In

the plane-wave Born approximation (PWBA), the longi-
tudinal form factor is given by the Fourier transformation
of the transition density ρfi(r) [41]:

|FC(q)|2 =
1

Z2

∑

MiMf

|ρ(q)|2, (1)

where

ρ(q) =

∫

eiq·r 〈JfMf |ρ̂(r)|JiMi〉d3r. (2)

Multiply expanding the exponential function eiq·r and
substituting it into Eq. (2), ρ(q) can be rewritten as:

ρ(q)=4π
∑

λµ

iλ(−1)µYλ,µ(q̂)

×
∫

d3rjλ(qr)Yλ,−µ(r̂)〈αf |ρ̂(r)|αi〉

=4π
∑

λµ

iλ(−1)µYλ,µ(q̂)

×〈αf |M(Cλ,−µ,q)|αi〉, (3)

where 〈αf |M(Cλ,µ,q)|αi〉 is the scattering matrix. |αi〉
and |αf〉 represent the initial state |JiMi〉 and final state
|JfMf〉. The Wigner-Eckart theorem can be used to fac-
tor out the dependence of M(Cλ,µ,q) on the quantum
numbers:

〈αf |M(Cλ,µ,q)|αi〉= (−1)Ji−Mi
1√

2λ+1

〈JfMf ,JiMi|JfJi,λµ〉〈Jf ||M(Cλ,q)||Ji〉. (4)

Substituting Eqs. (3) and (4) into Eq. (1), and taking
into account the orthogonality of the Clebsch-Gordan (C.
G.) coefficients, the longitudinal form factor can be given
as [41, 51]:

|FC(q)|2 =
1

Z2

4π

2Ji+1

∞
∑

λ=0,even

|〈αf ||M(Cλ,q)||αi〉|2

= |FC0
(q)|2 + |FC2

(q)|2 + |FC4
(q)|2 + · · · . (5)

From this formula, one can see that the longitudinal form
factor can be decomposed into several multipoles by se-
lection rules, such as C0, C2 and C4 etc.

The specific form of |FC0
(q)|2 and |FC2

(q)|2 can be
further extracted by the intrinsic multipoles. The Hamil-
tonian of the electric λ-pole transition can be written as
[52]:

HC
λ,m =(4π/ωq2)

∫

ρY ∗

λm(θ,φ)

×
[
∫

Yλm(θ ′,φ′)(q ·je)dΩ
′

]

dτ, (6)

where je = ecaeiq·r is the transition current density aris-
ing from the change in the state of the electron. a is the
matrix element of the Dirac α operator between initial
and final electron plane wave states of momenta, and c
is the velocity of the electron. The integral of the solid
angle Ω ′ makes the charge form factor independent of
the momentum transfer q. The integral in the square
bracket vanishes unless m= 0 and Eq. (6) turns into:

HC
λ,0 =−(4πiλea0/q

2)[4π(2λ+1)]
1

2

×
∫

ρ ·jλ(qr)Yλ,0 dτ, (7)
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where a0 is the matrix element of the Dirac unit operator
between initial and final electron states. By summation
of Eq. (7), we can obtain:

∑

λ

HC
λ,0 =−(4πea0/q

2)

∫

eiq·rρdτ, (8)

which is consistent with Eqs. (1) and (2).
From Eq. (7), the longitudinal form factor for multi-

poles λ= 0,2 can be calculated as [52]:

|FC |2 = (2λ+1)−1 ·
∑

m

∣

∣

∣

∣

(4π)
1

2

∫

[

j0(qr)Y00 −fm

√
5j2(qr)Y20

]

ρdτ

∣

∣

∣

∣

2

. (9)

fm = [3m2−λ(λ+1)]/[λ(2λ−1)] is the relation between the
intrinsic multipole and the transition multipole for λ= 2.
Because

∑

m
fm = 0, the interference term between mul-

tipoles λ = 0 and λ = 2 vanishes and the longitudinal
form factor can be given as:

|FC(q)|2 = |FC0
(q)|2 + |FC2

(q)|2

=4π

[
∫

ρC(r)j0(qr)Y00 dτ

]2

+14π

[
∫

ρC(r)j2(qr)Y20 dτ

]2

, (10)

where ρC(r) is the deformed charge density distribu-
tion. The C2 multipole is proportional to the nuclear
quadrupole moment Q. The observed quadrupole mo-
ment Q can be obtained from the intrinsic quadrupole
moment Q0:

Q=
λ(2λ−1)

(λ+1)(2λ+3)
·Q0, (11)

where λ= 2 and the intrinsic quadrupole moment Q0 is:

Q0 =

(

16π

5

) 1

2
∫

ρC Y20 dτ. (12)

2.1 Charge distributions described by orthog-

onal bases

For nuclei with rotational symmetry, the multiple de-
composition of the charge density distributions can be
described by the multiple expansion of the spherical har-
monics [49, 50]:

ρC(r,θ) =

even
∑

l=0

ρl(r)Yl0(θ,ϕ). (13)

Combining this formula and Eq. (10), contributions of
different multipoles l of deformed charge densities to the

C0 and C2 of the longitudinal form factor can be inves-
tigated:

|FC(q)|2 = |FC0
(q)|2 + |FC2

(q)|2

=4π

(
∫

∞

0

r2j0(qr)ρ0(r)dr

)2

+14π

(
∫

∞

0

r2j2(qr)ρ2(r)dr

)2

, (14)

which indicates that only the spherical part ρ0(r) con-
tributes to the C0 multipole and the quadrupoly de-
formed part ρ2(r) contributes to the C2 multipole of lon-
gitudinal form factor. The multipoles (l > 4) of charge
distributions in Eq. (13) have no effect on C0 and C2

due to the orthogonality of the spherical harmonics.

2.2 Charge distributions described by

nonorthogonal bases

Instead of Eq. (13), the nuclear charge distributions
can also be described by other density profiles. In Ref.
[30], the author constructed the deformed part of den-
sity distributions with |Y20(θ,ϕ)|2 and studied the C2

multipoles for the odd-A nucleus 27Al. If the angular
dependence of nuclear charge density is described by
|Y20(θ,ϕ)|2, it can be written as:

ρC(r,θ) = ρ′0(r)+ρ
′

2(r) · |Y20(θ,φ)|2. (15)

Substituting it into Eq. (10), we can obtain:

|FC(q)|2 = |FC0
(q)|2 + |FC2

(q)|2

=

[

4π

∫

∞

0

r2j0(qr)

(

ρ′0(r)+
ρ′2(r)

4π

)

dr

]2

+
10

7

(
∫

∞

0

r2j2(qr)ρ
′

2(r)dr

)2

. (16)

From Eq. (16), one can see there is an additional term

ρ′2(r)

4π
for the C0 multipole, which is due to the contribu-

tions of the deformed part |Y20(θ,φ)|2 term in the nuclear
charge densities. Equation (16) shows that for the spe-
cific model, the longitudinal multipoles have special for-
mulas. If the charge distribution is constructed by the
nonorthogonal bases, the deformed part may also con-
tribute to the C0 multipole. However, Eq. (16) does not
conflict with the previous result Eq. (14), because the
charge density distribution in Eq. (15) is not expressed
based on the orthogonal basis. If the charge distribution
of Eq. (15) is decomposed with the spherical harmonics
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of Eq. (13), we can obtain the relation:

ρ′0(r) =
ρ0(r)

2
√
π

+
7
√

5

20
√
π
ρ2(r),

ρ′2(r) =7

√

π

5
ρ2(r). (17)

Substituting this relation into Eq. (16), one can see that
Eq. (16) is identical to Eq. (14).

Combining Eqs. (13)–(16), one can see that for the
same charge distribution, the longitudinal form fac-
tors calculated with the orthogonal basis functions and
nonorthogonal basis functions are identical with each
other. For the deformed charge distributions described
by the orthogonal basis functions, only the spherical part
of charge distribution has an effect on the C0 multi-
pole. For deformed charge distributions described by the
nonorthogonal basis functions, the C0 multipole actually
reflects the spherical components of all nonorthogonal
basis functions.

3 Numerical results and discussion

In the previous section, we found that the C0 multi-
pole can constrain the spherical parts of the charge distri-
bution, even described by the nonorthogonal basis func-
tions. Based on the formula of Section 2, in this section
charge form factors are numerically calculated where the
charge distribution are constructed with the nonorthogo-
nal basis functions. The nucleus 12C is chosen as the can-
didate. In many previous studies on electron scattering,
calculations were based on the spherical RMF model and
DWBA method [16–23]. However, for 12C, the spherical
RMF model plus DWBA method cannot obtain reason-
able charge form factors [53]. The discrepancy between
the results of the spherical RMF model and experimen-
tal data indicates the differences in charge distribution
between theory and experiment. Therefore, we add a de-
formation correction term to the spherical RMF charge
density to describe the charge form factor of 12C in this
section.

First, the nuclear charge density is obtained by the
spherical relativistic mean-field (RMF) model. In the
RMF model, the effective Lagrangian density is [54, 55]:

L= ψ̄

[

γµ

(

i∂µ−gωωµ−
gρ

2
τ ·ρµ−

e

2
(1+τ 3)Aµ

)

−(M−gsσ)

]

ψ

+
1

2
∂µσ∂µσ−

1

2
m2

σσ
2− κ

3!
(gsσ)3− λ

4
(gsσ)4

−1

4
ΩµνΩµν +

1

2
m2

ωω
µωµ +

ξ

4!
(g2

ωω
µωµ)2

−1

4
Rµν ·Rµν +

1

2
m2

ρρ
µ ·ρµ

−1

4
F µνFµν +Ueff(ωµ,ρ

µ), (18)

where the self-interacting term of nonlinear ω-ρ coupling
is taken as:

Ueff(ωµ,ρ
µ) = Λv(g

2
ρρ

µ~ρµ)(g2
ωω

µωµ). (19)

Using the Euler-Lagrange equation, we can obtain the
Dirac equations for nucleons and Klein-Gordon equations
for mesons and photons. Based on the no-sea approxi-
mation and mean-field approximation, the motion equa-
tions can be solved iteratively, and the wave functions
of the nucleons can be obtained. Then the nuclear pro-
ton density distribution can be obtained. Folding the
proton charge distribution ρp(r) with the single proton
charge distribution ρp(r), the RMF charge density can
be calculated by the formula [56]:

ρR(r) =

∫

ρp(r
′)ρp(r−r′)dr′. (20)

The single proton charge distribution ρp(r) is:

ρp(r) =
Q3

8π
e−Qr, (21)

where Q= 0.71GeV2.
Calculated by the spherical RMF model with the FSU

parameter set, we obtain the spherical charge distribu-
tion ρR(r) of 12C and investigate the its longitudinal form
factor. However, for 12C there are significant differences
between the theoretical results and experimental data,
which can be seen from Fig. 1. Therefore we assume the
density profile of 12C has a distribution like Eq. (15),
which consists of two parts: a spherical part ρ′0(r) and a
deformation correction ρ′2(r) · |Y20(θ,φ)|2. The spherical
part ρ′0(r) is approximately described by the spherical
RMF charge density ρR(r) with the FSU parameter set,
and the deformed part ρ′2(r) is constructed by stretch-
ing ρR(r) with a factor χ. Finally, the charge density
distribution is written as:

ρc(r,θ)=ρ′0(r)+ρ
′

2(r) · |Y20(θ,φ)|2

=f

(

ρR(r)+
ξ

χ3
ρR(r/χ) · |Y20(θ,φ)|2

)

, (22)

where ξ and χ are two tunable parameters, and f is the
normalizing parameter of the charge number. Combin-
ing this formula with Eq. (16), the charge form factors
of 12C can be studied under the PWBA method. By ad-
justing the parameters ξ and χ in Eq. (22), the shape
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of the longitudinal form factor changes and the diffrac-
tion minimum shifts around. Fitting the experimental
data, the tunable parameters are taken to be ξ =−0.65
and χ = 0.58, and the corresponding longitudinal form
factors are presented in Fig. 1. For the purposes of
comparison, the longitudinal form factor calculated by
the spherical RMF charge density with the FSU param-
eter set is also presented in this figure. One can see
that by taking into account the deformed part with Eq.
(22) in the charge density distribution, the theoretical
longitudinal form factor coincides with the experimental
data much better for 12C. Besides the longitudinal form
factor, the nuclear intrinsic quadrupole moment is also
calculated. Taking Eq. (22) into Eq. (12), the intrinsic
quadrupole moment of 12C is Q0 = 1.12 fm2, and this
value is sensitive to the parameters ξ and χ in Eq. (22).

Fig. 1. Charge form factors of 12C calculated by
the PWBA method. The dotted line is obtained
by the spherical RMF charge density ρR(r) with
the FSU parameter set. The solid line is calcu-
lated by Eq. (16) where the corresponding charge
density is described by Eq. (22). The experimen-
tal data are taken from Refs. [7, 57].

From Fig. 1 and Eq. (16), an equivalent spherical

density distribution ρEq(r) = ρ′0(r)+
1

4π
ρ′2(r) can be ob-

tained for deformed charge densities described by Eq.
(15) with nonorthogonal basis functions. ρEq(r) repre-
sents the spherical components of all nonorthogonal ba-
sis functions. By comparing the theoretical longitudi-
nal form factors with the experimental data, the equiva-
lent spherical density ρEq(r) of 12C are extracted and
presented in Fig. 2. The RMF charge density ρR(r)
calculated by the FSU parameter set and experimen-
tal charge density ρEx(r) described by the Fourier-Bessel
(FB) model are also presented in this figure for com-
parison. There are differences between the RMF charge
density ρR(r) and experimental charge density ρEx(r) for
12C. However, the equivalent spherical density ρEq(r) is
very close to the ρEx(r). Figure 2 indicates that the

spherical experimental charge density ρEx(r) represents
the equivalent spherical density ρEq(r) of the deformed
charge densities described with the nonorthogonal basis
functions. For the charge density of Eq. (15), the RMS
radius of the equivalent spherical charge density ρEq(r) is
also identical to the radii of the actual deformed charge
density and the experimental spherical charge density:

〈r2〉= 1

Z

∫∫

(ρ′0(r)+ρ
′

2(r) · |Y20(θ,φ)|2) drdΩ

=
4π

Z

∫
(

ρ′0(r)+
ρ′2(r)

4π

)

r4 dr

' 4π

Z

∫

ρEx(r)r
4 dr, (23)

which means that electron scattering is a model-
independent method to measure the nuclear charge RMS
radii.

Fig. 2. Charge density distributions of 12C. The
dash-dotted line is the RMF charge density ρR(r)
calculated by the FSU parameter set. The solid
line is the experimental charge density ρEx(r)
described by the Fourier-Bessel model, which is
taken from Refs. [7, 58]. The dotted line rep-
resents the equivalent spherical charge density
ρEq(r).

In Fig. 1, the charge form factors are calculated under
the PWBA method. The initial and final wave functions
of electrons in the PWBA method are plane waves, which
are not accurate. Therefore, we further investigate the
longitudinal form factors by the DWBA method, where
the wave functions of scattering electrons are obtained
by the exact phase-shift analysis. For nuclei with ax-
ial deformation, we use their equivalent spherical charge
densities ρEq(r) instead of the actual deformed charge
densities and solve the Dirac equations of the scattering
electrons under the Coulomb potential of ρEq(r). The re-
sults are presented in Fig.3. Compared with Fig. 1, the
DWBA method corrects the discrepancy at the diffrac-
tion minima between the theoretical results and experi-
mental data. With the DWBA method, the equivalent
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spherical charge density ρEq(r) can reproduce the ex-
perimental charge form factor well. Results in Fig. 3
show once again that for charge densities expanded with
nonorthogonal basis functions, spherical components of
all nonorthogonal basis functions can be determined by
the C0 measurements.

Fig. 3. Same as Fig. 1, but calculated with the
DWBA method.

4 Summary

In this paper, the longitudinal form factors of de-
formed nuclei with rotational symmetry are systemati-
cally investigated. By the selection rules, the longitu-
dinal form factors can be decomposed into several mul-
tipoles, such as C0 and C2. From the intrinsic charge

multipoles, C0 and C2 of longitudinal form factors are
obtained theoretically. The C2 multipole is closely re-
lated to the nuclear quadrupole deformation.

For nuclei with rotational symmetry, the charge den-
sity distributions are expanded by both the orthogonal
basis functions and nonorthogonal basis functions. With
the deformed charge distributions, we derive the C0 and
C2 multipoles under the PWBA method. It is found that
for the charge distribution described by nonorthogonal
basis functions, its longitudinal charge form factors are
identical with those described by orthogonal basis func-
tions. For even-even nuclei, its longitudinal form factor
only contains the C0 multipole. Therefore, one can use a
spherical and phenomenological density (such as a Fermi
function) as input to do the DWBA calculations to fit
the experimental data.

With the derived formulas, the longitudinal form fac-
tors of 12C are calculated by both the PWBA and DWBA
methods where the corresponding charge distribution are
described by nonorthogonal basis functions. By intro-
ducing two tunable parameters into the density profile,
the theoretical longitudinal form factors coincide with
the experimental data very well. Through the analysis,
one can see the equivalent spherical charge distributions
extracted from the electron scattering experiments have
the same RMS radii as the actual deformed charge dis-
tributions. Experiments on electron scattering off exotic
nuclei are under way and the results in this paper are
useful for the study of structures of exotic nuclei.
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Rev. C, 87: 014304 (2013)

23 K. S. Jassim, A. A. Al-Sammarrae, F. I. Sharrad, and H. A.
Kassim, Phys. Rev. C, 89: 014304 (2014)

24 R. Raphael and M. Rosen, Phys. Rev. C, 1: 547 (1970)
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