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Why static bound-state calculations of tetraquarks should be

met with scepticism
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Abstract: Recent experimental signals have led to a revival of tetraquarks, the hypothetical q2q̄2 hadronic states

proposed by Jaffe in 1976 to explain the light scalar mesons. Mesonic structures with exotic quantum numbers have

indeed been observed recently, though a controversy persists as to whether these are true resonances and not merely

kinematical threshold enhancements, or otherwise states not of a true q2q̄2 nature. Moreover, puzzling non-exotic

mesons are also often claimed to have a tetraquark configuration. However, the corresponding model calculations

are practically always carried out in pure and static bound-state approaches, ignoring completely the coupling to

asymptotic two-meson states and unitarity, especially the dynamical effects thereof. In this short paper we argue

that these static predictions of real tetraquark masses are highly unreliable and provide little evidence of the very

existence of such states.
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1 Introduction

In 1976 R. L. Jaffe proposed [1] an ingenious con-
struct to explain the low masses of the light scalar
mesons, in the context of the MIT bag model [2]. His so-
lution amounted to introducing “crypto-exotic” colour-
less qqq̄q̄ configurations instead of the usual qq̄ ones
for ordinary mesons. Due to the very large and attrac-
tive colour-magnetic spin-spin interaction for the ground-
state q2q̄2 systems, an enormous negative mass shift
could be obtained and so reasonable masses could be
found for the lightest scalar mesons [1], viz. 650 MeV for
the ε (now called f0(500) [3, 4] or σ), 900 MeV for the κ

(K?

0(800) [3]), and 1100 MeV for both the S? (f0(980) [3])
and the δ (a0(980) [3]). Although Jaffe’s proposal was
received with general approbation, interest rapidly faded
owing to the poor status of the light scalars in those days
and the lack of experimental indications of truly exotic
(necessarily non-qq̄) states.

Renewed interest in the q2q̄2 or “tetraquark” [5]
model resulted primarily from the experimental discov-
ery of a number of mesons that did not seem to fit in

the traditional static quark model (SQM), which treats
hadrons as manifestly bound states of quarks and an-
tiquarks. Indeed, the most widely used SQM, viz. the
relativised quark model of mesons by Godfrey and Is-
gur [6], predicted considerably higher masses for enig-
matic mesons such as e.g. the scalar charmed-strange
D?

s0(2317) [3] and the axial-vector charmonium X(3872)
[3]. Over the following years, a large number of puzzling
mesonic enhancements were observed, most of these in
the hidden-charm sector and some with hidden bottom,
a few of them even electrically charged. The latter ones
would of course exclude simple cc̄/bb̄ assignments, if in-
deed confirmed as genuine resonances, justifying specula-
tions that they may be tetraquarks. For some time these
states were labelled — quite arbitrarily — “X”, “Y”, or
“Z”, but the PDG now calls them all Xs [3]. For very
recent reviews, see Ref. [7] on hidden-charm pentaquark
and tetraquark states, and Ref. [8] on exotic hadrons in
general.

Despite these exciting observations, figuring out the
true nature of all these unusual states is an enormous
challenge. First of all, the experimental identification
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of several X structures as bona-fide resonances is any-
thing but undisputed. In a recent lattice calcula-
tion [9], with many two-meson interpolating fields in-
cluded, no evidence was found of isovector hidden-charm
tetraquark states up to 4.2 GeV. Moreover, several au-
thors [10–14] interpret charged hidden-charm or hidden-
bottom signals rather as non-resonant cusp-like struc-
tures, resulting from kinematical triangle singularities in
intermediate-state diagrams. On the other hand, even
when four-quark states are predicted in model calcula-
tions, these are often described as (quasi-)bound states
of two mesons [15, 16], with binding due to t-channel me-
son exchange instead of colour forces among two quarks
and two antiquarks. Finally, there are also models sug-
gesting that the observed charged hidden-charm and/or
hidden-bottom peaks may be highly excited Ds (cs̄)
states [17, 18] or light-quark axial-vectors [19].

Now, if tetraquarks nonetheless exist in nature as
genuine q2q̄2 bound states or resonances, the question
remains how to describe them in a realistic way, besides
resorting to the lattice. This brings us inexorably to the
issue of mass shifts from unitarisation, sometimes called
“unquenching” [20], which we shall discuss in the next
section. But let us first quote the warning of Jaffe him-
self [1] about describing the light scalar mesons as stable
tetraquarks:

“First, we are confronted with mesons whose
width is a substantial fraction of their mass.
A calculation of their masses which ignores
decay processes (as does ours) must not be
taken too literally. We should not expect the
accuracy we demanded in our treatment of
QQ̄ mesons and Q3 baryons.”

2 Unquenching the quark model

A fundamental difference between strong interactions
and e.g. electromagnetism is that in the former case mass
splittings and decay widths can be of similar magnitude.
Picking just one typical example from the PDG [3] Meson
Summary Table, we see that the mass difference between
the tensor meson f ′2(1525) and its first radial excitation
f2(1950) is about 420 MeV, while the full width of the
latter resonance is (472±18) MeV. This has tremendous
implications for spectroscopy, as was recognised almost
four decades ago by the Cornell [21], Helsinki [22], and
Nijmegen [23] hadronic-physics groups. Namely, most
mesons/baryons are not merely bound qq̄/qqq states,
but rather resonances in meson-meson or meson-baryon
scattering, respectively. Now, arguments based on S-
matrix analyticity imply that imaginary parts of reso-
nance poles are in principle of the same order as the cor-
responding real shifts with respect to the corresponding
bound states from quark confinement only. This may

give rise to huge distortions of hadron spectra as pre-
dicted by the SQM. To make life worse, relatively stable
hadrons, with widths of roughly 1 MeV or even less, can
still be subject to real mass shifts at least two orders
of magnitude larger, due to virtual decay. A famous
example is the enigmatic scalar charmed-strange meson
D?

s0(2317) [3], predicted to be 170–180 MeV heavier by
the SQM, but ending up at a much lower mass owing
to the closed yet strongly coupling S-wave DK decay
channel [24]. The latter model result was recently con-
firmed on the lattice [25], thus enfeebling claims [26] of
a tetraquark interpretation of this meson.

In order to illustrate the possible effects of unquench-
ing on meson spectra in general, we collect in Table 1
several model calculations of mass shifts owing to strong
decay. Note that not all of these approaches amount
to full-fledged S-matrix unitarisations of the SQM, in
fact only those in Refs. [21, 23, 28, 29, 34, 35] (for fur-
ther details, see Ref. [20]). But even among the latter
there can be sizable differences, as we can see in Ta-
ble 1 by comparing the predictions of Refs. [21] and [23]
for charmonium. These disagreements not only origi-
nate in different confinement forces, but also in the em-
ployed decay mechanisms, which are in their turn influ-
enced by the nodal structure of the qq̄ wave functions.
Nevertheless, Table 1 shows potentially huge mass shifts,
some of which are even larger than typical radial spacings
in meson spectra. Also note that S-matrix calculations
generally produce complex shifts, whenever at least one
decay channel is open. Particularly interesting in this
respect is the case of the charmed-light axial-vector me-
son D1(2430), whose imaginary mass shift in Ref. [35]
came out an order of magnitude larger than its real shift,
with the corresponding resonance pole position being in
good agreement with experiment [3]. Note that this is a
highly non-perturbative effect and not a consequence of
the usual perturbative calculation of the width.

Table 1. Negative real mass shifts from unquench-
ing. Abbreviations: P,V,S=pseudoscalar, vector,
scalar mesons, respectively; q=light quark. See
text and Ref. [20] for further details.

Refs. mesons −∆M/MeV

[21] charmonium 48–180

[22, 27] light P , V 530–780, 320–500

[23, 28] qq̄, cq̄, cs̄, cc̄, bb̄; P,V ≈ 30–350

[29] σ, κ, f0(980), a0(980) 510–830

[29] standard S (1.3–1.5 GeV) ∼ 0

[30] ρ(770), φ(1020) 328, 94

[24] D?

s0(2317), D?

0(2400) 260, 410

[31] D?

s0(2317), D?
s(2632) 173, 51

[32] charmonium 165–228

[33] charmonium 416–521

[34] X(3872) ≈100

[35] cq̄, cs̄; JP = 1+ 4–13, 5–93
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The most surprising result in Table 1 is, though,
for the light scalar mesons, which emerged as a com-
plete nonet of dynamical resonances in the 30-year-old
model calculation of Ref. [29], without any parameter
fitting. The scalar-meson mass shifts of 510–830 MeV
from unitarisation reported in Table 1 correspond to the
differences between the bare (“quenched”) 1 3P0 quark-
antiquark energy levels and the real parts of the low-
est scalar resonance poles. However, the latter appear
as extra, dynamically generated poles, besides an also
complete nonet of scalar resonances that shift much less
(cf. D1(2430) above) and remain in the range 1.3–1.5
GeV [29]. This allows description of both the light
scalar nonet f0(500) (σ), K?

0(800) (κ), f0(980), a0(980)
[3] and the standard ground-state scalar nonet f0(1370),
K?

0(1430), f0(1500), a0(1450) [3] as unitarised qq̄ states.
Recent work [36] supports this phenomenon of generat-
ing extra resonances in the light scalar sector (also see
Ref. [37] and references therein).

In the next section we shall focus on the light scalar
mesons in other approaches, keeping in mind the impor-
tance of unitarisation.

3 Light scalar meson nonet

As described above, the observation of many myste-
rious mesonic signals over the past decade has led to a
revival of Jaffe’s [1] tetraquark model, also for the light
scalars (see e.g. Ref. [38]). The problem is that practi-
cally all these works simply ignore unitarisation. This is
all the more serious in the scalar-meson case, as any pos-
tulated tetraquark wave function will inevitably contain
components of two colourless qq̄ subsystems in a relative
S-wave. So if phase space allows, such a hypothetical
tetraquark can simply fall apart into two mesons, like
e.g. f0(500) → ππ or K?

0(800) → Kπ, which was recog-
nised by Jaffe already 40 years ago (see Ref. [1] for the
figures mentioned):

“If it is heavy enough an S-wave Q2Q
2

me-
son will be unstable against decay into two S-

wave QQ wave mesons. The Q2Q
2

state sim-
ply falls apart, or dissociates, as illustrated in
Fig. 4(a). In contrast, decay of a QQ meson
into two QQ mesons (for example ρ→ππ or
f → ππ) requires creation of a QQ pair [Fig.
4(b)].”

In face of this physical reality, Jaffe and Low devel-
oped [39] the so-called P -matrix formalism, which should
relate S-matrix observables, with boundary conditions
at infinity, to solutions of a relativistic wave equation
with boundary conditions at an arbitrary finite distance
and the corresponding discrete energy levels. They then
applied it to S-wave meson-meson scattering, extract-

ing real energies corresponding to P -matrix poles from
experimental scattering data and comparing these to
the MIT-bag-model mass predictions [1] for light scalar
tetraquarks. However, it remains unclear how to jus-
tify a direct link, in a single-channel approach, between
asymptotic two-meson states and a wave function for
4 coloured quarks confined to a bag. Also, no quark-
antiquark annihilation is considered in this formalism,
which the authors themselves expected [39] to occur in
mixing of heavier q2q̄2 and qq̄ states. Moreover, the
P -matrix method does not allow conclusions on reso-
nance widths to be drawn from the data. Finally, the
experimental data do not support the existence of ex-
otic or crypto-exotic states between 1 and 2 GeV that
should correspond to the P -matrix poles of heavier scalar
tetraquark bag states predicted in Ref. [1].

In principle, the dynamical consequences of uninhib-
ited decay may be dramatic. Suffice it to recall the enor-
mous mass shifts for the light scalar mesons in the uni-
tarised qq̄ model of Ref. [29], despite the necessity of cre-
ating a new qq̄ pair. An important hint may come from
Ref. [40], in which a unitarised toy model of tetraquarks
was formulated via a two-variable Schrödinger equation
for the two spatial configurations (qq)(q̄q̄) and (qq̄)(qq̄).
In spite of the implemented simplifications, a very strik-
ing conclusion emerges from this study, namely that no
tetraquark bound state or observable resonance is found
for zero orbital angular momentum, i.e., precisely in
the case of scalar mesons. What may happen here is
that a bound-state pole corresponding to a static scalar
tetraquark state moves very far away or even disappears
completely in the scattering continuum once decay into
two mesons is allowed. In order to better investigate
such a scenario, a more realistic version of the referred
toy model would be highly desirable, perhaps along the
lines of Ref. [41], but applied to a light scalar tetraquark
instead of the studied qqQ̄Q̄ systems, where Q stands for
heavy quark (c or b).

To conclude our discussion, we turn to a very recent
[42], alternative description of light scalar tetraquarks,
which amounts to the numerical solution of a four-body
Bethe-Salpeter (BS) equation with pairwise rainbow-
ladder gluonic interactions. The authors formally write
down a scattering equation for the qqq̄q̄ T -matrix, i.e.,

T = K +K G0 T, (1)

where K is the qqq̄q̄ interaction kernel and G0 the prod-
uct of four dressed (anti-)quark propagators. However,
in order to search for poles, Eq. (1) is immediately re-
placed by a homogeneous equation for the BS amplitude
(or vertex function) Γ :

Γ = K G0 Γ. (2)

The latter equation allows bound-state solutions to be
found, but in principle it can also be used to describe a
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resonance for complex energy, provided that a proper an-
alytic continuation into the second Riemann sheet is car-
ried out, so as to include the corresponding pole contribu-
tion. This was done in Ref. [43] for a three-dimensional
relativistic two-body equation, using contour-rotation
techniques. However, doing something similar in the
four-dimensional four-body BS case must be a gargan-
tuan enterprise, as the authors of Ref. [42] themselves
admit:

“This is, however, a rather formidable task
which has not even been accomplished in sim-
pler systems so far.”

Yet, the implications of this understandable restriction
to pure bound states could be much more far-reaching
than the truncation of the kernel to pairwise interactions
only. So let us see what the lattice has to say. Quite ideal
would be to have full-fledged lattice simulations of S-
wave ππ, Kπ, and ηπ scattering, with meson-meson and
either qq̄ or qqq̄q̄ interpolators included. Very recent lat-
tice work has tried to describe these systems with quark-
antiquark and two-meson degrees of freedom included,
viz. the f0(500)/σ [44], K?

0(800)/κ [45], and a0(980) [46],
though with still unphysically large pion masses. Nev-
ertheless, the results suggest that no tetraquark con-
figurations are required in the description of the light
scalars. On the other hand, there are lattice indications
of the importance to account for scattering solutions,
albeit for a different system. In Ref. [47] several ex-
cited meson and baryon spectra were presented, result-
ing from unquenched lattice calculations with fully dy-
namical quarks, but without considering meson-meson
scattering solutions. Among these was a mass predic-
tion above 1.6 GeV for the first radial excitation of
the K?(892) resonance. But almost simultaneously, the
same lattice group published [48] results on P -wave Kπ

scattering, employing both qq̄ and meson-meson inter-
polators. This allowed reasonable reproduction of the
mass and Kπ decay coupling of K?(892), besides ex-
tracting a tentative mass for its first radial recurrence
at (1.33± 0.02) GeV, more or less compatible with the
observed [3] Breit-Wigner mass of the broad K?(1410)
resonance. Apart from being much closer to the experi-
mental value than the predictions of mainstream quark
models, the value of 1.33 GeV is about 300 MeV lower
than the above lattice bound-state result [47]. So open
meson-meson channels can yield a huge mass shift, even
for a radially excited meson decaying in a P -wave, for
which unitarisation is usually supposed to be of limited
importance. One can only guess how large such effects
might be for a ground-state tetraquark that can freely
fall apart into an S-wave ππ or Kπ state.

Some final words are due concerning the results of
Ref. [42], which may be very relevant for QCD even if
having little bearing upon experiment. The most impor-

tant conclusion seems to be:

“. . . these tetraquarks are not diquark-
antidiquark states but predominantly ‘meson
molecules’ . . . ”

In other words, two colourless qq̄ systems constitute
by far the most important component of the com-
puted bound-state wave function, so that the designation
“meson-meson molecule” appears much more appropri-
ate for such a system than “tetraquark”. Moreover, this
microscopic modelling of the light scalar mesons is not so
different from the effective approach in Ref. [43], where
only meson-meson interactions were considered, though
in a fully unitary formalism. Curiously, the latter paper
reported a very light σ-like pole in the ππ S-wave, with
a real part of 387 MeV and an enormous imaginary part
of 305 MeV. This former value of 387 MeV is not very
far from the bound-state “σ” mass of 348 MeV found in
Ref. [42]. Of course, this may be just a coincidence, in
view of the strong unitarisation effects leading to a width
of more than 600 MeV in Ref. [43].

4 Conclusions

The hypothetical tetraquark system is a hotly dis-
puted topic in hadronic physics nowadays. Many are
led to take recent experimental signals, especially in
the charmonium sector, as proof of their existence.
However, several alternative explanations exist, such as
non-resonant structures due to kinematical singularities,
meson-meson molecules bound by t-channel exchanges,
and highly excited regular qq̄ mesons. The experimen-
tal challenge is not only to provide high-statistics data
with unambiguous resonance characteristics, but also to
find unmistakable partner states as predicted by the
tetraquark model, either in the same isomultiplet or the
same flavour multiplet.

On the theoretical side, things are by no means easier.
As we hope to have made clear, predictions of tetraquark
models that ignore the effects of decay should not be
trusted. And this applies not only to states above two-
meson thresholds but also to seemingly genuine qqq̄q̄
bound states, since the virtual meson loops correspond-
ing to closed yet nearby thresholds will inevitably have
a significant influence, especially in the case of S-waves.

As for the light scalar resonances, of which f0(500)
(σ) and K?

0(800) (κ) are very broad, a pure bound-
state tetraquark description cannot be realistic, although
the 4-body BS calculation of Ref. [42] appears to ap-
proximately account for some meson-meson contribu-
tions. Unitarising such an approach would be a huge
step foreward, but does not seem feasible for the time
being. An alternative is the unitarised tetraquark poten-
tial model of Ref. [41], but applied to the crypto-exotic
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light scalars instead of exotic qqQ̄Q̄ systems. However,
quark-antiquark annihilation would then have to be con-
sidered too, making an already very difficult problem
even more cumbersome. Finally, the lattice will proba-
bly be able at some point to settle the tetraquark issue
for the light scalar mesons, perhaps quite soon, in view
of the progress made recently (see Refs. [44–46]), also on
describing vector-meson resonances (see e.g. Ref. [48]).
Still, the complication of flavour mixing and coupled
ππ-KK̄ channels in the isosinglet f0(500) case suggests
that the first scalar to reproduce in full glory is K?

0(800).
This would also help to finally convince the Particle Data
Group to include the latter resonance in the Meson Sum-
mary Table [3], which we believe is overdue [49]. We

are also convinced that such a lattice calculation will
lend support to the decades-old [29] picture of the light
scalars as dynamical resonances generated by the strong
coupling of much heavier bare 3P0 qq̄ states to low-mass
S-wave meson-meson decay channels. The “tetraquark”
interpretation of these solutions then essentially boils
down to the dominant meson-meson components appar-
ently observed in Ref. [42], with a subdominant qq̄ com-
ponent constituting the missing ingredient, besides the
restriction to real energies only. The absence of a qq̄
component also in Ref. [43] may explain the too low σ

mass and much too large σ width obtained in this pure
meson-meson model.
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