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T-duality as permutation of coordinates in double space *
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Abstract: We introduce the 2D dimensional double space with the coordinates ZM = (xµ, yµ), whose components

are the coordinates of initial space xµ and its T-dual yµ. We shall show that in this extended space the T-duality

transformations can be realized simply by exchanging the places of some coordinates xa, along which we want to

perform T-duality, and the corresponding dual coordinates ya. In such an approach it is evident that T-duality leads

to the physically equivalent theory and that a complete set of T-duality transformations forms a subgroup of the 2D

permutation group. So, in double space we are able to represent the backgrounds of all T-dual theories in a unified

manner.
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1 Introduction

The T-duality of closed strings has been investigated
for a long time [1–4]. It transforms the theory of a string
moving in a toroidal background into the theory of a
string moving in a different toroidal background. Gen-
erally, one suppose that the background has some con-
tinuous isometries which leaves the action invariant. In
suitable adopted coordinates, where the isometry acts
as translation, it means that the background does not
depend on a particular set of coordinates.

In Ref. [5] a new procedure for T-duality of a closed
string, moving in D dimensional weakly curved space,
was considered. The generalized approach allows one to
perform T-duality along coordinates on which the Kalb-
Ramond field depends. In that article, T-duality trans-
formations were performed simultaneously along all co-
ordinates. It corresponds to the T full = T 0◦T 1◦· · ·◦T D−1

-duality relation with transformation of the coordinates
yµ = yµ(xµ) connecting the beginning and the end of the
T-duality chain

Π±µν , xµ
T1



T1

Π1±µν , xµ
1

T2



T2

Π2±µν ,

xµ
2

T3



T3

. . .
TD



TD

ΠD±µν = ?Π±µν , xµ
D = yµ. (1.1)

Here Πi±µν and xµ
i , (i = 1,2, · · · ,D) are background

fields and the coordinates of the corresponding config-
urations respectively. Applying the proposed procedure
Tfull = T0 ◦T1 ◦ · · · ◦TD−1 to the T-dual theory, one can

obtain the initial theory and the inverse duality relation
xµ = xµ(yµ), connecting the end and the beginning of the
T-duality chain. For simplicity, in Ref. [5] T-duality was
performed along all directions.

The nontrivial extension of this approach, compared
with the flat space case, is a source of closed string non-
commutativity [6–8]. From the canonical point of view
considered in Ref. [8], there is similarity between open
and closed string non-commutativity. In both cases, the

initial coordinates are given not only as a functions of
some effective coordinates but as a linear combination
of the effective coordinates and the effective momenta.
It produces nonzero Poisson brackets between coordi-

nates. In the open string case, such a relation is a solu-
tion of boundary conditions and only endpoints, attached

to the Dp-brane, are non-commutative, even in flat
space.

A closed string does not have endpoints and the

boundary conditions are satisfied automatically. To un-

derstand closed string non-commutativity, we should

impose T-duality transformation laws and express the

closed string coordinates of T-dual theory in terms of the
coordinates and momenta of the original theory. Then

the standard Poisson brackets of the original theory in-
duce nontrivial Poisson brackets between coordinates in
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the T-dual theory, which are proportional to the back-
ground fluxes multiplied by the winding and momenta
numbers. In order to obtain such a feature, we need to
introduce background fields which depend on the coor-
dinates. The simplest example is a weakly curved back-
ground.

In D-dimensional space it is possible to perform

T-duality along any subset of coordinates xa : T a =
T 0 ◦T 1 ◦ · · · ◦T d−1, and along the corresponding T-dual
ones ya : Ta = T0 ◦T1 ◦ · · · ◦Td−1 ,(a = 0,1, · · · ,d− 1). In

Ref. [9] this was done for a string moving in a weakly
curved background. For each case the T-dual actions,
T-dual background fields and T-duality transformations
were obtained. Let us stress that the T-dualization
T a = T a ◦ Ta of the present paper in the 2D dimen-
sional double space contains two T-dualizations in the
terminology of Ref. [9]. In fact the D dimensional T-
dualizations T a and Ta of the present paper are denoted
T a and Ta in Ref.[9].

The introduction of the extended space of double di-

mensions with coordinates ZM = (xµ,yµ) wil help us to
reproduce all the results of Ref. [9] and offer a simple
explanation for T-duality. In the present article we will

demonstrate this for a flat background, while for a weakly
curved background it will be presented elsewhere [10].
For example, T-duality T µ1 (along fixed coordinate xµ1)

and T-duality Tµ1
(along corresponding dual coordinate

yµ1
) can be performed simply by exchanging the places

of the coordinates xµ1 and yµ1
in double space. It can be

realized just by multiplying ZM by a constant 2D×2D
matrix. Similarly, an arbitrary T-duality T a = T a ◦Ta

can be realized by exchanging the places of the coor-
dinates xµ1 ,xµ2 , · · · ,xµd−1 with the corresponding dual
coordinates yµ1

,yµ2
, · · · ,yµd−1

. From this explanation it
is clear that T-duality leads to the equivalent theory, be-
cause a permutation of the coordinates in double space
cannot change the physics.

A similar approach to T-duality, as a transformation

in double space, appeared a long time ago [11]–[15].
Interest in this topic emerged again with Refs. [16, 17]. In

Ref. [11], the beginning and the nd of the chain (1.1) was

established. The relation of our approach and Ref. [16]
will be discussed in Section 4.

The basic tools in our approach are T-duality
transformations connecting the beginning and end of

the chain. Rewriting these transformations in double
space we obtain the fundamental expression, where the

generalized metric relates derivatives of the extended co-

ordinates. We will show that this expression is enough to
find background fields from every node of the chain and
T-duality transformations between arbitrary nodes. In

such a way we unify the beginning and all corresponding

T-dual theories of the chain (1.1).

2 T-duality in double space

Let us consider a closed bosonic string which propa-
gates in D-dimensional space-time described by the ac-
tion [18]

S[x]=κ

∫

Σ

d2ξ
√
−g
[1

2
gαβGµν [x]

+
εαβ

√−g
Bµν [x]

]

∂αxµ∂βxν , (ε01 =−1). (2.1)

The string, with coordinates xµ(ξ), µ = 0,1, · · · ,D−1
is moving in a non-trivial background, defined by the
space-time metric Gµν and the Kalb-Ramond field Bµν .
Here gαβ is the intrinsic world-sheet metric and the in-
tegration goes over the two-dimensional world-sheet Σ
with coordinates ξα (ξ0 = τ, ξ1 = σ).

The requirement of world-sheet conformal invariance
on the quantum level leads to the space-time equations
of motion, which in the lowest order in slope parameter
α′, for the constant dilaton field Φ = const are

Rµν −
1

4
BµρσB ρσ

ν = 0 , DρB
ρ
µν = 0 . (2.2)

Here Bµνρ = ∂µBνρ +∂νBρµ +∂ρBµν is the field strength
of the field Bµν , and Rµν and Dµ are the Ricci tensor
and covariant derivative with respect to the space-time
metric respectively.

We will consider the simplest solutions of (2.2)

Gµν = const, Bµν = const, (2.3)

which satisfies the space-time equations of motion.
Choosing the conformal gauge gαβ = e2F ηαβ, and in-

troducing light-cone coordinates ξ± =
1

2
(τ ± σ), ∂± =

∂τ ±∂σ, the action (2.1) can be rewritten in the form

S = κ

∫

Σ

d2ξ ∂+xµΠ+µν∂−xν , (2.4)

where

Π±µν = Bµν ±
1

2
Gµν . (2.5)

2.1 Standard sigma-model T-duality

Applying the T-dualization procedure to all the co-
ordinates, we obtain the T-dual action [5]

S[y] = κ

∫

d2ξ ∂+yµ
?Πµν

+ ∂−yν =
κ2

2

∫

d2ξ ∂+yµθµν
− ∂−yν ,

(2.6)
where

θµν
± ≡− 2

κ
(G−1

E Π±G−1)µν = θµν ∓ 1

κ
(G−1

E )µν . (2.7)

053101-2



Chinese Physics C Vol. 41, No. 5 (2017) 053101

Here we consider a flat background and omit the argu-
ment dependence of Ref. [5]. The symmetric and anti-
symmetric parts of θµν

± are the inverse of the effective
metric GE

µν and the non-commutativity parameter θµν

GE
µν ≡Gµν −4(BG−1B)µν ,

θµν ≡− 2

κ
(G−1

E BG−1)µν . (2.8)

Consequently, the T-dual background fields are

?Gµν = (G−1
E )µν , ?Bµν =

κ

2
θµν . (2.9)

Note that the dual effective metric is just the inverse of
the initial one

?Gµν
E ≡ ?Gµν −4(?B?G−1?B)µν = (G−1)µν , (2.10)

and the following relations are valid:

(?B?G−1)µ
ν =−(G−1B)µ

ν ,

(?G−1?B)µ
ν =−(BG−1)µ

ν . (2.11)

2.2 T-duality transformations

The T-duality transformations between all initial co-
ordinates xµ and all dual coordinates yµ of the closed
string theory have been derived in Ref. [5]

∂±xµ ∼=−κθµν
± ∂±yν , ∂±yµ

∼=−2Π∓µν∂±xν . (2.12)

They are inverse to one another. We omit argument de-
pendence and β±

µ functions because they appear only in
the weakly curved background.

We can put the above T-duality transformations in
a useful form, where on the left-hand side we put the
terms with world-sheet antisymmetric tensor εα

β (note
that ε±

± =±1):

±∂±yµ
∼=GE

µν∂±xν −2[BG−1]µ
ν∂±yν ,

±∂±xµ ∼= 2[G−1B]µν∂±xν +(G−1)µν∂±yν . (2.13)

Let us introduce the 2D dimensional double target
space, which will play an important role in the present
article. It contains both initial and T-dual coordinates

ZM =

(

xµ

yµ

)

. (2.14)

Here, as well as in double field theory (for recent reviews
see Refs. [19]–[22]), all coordinates are doubled. It differs
from the approach of Ref. [16] where only coordinates on
the torus along which we perform T-dualization are dou-
bled. The relation of this work and that of Ref. [16] will
be discussed in Section 4.

In terms of double space coordinates we can rewrite
the T-duality relations (2.13) in the simple form

∂±ZM ∼=±ΩMNHNK ∂±ZK , (2.15)

where

ΩMN =

(

0 1

1 0

)

, (2.16)

is a constant symmetric matrix and we introduced the
so called generalized metric as

HMN =

(

GE
µν −2Bµρ(G

−1)ρν

2(G−1)µρ Bρν (G−1)µν

)

. (2.17)

It is easy to check that

HT ΩH= Ω. (2.18)

As noticed in Ref. [11], the relation (2.18) shows that
there exists manifest O(D,D) symmetry. In double field
theory it is usual to call ΩMN the O(D,D) invariant
metric and denote it by ηMN .

2.3 Equations of motions as consistency condi-

tion of T-duality relations

It is well known that the equation of motion and the
Bianchi identity of the original theory are equal to the
Bianchi identity and the equation of motion of the T-
dual theory [5, 7, 11, 23]. The consistency conditions of
the relations (2.15)

∂+[HMN∂−ZN ]+∂−[HMN∂+ZN ]∼=0 , (2.19)

in components take the forms

∂+∂−xµ ∼=0 , ∂+∂−yν
∼= 0 . (2.20)

They are the equations of motion for both initial and
T-dual theories.

The expression (2.19) originated from conservation
of the topological currents iαM = εαβ∂βZM . It is often
called the Bianchi identity. In this sense T-duality in the
double space unites the equations of motion and Bianchi
identities in a single relation (2.19) as shown in Ref. [11].

We can write the action

S =
κ

4

∫

d2ξ ∂+ZMHMN∂−ZN , (2.21)

which variation produces Eq. (2.19).
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3 T-duality as permutation of coordi-

nates in double space

Let us mark the T-dualization along some direction
xµ1 by T µ1 , and its inverse along the corresponding direc-
tion yµ1

by Tµ1
. Up to now we collected the results from

T-dualizations along all directions xµ (µ = 0,1, · · · ,D−1) ,
T full = T 0 ◦T 1 ◦ · · ·◦T D−1 and from its inverse along all
directions yµ Tfull = T0 ◦T1 ◦ · · · ◦TD−1. So, the relation
(2.15) in fact contains T-dualizations along all directions
xµ and yµ T = T full◦Tfull.

In this section we will show that relation (2.15) con-
tains information about any individual T-dualizations
along some direction xµ1 and the corresponding one yµ1

for fixed µ1 (T µ1 = T µ1 ◦Tµ1
). Applying the same proce-

dure to an arbitrary subset of directions we will be able
to obtain all possible T-dualizations. This means that
we are able to connect any two backgrounds in the chain
(1.1) and treat all theories connected by T-dualities in a
unified manner.

Let us split the coordinate index µ into a and i
( a = 0, · · · ,d − 1, i = d, · · · ,D − 1), and perform T-
dualization along directions xa and ya

T a=T a◦Ta, T a ≡T 0◦T 1◦· · ·◦T d−1, Ta≡T0◦T1◦· · ·◦Td−1.
(3.1)

We will show that such T-dualization can be obtained
just by exchanging the places of coordinates xa and
ya. Note that double space contains coordinates of two
spaces which are totally dual relative to one another.
In the beginning these two theories are the initial one
S(xµ) and its T-dual along all coordinates S(yµ). Ar-
bitrary T-dualization in the double space along d coor-
dinate with index a, T a, transforms at the same time
S(xµ) to S[ya,x

i] and S(yµ) to S[xa,yi]. The obtained
theories are also totally T-dual relative to one another.

3.1 Coordinate permutations in double space

We can realize permutation of the initial coordinates
xa with its T-dual ya by multiplying the double space
coordinate (2.14), now written as

ZM =











xa

xi

ya

yi











, (3.2)

by the constant symmetric matrix (T a)T = T a

T aM
N =

(

1−Pa Pa

Pa 1−Pa

)

=











0 0 1a 0

0 1i 0 0

1a 0 0 0

0 0 0 1i











.

(3.3)
Here Pa is D ×D projector with d units on the main
diagonal

Pa =

(

1a 0

0 0

)

, (3.4)

where 1a and 1i are d and D−d dimensional identity ma-
trices. In Ref. [3] this transformation is called factorized
duality.

Note also that

(T aT a)M
N =δM

N , (ΩT aΩ)M
N =(T a)M

N , T aΩT a=Ω.
(3.5)

The last relation means that T a ∈SO(D,D). More pre-
cisely, we will see that T a is in fact an element of the
permutation group, which is a subgroup of SO(D,D).

We will require that the dual extended space coordi-
nate,

ZM
a = T aM

NZN =











ya

xi

xa

yi











, (3.6)

satisfies the same form of the T-duality transformations
(2.15) as the initial one

∂±ZM
a

∼=±ΩMN
aHNK ∂±ZK

a . (3.7)

Consequently, with the help of the second equation (3.5)
we find the dual generalized metric

aH= T aHT a, (3.8)

or explicitly

aHMN =











(G−1)ab 2(G−1b)a
j 2(G−1b)a

b (G−1)aj

−2(bG−1)i
b gij gib −2(bG−1)i

j

−2(bG−1)a
b gaj gab −2(bG−1)a

j

(G−1)ib 2(G−1b)i
j 2(G−1b)i

b (G−1)ij











. (3.9)
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3.2 Explicit form of T-duality transformations

Rewriting Eq. (3.7) in components we get

±∂±ya
∼=−2(bG−1)a

b∂±yb +gaj∂±xj +gab∂±xb−2(bG−1)a
j∂±yj

±∂±xi ∼=(G−1)ib∂±yb +2(G−1b)i
j∂±xj +2(G−1b)i

b∂±xb +(G−1)ij∂±yj

±∂±xa ∼=(G−1)ab∂±yb +2(G−1b)a
j∂±xj +2(G−1b)a

b∂±xb +(G−1)aj∂±yj

±∂±yi
∼=−2(bG−1)i

b∂±yb +gij∂±xj +gib∂±xb −2(bG−1)i
j∂±yj . (3.10)

Eliminating yi from the second and third equations
we find

Π∓ab∂±xb +Π∓ai∂±xi +
1

2
∂±ya

∼= 0. (3.11)

Multiplication by 2κθ̂ab
± , which according to (A10) is the

inverse of Π∓ab, gives

∂±xa ∼=−2κθ̂ab
± Π∓bi∂±xi−κθ̂ab

± ∂±yb. (3.12)

Similarly, eliminating ya from the second and third
equations we get

Π∓ij∂±xj +Π∓ia∂±xa +
1

2
∂±yi

∼=0, (3.13)

which after multiplication with 2κθ̂ij
± , the inverse of Π∓ij ,

produces

∂±xi ∼=−2κθ̂ij
±Π∓ja∂±xa−κθ̂ij

±∂±yj . (3.14)

Equation (3.12) is the T-duality transformations for
xa (Eq. (44) of Ref. [9]) and (3.14) is its analogue for
xi.

3.3 T-dual background fields

Requiring that the dual generalized metric (3.9) has
the form (2.17) but with T-dual background fields, (de-
noted by lower index a on the left of background fields)

aHMN =

(

ag
µν −2(abaG

−1)µ
ν

2(aG
−1

ab)µ
ν (aG−1)µν

)

, (3.15)

we can find expressions for the T-dual background fields
in terms of the initial ones.

It is useful to consider the combination of the dual
background fields in the form

aΠ
µν
± ≡

(

ab±
1

2
aG

)µν

= aG
µρ

[

(aG
−1

ab)ρ
ν ± 1

2
δν

ρ

]

.

(3.16)

Comparing the lower D rows of expressions (3.9) and
(3.15) we find

(aG
−1

ab)µ
ν =







−(bG−1)a
b

1

2
gaj

1

2
(G−1)ib (G−1b)i

j






≡







−β̃
1

2
gT

1

2
γ −β̄T






,

(3.17)

and

(aG
−1)µν

=

(

gab −2(bG−1)a
j

2(G−1b)i
b (G−1)ij

)

≡
(

g̃ −2β1

−2βT
1 γ̄

)

.

(3.18)

The notation in the second equality, which has been ob-
tained using (A3), (A4), (A6) and (A7), will simplify
calculations.

To obtain the background field (3.16) we need the
inverse of the last expression. We will use the general
expression for block-wise inversion matrices

(

A B

C D

)−1

=

(

(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

)

.

(3.19)

It produces

(aG)µν =

(

(A−1)ab 2(g̃−1β1D
−1)a

j

2(γ̄−1βT
1 A−1)i

b (D−1)ij

)

,

(3.20)
where

Aab = (g̃−4β1γ̄
−1βT

1 )ab , Dij = (γ̄−4βT
1 g̃−1β1)

ij .
(3.21)

After some direct calculations it can be shown that

Aab = (G̃−4b̃G̃−1b̃)ab ≡ ĝab, (3.22)

where ĝab has been defined in (A8). Note that unlike g̃ab,
which is just the ab component of gµν , the ĝab has the
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same form as the effective metric gµν but with all com-
ponents (G̃, b̃) defined in d dimensional subspace with
indices a,b.

Using the result (3.22) we can rewrite the first equa-
tion (3.21) in the form ĝab = g̃ab−4(β1γ̄

−1βT
1 )ab. Multi-

plying it on the left with (g̃−1)ab and on the right with
(ĝ−1)ab we get

(g̃−1)ab = (ĝ−1)ab−4(g̃−1β1γ̄
−1βT

1 ĝ−1)ab . (3.23)

With the help of this relation we can verify that

(D−1)ij = (γ̄−1 +4γ̄−1βT
1 ĝ−1β1γ̄

−1)ij , (3.24)

is the inverse of the second equation (3.21).
Now, we are able to calculate the background field

(3.16)

aΠ
µν
± =









g̃−1β1D
−1γ−A−1

(

β̃∓ 1

2

)

1

2
A−1gT −2g̃−1β1D

−1

(

β̄T ∓ 1

2

)

1

2
D−1γ−2γ̄−1βT

1 A−1

(

β̃∓ 1

2

)

γ̄−1βT
1 A−1gT −D−1

(

β̄T ∓ 1

2

)









. (3.25)

After tedious calculations using (A5)–(A7) and (A11)
we can obtain

aΠ
µν
± =





κ

2
θ̂ab
∓ κθ̂ab

∓ Π±bi

−κΠ±ibθ̂
ba
∓ Π±ij −2κΠ±iaθ̂

ab
∓ Π±bj



 ,

(3.26)

where θ̂ab
± has been defined in (A9).

It still remains to check that the upper D rows of (3.9)
and (3.15) produce the same expressions for T-dual back-
ground fields. The field (abaG

−1)µ
ν is just the transpose

of (aG
−1

ab)µ
ν . It is useful to express ag

µν in the form

ag
µν = (aG)µρ[δν

ρ −4(aG
−1

ab)ρ
σ(aG

−1
ab)σ

ν ] . (3.27)

Then using (3.20), (3.17), (3.22), and (A11) we can show
that

ag
µν =

(

(G−1)ab 2(G−1b)a
j

−2(bG−1)i
b gij

)

, (3.28)

which is in agreement with (3.9).
Consequently, we obtain the T-dual background fields

in the flat background after dualization along directions
xa, (a = 0,1, · · · ,d−1)

aΠ
ab
± =

κ

2
θ̂ab
∓ , aΠ

a
±i = κθ̂ab

∓ Π±bi ,

aΠ±i
a =−κΠ±ibθ̂

ba
∓ ,aΠ±ij = Π±ij −2κΠ±iaθ̂

ab
∓ Π±bj .

(3.29)

The symmetric and antisymmetric parts of these ex-
pressions produce the T-dual metric and T-dual Kalb-
Ramond field. This is in complete agreement with
Refs. [9, 24]. A similar way to perform T-duality in flat
space-time for D = 3 has been described in Appendix B
of Ref. [7].

This proves that exchange of the places of some coor-
dinates xa with their T-dual ya in the flat double space
represents T-dualities along these coordinates.

In Section 4.1. of Ref. [3], Buscher’s T-dualities were
derived in Eq. (4.9) in the case when there is only one
isometry direction. For such a case it was concluded
that “the dual background is related to the original one
by the action of factorized duality”. There is an essential
difference between their Eq. (4.9) and relation (3.29) of
the present article, where the general case of T-dualities
along arbitrary sets of coordinates has been derived and
proof has been given of its equivalence with the action
of factorized duality.

For proof of expression (3.29) with mathematical in-
duction, Eq. (4.9) is just the first step for n = 1. The next
step from n to n+1 is nontrivial because then we have
three kinds of variables (beside the isometry variable θ
there are a set of original variables and a set of variables
along which we have already performed duality transfor-
mations). This leads to formulae different from Eq. (4.9).
For example, when we perform T-dualization along more
then one coordinate (let us say along xa,a = 1,2) in the
expression for T-dual background fields, we do not carry
out division by Gaa as in Eq. (4.9) but by Gab + 2Bab,

which was recorded in the expression θ̂ab
− of (3.29).

3.4 T-duality group

Successive T-dualization along disjunct sets of direc-
tions T a1 and T a2 will produce T-dualization along all
directions a = a1∪ a2

T a1 ◦T a2 = T a . (3.30)

This can be represented by matrix multiplications
(T a1T a2)M

N = (T a)M
N , which is easy to check because

the projectors satisfy the relations P 2
a1

= Pa1
, P 2

a2
= Pa2

,
Pa1

Pa2
= 0 and Pa1

+Pa2
= Pa.

The set of matrices T a, where the index a take the
values in any of the subsets of index µ, form a commu-
tative group with respect to matrix multiplication. The
neutral element corresponds to the case when we do not
perform T-duality, with Pa = 0 and T a = 1. Conse-
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quently, the set of all T-duality transformations form a
commutative group with respect to the operation ◦.

This is a subgroup of the 2D permutational group

because it acts as a replacement of some coordinates. In
two-line notation, the T-duality T a, along 2d coordinates
xa and ya can be written as

(

1 2 · · · d d+1 · · · D D+1 · · · D+d D+d+1 · · · 2D

D+1 D+2 · · · D+d d+1 · · · D 1 · · · d D+d+1 · · · 2D

)

. (3.31)

It looks simpler in the cyclic notation

(1,D+1)(2,D+2) · · ·(d,D+d) . (3.32)

We will call this group the T-duality group. It is a global
symmetry group of equations of motion (2.19).

4 Inclusion of dilaton field

As usual, in the standard formulation one should add
the Fradkin-Tseytlin term

Sφ =

∫

d2ξ
√
−gR(2)φ, (4.1)

to the action (2.1) in order to describe the dilaton field
φ. Here R(2) is scalar curvature of the world sheet and
the term Sφ is one order higher in α′ than the terms in
(2.1).

4.1 Path integral measure

It is well known that dilaton transformation has a
quantum origin. For a constant background the Gaus-
sian path integral produces the expression (detΠ+µν)

−1.
We will show that this is just what we need in order that
the change of space-time measure in the path integral is
correct.

Let us start with the relations

detGµν =
detGab

det γ̄ij
, detaGµν =

detaG
ab

det γ̄ij
, (4.2)

which follow from (A1) and (3.18). Using the expressions
for T-dual fields (3.29) we can find the relations between
the determinants

det(2Π±ab) =
1

det(2aΠab
± )

=

√

detGµν

detaGµν

=

√

detGab

detaGab
,

(4.3)
where the factor 2 is introduced for convenience, because
Π±ab = Bab± 1

2
Gab. So, we have

√

detGµν dxidxa →
√

detGµν dxi 1

det(2Π+ab)
dya

=
√

detaGµν dxidya, (4.4)

which means that T-dualization T a along xa directions
produces the correct change of space-time measure in the
path integral of the standard approach.

4.2 Dilaton in the double space

In double space, T-dualization T a along both xa and
ya produces

√

detGµν

√
det ?Gµν dxidyidxadya →

√

detGµν

√
det ?Gµν dxidyidyadxa

1

det(2Π+ab)det(2aΠab
+ )

. (4.5)

According to (4.3) the last term is equal to 1 and the
path integral measure is invariant under T-dual trans-
formation. Consequently, in double space we need the
new dilaton invariant under T-duality transformations.

The usual approach in the literature is to introduce
the “doubled dilaton” Φ(a) in term of the standard dila-
ton φ, with the requirement that Φ(a) is invariant under
T-dualization T a. From the transformation of the stan-
dard dilaton φ (see Refs. [1, 23])

aφ = φ− lndet(2Π+ab) = φ− ln

√

detGab

detaGab
, (4.6)

with the help of (4.3) we have a(aφ) = φ, which means
that

Φ(a) =
1

2
(aφ+φ) = φ− 1

2
ln

√

detGab

detaGab
, (4.7)

is invariant under duality transformation along the xa

directions. If we chose the other set of coordinates
xb (b 6= a), along which we perform T-duality, then we
wil have a different “doubled dilaton” Φ(b). We want to
have one doubled dilaton invariant under all T-duality
transformations.

Up to now, we described all T-dual transformations
with one action (2.21). Using (2.17) and (2.11) the cor-
responding generalized metric can be expressed symmet-
rically in term of initial metric and Kalb-Ramond fields
and their totally T-dual background fields (marked with
a star)

HMN =

(

(?G−1)µν 2(?G−1)µρ ?Bρν

2(G−1)µρ Bρν (G−1)µν

)

. (4.8)
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We can do a similar thing with the dilaton field. As was
shown in Ref. [10] the expression

Φ = φ− ln
√

detGµν , (4.9)

is duality invariant under all possible T-dualizations. So,
the double space action (2.21) can be extended with an
expression similar to (4.1), but with the doubled dilaton
Φ instead of the standard one φ.

Using the fact that Φ = ?Φ = ?φ− ln
√

det?Gµν , we
can express the double dilaton Φ in term of the dilaton
from the initial theory φ and the dilaton from its totally
T-dual theory ?φ as

e−2Φ = e−(φ+?φ)
√

detGµν det ?Gµν . (4.10)

Therefore, we can take e−2Φdxµdyµ as the double space
integration measure, as well as in the double field theory.

5 Relation to Hull’s formulation

In this section we are going to derive the action of
Ref. [16] and compare its consequences with our results.
Note that the background fields of Ref. [16] depend only
on the coordinates Y m (xi in our notation) along which
the T-duality has not been executed. In our approach
all variables are doubled xµ → yµ, while in Ref. [16] only
variables along which the T-duality is performed are dou-
bled xa → ya. So, in our approach there are 2D variables
xa,xi,ya,yi while in Ref. [16] there are D + d variables
xa,ya,x

i. It suggests that the formulation of Ref. [16]
can be obtained from ours after elimination of the yi

variable. We already did this in Section 3.2. and ob-
tained the T-duality relations (3.11) and (3.12), which
are inverse to each other. In analogy with (2.13) we can
rewrite them in a useful form, where on the left-hand
side we put the terms with the world-sheet antisymmet-
ric tensor εα

β (ε±
± =±1) and obtain

∂±XA =±ΩAB(ĤBC∂±XC +J±B) . (5.11)

Here

XA =

(

xa

ya

)

, (5.12)

is a 2d dimensional double space coordinate

ΩAB =

(

0 1a

1a 0

)

, (5.13)

and

ĤAB =

(

ĝab −2bac(G̃
−1)cb

2(G̃−1)acbcb (G̃−1)ab

)

, (5.14)

is a 2d×2d generalized metric. All components of ĤAB

are from an ab subspace, like ĝab and θ̂ab in (A8). So,

it satisfies ĤT ΩĤ = Ω and is an element of the O(d,d)
group.

We also obtained explicit expressions for the currents
in terms of undualized coordinates xi

J±A =

(

J1±a

Ja
2±

)

, (5.15)

where

J1±a =−2Π±abJ
b
2± , Ja

2± = 2(G̃−1)abΠ∓bi∂±xi .
(5.16)

The first relation in the last expression is solution (2.44)
of Ref. [16].

Therefore, instead of 2D component T-duality trans-
formations (3.7) with 2D dimensional vector ZM we have
2d component relation (5.11) with 2d dimensional vectors
XA and J±A. The relation (5.11) is a self-duality con-
straint (Eq. (2.5) of Ref. [16]) imposed that halves the
degrees of freedom.

Also, in Section 2.3 the consistency condition of
(5.11) produces

∂+(Ĥ∂−X +J−)+∂−(Ĥ∂+X +J+) = 0 , (5.17)

which is equation of motion (2.4) of Ref. [16]. So, we can
write the action

Sd =
κ

4

∫

d2ξ

[

∂+XAĤAB∂−XB

+∂+XAJ−A +J+A∂−XA +L(xi)

]

, (5.18)

of which variation produces Eq. (5.17). This action is in
complete agreement with Ref. [16], but with already con-
strained elements of ĤAB and an explicit expression for
currents J±A in terms of undualized coordinates xi. Be-
cause Ref. [16] starts with arbitrary ĤAB it is restricted
to be a coset metric O(d,d)/O(d)×O(d) so that the T-
duality would be equivalent to the standard one.

Note that the whole procedure of Ref. [16] should
be performed for each node of the chain (1.1), which
means for each value of d. In our approach only the
case d = D appears. Then the currents J±A disappear,
XA → ZM , ĤAB → HMN , ΩAB → ΩMN and T-duality
transformations (5.11) turn to (2.15). However, the gen-
eralized metric HMN together with basic relation (2.15)
are sufficient to describe all T-dualities for each d.

6 Conclusion

Introducing the 2D dimensional space, which beside
initial D dimensional space-time coordinates xµ contains
the corresponding T-dual coordinates yµ, we have offered
a simple formulation for T-duality transformations. The
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extended space with the coordinates ZM = (xµ,yµ) we
call double space.

It is easy to see that after the exchanges of all ini-
tial coordinates xµ with all T-dual coordinates yµ we
obtain the T-dual background fields of Section 2. This
result is formulated in the double space in Ref. [11] in
order to make global SO(D,D) symmetry manifest. In
the present article we show that the double space con-
tains enough information to explain T-dualization along
an arbitrary subset of coordinates xa and correspond-
ing T-dual ya (a = 0,1, · · · ,d− 1). For this purpose we
rewrite T-duality transformations for all the coordinates
and their inverse in double space. We obtain the basic
relation (2.15) with the generalized metric (2.17) which
helps us to find all T-dual background fields for each
node of the chain (1.1) and T-duality transformations
between all the nodes.

We define a particular permutation of the coordinates
realized by matrix T a, known in the literature as factor-
ized duality (see for example Ref. [3]). It exchanges the
places of some subset of the coordinates xa and the corre-
sponding dual coordinates ya along which we perform T-
dualization. We require that the obtained double space
coordinates satisfy the same form of T-duality transfor-
mations as the initial one, or in other words, that such
a permutation is a global symmetry of the T-dual trans-
formation. We show that this permutation produces ex-
actly the same T-dual background fields and T-duality
transformations as in the standard approach of Ref. [9].
So, the double space approach clearly explains that T-
duality is nonphysical, because it is equivalent to the
permutation of some coordinates in double space.

In the standard formulation T-duality transforms the
initial theory to the equivalent one, T-dual theory. The
double space formulation contains both initial and T-
dual theories and T-duality becomes the global symme-
try transformation. With the help of (3.8), it is easy
to see that the equations of motion (2.19) are invariant
under the transformation ZM →ZM

a = (T a)M
NZN .

The squares of all matrices T a are equal to one and
therefore they are inverse themselves. The set of all
T a matrices forms an Abelian group with respect to
matrix multiplication. Consequently, the set of all T-
dualizations with respect to the successive T-dualizations
also forms an Abelian group. It is a subgroup of the 2D
permutation group, which permutes some of the first D
coordinates with the corresponding last D coordinates.
In the cyclic form it can be written as

(1,D+1)(2,D+2) · · ·(d,D+d) , d = 0,1,2, · · · ,D ,
(6.19)

where d = 0 formally corresponds to the neutral element
(no permutations of coordinates and so no T-duality
transformations) and d = D corresponds to the case when

T-dualization is performed along all coordinates.
The relation between our approach and the well

known one of Ref. [16] has been presented in Section
4. In the approach of Ref. [16] to each node of the chain
(1.1), lying d steps from the begining, it corresponds the
action Sd (5.18) and self-duality constraints (5.11) with
2d dimensional variables XA. Our approach unifies all
nodes of the chain (1.1). The T-duality transformations
(2.15), with 2D dimensional variable ZM , allows us to
obtain all background fields and T-duality transforma-
tions of the chain (1.1).

Let us briefly describe the significance of the obtained
results. It is well known that there are five consistent su-
perstring theories. In order to have a unique theory, the
so-called M-theory, we should connect these five theories
by a web of T and S dualities. If we start with any ar-
bitrary one of these five consistent theories and find all
corresponding T-dual and S-dual theories, we can achieve
any of the other four consistent superstring theories. But
this is not enough for the formulation of M-theory. To re-
alize this we should construct one theory which contains
the initial theory and all corresponding dual theories.

The present article is a realization of such a program
for T-duality in the bosonic case for a flat background,
which is substantially simpler that the supersymmetric
one. In fact, the theory with all doubled coordinates con-
tains the initial and all corresponding T-dual theories.
We hope that S-duality, which can be understood as a
transformation of the dilaton background field, can be
successfully incorporated into our procedure. The same
program for a bosonic string but in a weakly curved back-
ground, with linear dependence on coordinates, will be
investigated in Ref. [10].

Unfortunately, the solution for the bosonic case is
not enough for construction of M-theory, because the T-
duality for superstrings is a non-trivial extension of the
bosonic case. In Ref. [25] we have tried to extend such
an approach to type II theories. In fact, doubling all
bosonic coordinates we have unified types IIA, IIB as
well as type II? [26] (obtained by T-dualization along
time-like direction) theories.

We expect that, in our approach to the formulation
of M-theory we should also include T-dualization along
fermionic variables. This means that we should also dou-
ble these fermionic variables. A necessary step for under-
standing T-dualization along all fermionic coordinates in
fermionic double space has been considered in Ref. [27].
We expect that the final step in the construction of M-
theory will be unification of all theories obtained after
T-dualization along all bosonic and all fermionic vari-
ables. In that case we should double all coordinates
in superspace, anticipating that some super-permutation
will connect an arbitrary two of our five consistent su-
persymmetric string theories.
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Appendix A

Block-wise expressions for background fields

In order to simplify notation and to write expressions
without indices (as matrix multiplication) we will introduce
notations for component fields.

For the metric tensor and the Kalb-Ramond background
fields we define

Gµν =

(

G̃ab Gaj

Gib Ḡij

)

≡

(

G̃ GT

G Ḡ

)

, (A1)

and

bµν =

(

b̃ab baj

bib b̄ij

)

≡

(

b̃ −bT

b b̄

)

. (A2)

We also define notation for the inverse of the matrix

(G−1)µν =

(

γ̃ab γaj

γib γ̄ij

)

≡

(

γ̃ γT

γ γ̄

)

, (A3)

and for the effective matrix

gµν = Gµν−4bµρ(G
−1)ρσ

bσν =

(

g̃ab gaj

gib ḡij

)

≡

(

g̃ gT

g ḡ

)

.

(A4)
Note that because Gµν is the inverse of Gµν , we have

γ=−Ḡ−1Gγ̃=−γ̄GG̃−1, γ
T =−G̃

−1
G

T
γ̄=−γ̃G

T
Ḡ

−1
,

γ̃=(G̃−GT Ḡ−1G)−1, γ̄=(Ḡ−GG̃
−1

G
T )−1

,

G̃−1=γ̃−γT γ̄−1γ, Ḡ
−1=γ̄−γγ̃

−1
γ

T
. (A5)

It is also useful to introduce new notation for the expres-
sions

(bG−1)µ
ν =

(

b̃γ̃−bT γ b̃γT −bT γ̄

bγ̃+ b̄γ bγT + b̄γ̄

)

≡

(

β̃ β1

β2 β̄

)

,

(A6)

and

(G−1
b)µ

ν =

(

γ̃b̃+γT b −γ̃bT +γT b̄

γb̃+ γ̄b −γbT + γ̄b̄

)

≡

(

−β̃T −βT
2

−βT
1 −β̄T

)

.

(A7)
We denote by ˆ expressions similar to the effective metric

(A4) and non-commutativity parameters but with all contri-
butions from the ab subspace

ĝab =(G̃−4b̃G̃
−1

b̃)ab , θ̂
ab =−

2

κ
(ĝ−1

b̃G̃
−1)ab

. (A8)

Note that ĝab 6= g̃ab because g̃ab is the projection of gµν on
subspace ab. It is extremely useful to introduce background
field combinations

Π±ab = bab±
1

2
Gab

θ̂
ab
± =−

2

κ
(ĝ−1Π̃±G̃

−1)ab = θ̂
ab
∓

1

κ
(ĝ−1)ab

, (A9)

which are inverse to each other

θ̂
ac
± Π∓cb =

1

2κ
δ

a
b . (A10)

With the help of (3.23) one can prove the relation

(g̃−1
β1D

−1)a
i =(ĝ−1

β1γ̄
−1)a

i, (A11)

where Dij is defined in (3.21).
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8 Lj. Davidović, B. Nikolić, and B. Sazdović, EPJ C, 74: 2734

(2014)
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