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Abstract: We analyze the four common types of finite-time singularity using a generic framework of the phase

portrait geometric approach. This technique requires the Friedmann system to be written as a one-dimensional

autonomous system. We employ a scale factor that has been used widely in the literature to realize the four finite-

time singularity types, then we give a detailed discussion for each case showing possible novel models. Moreover,

we show how different singularity types can play essential roles in different cosmological scenarios. Among several

modified gravity theories, we show that the f(T ) cosmology is compatible with the phase portrait analysis, since the

field equations include Hubble derivatives only up to first order. Therefore, we reconstruct the f(T ) theory which

generates these phase portraits. We also perform a complementary analysis using the effective equation of state.

Furthermore, we investigate the role of the torsion fluid in realizing the cosmic singularities.
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1 Introduction

The cosmological singularity problem has received at-
tention for a long time. However, many studies have
considered only the crashing type, e.g. big bang and big
crunch singularities. Recently, after observations of Type
Ia supernovae (SNIa), other softer types of singularity
have been introduced to the game. Several attempts have
been made to investigate the role of quantum effects in
smoothing out the singularity [1–3], or to study geodesic
completeness and the possibility of crossing the singular-
ity [4–7]. Also, some studies have investigated the effect
of the singularity on the cosmic observable quantities [8–
10]. On the other hand, nonsingular bounce cosmology
could provide an alternative approach to explain cosmic
observations. In this scenario, the universe begins with
a contraction phase, then it reaches a nonzero minimal
length before expansion, and therefore it does not suf-
fer from the trans-Planckian problems of the inflation
models [11, 12]. The bouncing universe has gained at-
tention in recent literature, where the cosmic evolution
shows interesting features on both the background and
the perturbative levels [13–19]. In classical general rel-
ativity, one should introduce some fluid with an exotic
equation of state to establish these models. However, we

find that modified gravity theories could provide an al-
ternative by modifying the gravitational sector. Indeed,
modified gravity has been used to successfully describe a
bouncing universe, and helps to resolve several problems
of these models, e.g. anisotropy and ghost instability
problems, c.f. Refs. [20–24]. Also, it is worth analyzing
various singularities within the modified gravity frame-
work, which is the target of this paper.

For reasonable cosmological requirements, the uni-
verse is usually taken to be homogeneous and isotropic.
Thus, we take the metric to be of the Friedmann-
Lemaitre-Robertson-Walker (FLRW) form,

ds2=c2dt2−a(t)2δijdxidxj , (1)

where c is the speed of light in vacuum and a(t) is the
scale factor of the universe. In modified theories of grav-
ity, one can write the Friedmann system as

ρeff≡
3

κ2
H2, peff≡− 1

κ2

(

2Ḣ+3H2
)

, (2)

where H≡ ȧ
a

is the Hubble parameter, the dot denotes the
derivative with respect to the cosmic time t, the coupling
constant κ2≡8πG, and G is the gravitational constant.
We use natural units, i.e. kB = c = ~ = 1. In this case,
we can write κ = 1/Mp, where Mp = 2.4×1018 GeV is
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the reduced Planck mass. We also denote the effective
(total) energy density and the pressure as ρeff and peff,
respectively. We further assume that the effective fluid
has a barotropic equation of state, then we can classify
the finite-time singularities as in Refs. [25, 26]. In brief,
we illustrate the fundamental characteristics of this clas-
sification as below. Let the time of the singularity be
ts.

(1) Type I: At t → ts, the scale factor a, the effec-
tive energy density ρeff and the pressure peff diverge, i.e.
a→∞, ρeff →∞, and |peff |→∞. A Type I singularity
is of crushing type and known as a “big rip” singularity,
c.f. [25].

(2) Type II: At t→ ts, the scale factor a and the ef-
fective energy density ρeff approach finite values, while
the effective pressure diverges, i.e. a → as, ρeff → ρs

and |peff | → ∞. A Type II singularity is not of a
crushing type and is known as “sudden” singularity, c.f.
[1, 4, 10, 27, 28].

(3) Type III : At t→ts, only the scale factor tends to
a finite value, while the effective energy density and the
pressure both diverge, i.e. a→as, ρeff→∞ and |peff |→∞.
Type III is of the crushing type.

(4) Type IV : At t→ts, all three quantities mentioned
approach finite values, i.e. a→as, ρeff→ρs and |peff |→ps.
In addition, the Hubble parameter and its first derivative
are finite, while its second/higher derivatives diverge. A
Type IV singularity is the softest (not of the crushing
type) of the four types, c.f. Refs. [10, 22, 25, 29–31].

This work is devoted to analyzing the finite-time sin-
gularity types using a generic framework of the phase
portrait geometric approach. This technique assumes
the Friedmann system to be written as a “one dimen-

sional autonomous system” [32, 33]. We organize the
paper as follows. In Section 2, we review the phase por-
trait analysis and its application in cosmology. We also
describe a scale factor that can realize the four singu-
larity types, then we give a detailed discussion for each
case. Moreover, we show how different singularity types
can play essential roles in different cosmological scenar-
ios. In Section 3, we show that the f(T ) gravity among
several modified gravity theories is compatible with the
phase portrait technique. We also reconstruct the f(T )
theory which generates these phase portraits. In Section
4, we perform a complementary analysis using the effec-
tive equation of state. Furthermore, we investigate the
role of the torsion fluid in realizing the cosmic singulari-
ties. In Section 5, we summarize the work.

2 Phase portraits of finite-time singular-

ities

In Eq. (2), we define the effective density energy and
the effective pressure as ρeff =

∑

i

ρi and peff =
∑

i

pi re-

spectively. The index i denotes the fluid component. In
this case, if we consider the effective matter to have a
linear equation of state, we define the effective equation
of state parameter as

ωeff≡
peff

ρeff

=−1−2

3

Ḣ

H2
. (3)

In fact, the differential equation represents a one-
dimensional autonomous system, if we can write Ḣ ≡
F(H). The proper way to fulfill this condition is to have
a fixed effective equation of state parameter which re-
produces general relativity as a special case, or to have
a dynamical effective equation of state but as a function
of H only. We are interested in the more general case,
ωeff≡ωeff(H), so we rewrite Eq. (3) as

Ḣ=−3

2
(1+ωeff(H))H2≡F(H). (4)

As a consequence, we can always interpret this differ-
ential equation as a vector field on a line introducing
one of the basic techniques of dynamics. This view, ge-
ometrically, is by drawing Ḣ versus H , which helps to
analyze the cosmic model in a clear and transparent way
even without solving the system. In order to fix our no-
tations, we follow Ref. [34] in calling Eq. (4) the phase

portrait, while its solution H(t) is the phase trajectory.
Thus, the phase portrait corresponds to any theory can
be drawn in an (Ḣ−H) phase-space of Friedmann’s sys-
tem. In this space each point is a phase point and could
serve as an initial condition.

For C∞ monotonic phase portraits, it has been shown
that the fixed points (Ḣ=0) cannot be reached in a finite
time [32]. In fact, the fixed point, in addition, would be
Minkowskian, if H=0 and Ḣ=0. Otherwise, it would be
de Sitter, i.e. H 6=0 and Ḣ=0. For a phase portrait (4),
if the universe begins at a fixed point, it will stay forever
at that point. The stability classification of a fixed point
can be performed by allowing a small perturbation about
it, and investigating whether the perturbation decays or
grows. Generally, if the slope of the phase portrait is pos-
itive at the fixed point, the perturbation grows and the
fixed point in this case is unstable (repeller or source).
If the slope is negative, the fixed point is stable (attrac-
tor or sink). However, if the slope alters its sign at the
fixed point, it is semi-stable and the solution is stable
from one side and unstable from the other side. For an
infinite slope case (e.g. cusps) there are infinitely many
solutions starting from the same initial condition so that
the phase point doesn’t know how to move. In this case
the geometric approach collapses.

We summarize phase portrait analysis as a useful tool
to qualitatively describe the dynamical behavior of a flat
FLRW model by constructing its (Ḣ-H) phase space di-
agram [32]. When the system is autonomous and one-
dimensional, the dynamics are controlled by the asymp-
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totic behavior of the phase portrait and by its fixed
points. In general, after identifying the fixed points, we
next define the zero acceleration curve by setting the de-
celeration parameter q≡− aä

ȧ2 =0, i.e., Ḣ =−H2, which
splits the phase space into two regions. The inner region
characterizes the decelerated phases. This is shown by
the shaded region in Fig. 1. However, the unshaded re-
gion represents the accelerated phases. We classify the
different phases in Fig. 1 as follows:

(1) Region I: an accelerated contracting universe as
q<0 and H<0.

(2) Region II: a decelerated contacting universe as
q>0 and H<0.

(3) Region III: a decelerated expanding universe as
q > 0 and H > 0, which characterizes the usual FLRW
models.

(4) Region IV: an accelerated expanding universe as
q <0 and H >0, which characterizes the so-called infla-
tion or dark energy phases.

Fig. 1. (color online) Phase portraits 4 correspond-
ing to different values of the effective equation
of state parameters. The origin of the phase
space is Minkowski space, and the zero acceler-
ation curve (ωeff=−1/3) splits the space into de-
celeration (shaded) and acceleration (unshaded)
regions, while the negative (positive) Hubble re-
gions are contraction (expansion) regions. This
subdivides the phase space into four regions. We
denote them as regions I–IV.

We consider the following scale factor in order to re-
alize the four singularity types [29, 35]:

a(t)=ef0(t−ts)2(1+ε)

. (5)

Introducing the new parameters α ≡ 1+2ε and β ≡
2(1+ε)f0 = (1+α)f0, we write the Hubble parameter

as

H(t)=β(t−ts)
α, (6)

where α is dimensionless and β has a dimension of
[time]−1−α. We note that in the Planck unit system, the
Hubble parameter is measured in GeV and time is mea-
sured in [GeV]−1, so β is measured in [GeV]1+α. The
classification of finite-time singularities can be realized
by the scale factor (5). According to different choices of
the parameter α, as given in Table 1, the four types of
singularities could occur at t=ts.

Table 1. Singularity types classification according
to the choice of the α parameter in Eq. (5).

t→ts
Type I Type II Type III Type IV∗

(α<−1) (0<α<1) (−1<α<0) (α>1)

a→as × X X X

H→Hs × X × X

Ḣ→Ḣs × × × X

ρeff→ρs × X × X

|peff|→ps × × × X

∗The higher derivatives dnH/dtn diverge, n>2.

Using the inverse relation of Eq. (6), we express the
time in terms of the Hubble parameter,

t(H)=ts+

(

H

β

) 1
α

. (7)

Thus, we write the implicit differentiation Ḣ≡Ḣ(H) as

Ḣ=αH

(

H

β

)− 1
α

. (8)

The above relation represents a one-dimensional au-
tonomous system, whereas its graphical representation
provides the phase portrait of the cosmic evolution,

which can be seen clearly in the
(

H-Ḣ
)

phase space

for different choices of the parameter α.
In general, the phase portrait (8) evolves towards a

fixed point at which Ḣ=0, or a point at which Ḣ→±∞.
The former can be achieved at H=0 where α<0 or α>1,
so we expect the phase portraits associated with Type I,
III and IV singularities to pass through a Minkowskian

fixed point
(

H=0, Ḣ=0
)

. The latter does not always

mean that the system is singular at Ḣ →±∞. It has
been shown that if the asymptotic behavior of Ḣ grows
linearly or slower, the solution will not have a finite-time
singularity [32]. This can be shown, since the singularity
time

ts=

∫ ±∞

H0

dH

Ḣ
. (9)

Using Eq. (8), it is clear that the phase portrait belongs
to the power-law family, i.e. Ḣ ∝Hγ. It is not difficult
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to realize that the big bang (singular) model is a spe-
cial case where γ =2. In general, the time to reach the
singularity is finite

ts=
1

(γ−1)Hγ−1
0

; if γ>1.

On the other hand, the time to reach the singularity
could be infinite

ts→±∞; if γ61.

Therefore, the phase portrait (8) evolves towards Ḣ →
±∞ in an infinite time where α>0, and we expect that
the phase portraits associated with Type II and IV sin-
gularities only to be free from singularities of crashing
type at H→±∞.

2.1 Type I singularity phase portrait

This singularity occurs when the cosmic time ap-
proaches t→ ts. The scale factor a, the effective energy
density ρeff and the pressure peff diverge, i.e. a → ∞,
ρeff → ∞, and |peff | → ∞. A Type I singularity is of
crushing type and is known as a “big rip” singularity,
c.f. Ref. [25]. Using the scale factor (5), the Type I
singularity case occurs when α < −1. In this case, we
have β =f0(1+α)<0, when f0 >0 and β =f0(1+α)>0,
when f0 <0. Different cases of the phase portraits cor-

responding to Eq. (8) are given in Fig. 2. In general,
one-dimensional autonomous systems are dominated by
fixed points, while the time required to reach any of these
points is infinite. In other words, the fixed points split
the phase space into separate regions. This can be easily
seen in Friedmann cosmology, since the time is given as

t=

∫ Hf

H0

dH

Ḣ
→±∞. (10)

At a fixed point Hf , we have Ḣ=0, and the time re-
quired to reach it is infinite. The phase portraits in Fig.
2 show two possible cosmic behaviors according to the
choice of f0 >0 (f0 <0), and consequently β <0 (β >0).
We discuss both cases as follows.

2.1.1 f0>0 (β<0)

The corresponding phase portrait is given in Fig.
2(a). The universe is allowed only in the phantom
regime. It begins with a big rip singularity at

ts=

∫ H0

−∞

dH

Ḣ
=

∣

∣

∣

∣

H0

β

∣

∣

∣

∣

1/α

,

from a particular value H0<0. Since the universe evolves
in Ḣ>0 and H<0 phase space with a Minkowskian fixed
point fate, the universe experiences an eternal accelerat-
ing contraction.

(a) f0>0(β<0) (b) f0<0(β>0)

Fig. 2. (color online) Phase portraits of finite-time singularities of Type I for different choices of the parameter
α<−1 in Eqs. (8).

2.1.2 f0<0 (β>0)

The corresponding phase portrait is given in Fig.
2??. The universe evolves in a non-phantom regime. It
begins with a big bang at ts=(H0/β)1/α from a present
Hubble value H0 > 0. Interestingly, for suitable values
of the parameters α and β, the phase portrait provides
a graceful exit inflationary model. The universe could
begin with an early accelerated expansion phase (infla-

tion), however, it could be followed by a decelerated
expansion phase (FLRW). At the graceful exit transi-
tion, the phase portrait should cut the zero acceleration
curve (Ḣ =−H2) from acceleration to deceleration. Us-
ing Eq. (8), at the transition Hinf , the two parameters
can be related by

β=Hinf

(

−Hinf

α

)α

. (11)
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For any value of α<−1, the above equation can predict
the value of β when the Hubble parameter at the end
of inflation Hinf is known. For more detailed discussion
about the possible values of α and β to realize a graceful
exit inflation, see Section 2.5.

2.1.3 Physical description

In conclusion, we find that the case of β >0 is more
interesting than the other cases, since it provides a grace-
ful exit inflation model. In Section 2.5, we will obtain
suitable values of the parameters α and β which realize
inflation at a suitable energy scale.

2.2 Type II singularity phase portrait

This singularity occurs when the cosmic time ap-
proaches t → ts. The scale factor a and the effective
energy density ρeff approach finite values, while the ef-
fective pressure diverges, i.e. a → as, ρeff → ρs and
|peff | → ∞. A Type II singularity is not of a crush-
ing type and is known as a “sudden” singularity, c.f.
Refs. [1, 4, 10, 27, 28]. Using the scale factor (5), the
Type II singularity case occurs when 0<α< 1. In this
case, we have β = f0(1+α) < 0, when f0 < 0, while
β = f0(1+α) > 0, when f0 > 0. Different cases of the
phase portraits corresponding to Eq. (8) are given in
Fig. 3. It is clear that the finite-time singularity of type
II is not a fixed point, but it occurs, commonly, when Ḣ
diverges as H→Hs=0. However, we split the discussion
of the phase portraits corresponding to the Type II sin-
gularity into two main categories according to the choice
of f0<0 and f0>0 in the given range 0<α<1 as follows.

2.2.1 f0<0 (β<0)

In this category, three patterns can be obtained, de-
pending on the value of α. Therefore, we have the fol-
lowing subclasses.

Case 1. α = 1
n

(n > 1 is an odd positive integer):

The corresponding phase portraits are indicated by the
dashed curves in Fig. 3(a). In the positive H region, the
fluid evolves towards the left (decreasing H), approach-
ing a future sudden singularity Hs=0, where the time to
reach it is finite.

ts=

∫ Hs=0

H0

dH

Ḣ
=−

(

H0

β

)1/α

,

where H0 >0 denotes the present Hubble value. In the
negative H region, the cosmic fluid evolves towards rge
left (decreasing H). It begins with a sudden singularity
Ḣ→−∞ at Hs =0, then it goes into a decelerated con-
traction phase. After that it enters an accelerated con-
traction phase with a de Sitter fate as H→−∞. Similar
models have been studied in detail in Ref. [4].

Case 2. α= 1
n

(n>1 is an even positive integer): The
corresponding phase portraits are given in Fig. 3(b). No-
tably, in this subclass, the phase portraits corresponding
to ± β are identical. In the negative H region, the cosmic
fluid flows towards the left (decreasing H). However, in
the positive H region, the fluid flows towards the right
(increasing H). So we may consider these two regions
as separate regions. The left-hand region (H < 0) be-
gins with a finite-time singularity of type II, where the
universe evolves from a decelerated contraction to an ac-
celerated expansion towards a de Sitter space. The right-
hand region (H>0) shows that the universe has an initial
finite-time singularity of type II, but evolves effectively
towards a de Sitter space in a phantom regime.

Case 3. α = a
b

(a < b and a
b
6= 1

n
): The correspond-

ing phase portraits are indicated by the dashed curves
in Fig. 3(c), which shows that the positive H region is
not valid for these values of α. However, the dynamical
behavior of the universe is the same as in cases 1 and 2
above, in the H<0 region.

(a) α= 1
n

, n = odd (b) 1
n

, n = even (c) α= a
b
, a<b and a

b
6= 1

n

Fig. 3. (color online) Phase portraits of finite-time singularities of Type II for different choices of the parameter
0<α< 1 in Eq. (8). The dashed curves correspond to f0 < 0 (β < 0), and the solid curves correspond to f0 > 0
(β > 0). Same-color curves show the same value of α. The phase portraits of (b) are typical for both β < 0 and
β>0.
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2.2.2 f0>0 (β>0)

In this category, similarly, three patterns can be ob-
tained depending on the value of α. Therefore, we have
the following subclasses.

Case 1. α = 1
n

(n > 1 is an odd positive integer):
The corresponding phase portraits are indicated by the
solid curves in Fig. 3(a). In the negative H region (con-
traction phase), the cosmic fluid flows towards the right
(increasing H). For a given value H0 < 0, the universe
has no initial singularity as

t=

∫ H0

−∞

dH

Ḣ
=−∞.

However, the time required to reach the singular phase
is

ts=

∫ 0

H0

dH

Ḣ
=−

∣

∣

∣

∣

H0

β

∣

∣

∣

∣

1/α

.

In the positive H region (expansion phase), the fluid also
flows to the right. The time from the singular phase

H =0 to a given phase H0>0 is ts =
(

H0

β

)1/α

, while the

universe has no future singularity as the time to reach
H →∞ is infinite. Since Ḣ > 0 in both regions, H < 0
and H > 0, and time is extended as −∞< t <∞. This
case gives rise to a bouncing model with a singularity
of type II at the bouncing point H = 0. In this case,
we can restrict the Hubble length to a minimal value of
the Planck length and use junction conditions to cross
the singularity, providing a soft rebirth of the expanding
universe after the contraction phase [4].

Case 2. α= 1
n

(n>1 is an even positive integer): The
corresponding phase portraits are given in Fig. 3(b). As
mentioned in Section 2.2.1, the phase portraits of ± β
are identical. Therefore, we expect the same description
as given before.

Case 3. α= a
b

(a<b and a
b
6= 1

n
): The corresponding

phase portraits are indicated by the solid curves in Fig.
3(c), which shows that the negative H region is not valid
for these values of α. However, the dynamical behavior
of the universe is the same as in cases 1 and 2 above, in
the H>0 region.

2.2.3 Physical description

In conclusion, a finite-time singularity of type II could
act as an attractor or repeller depending on the choice
of the model parameter in the given range 0<α<1. Re-
markably, case 1, for β>0 values, provides a big bounce
cosmology in the phantom regime, where the bouncing
point coincides with a sudden singularity. Also, case 1,
for β <0 values, provides a big brake cosmology, which
has been shown to be compatible with the SNIa data
[4]. In both cases, the first derivative of the scale fac-
tor is finite, so the Christoffel symbols are regular and
the geodesics are well behaved, and thus the singularity
becomes traversable. In addition to the kinematic de-

scription of the phase portrait method, a complementary
investigation using torsion gravity is available in Section
4.2.

2.3 Type III singularity phase portrait

This singularity occurs when the cosmic time ap-
proaches t→ ts. Only the scale factor tends to a finite
value, while the effective energy density and the pressure
both diverge, i.e. a→as, ρeff →∞ and |peff |→∞. Type
III is of the crushing type. Using the scale factor (5),
the Type III singularity case occurs when −1<α<0. In
this case, we have β = f0(1+α) < 0, when f0 < 0, while
β=f0(1+α)>0, when f0>0. Different cases of the phase
portraits corresponding to Eq. (8) are given in Fig. 4.
Remarkably, the transition from deceleration to acceler-
ation, in the H>0 region, can be realized for −1<α<0.
Since the evolution pattern is sensitive to the choices of
α and β, we discuss different cases as follows.

2.3.1 f0<0 (β<0)

In this category, three patterns can be obtained, de-
pending on the value of α. Therefore, we have the fol-
lowing subclasses.

Case 1. α =− 1
n

(n > 1 is an odd positive integer):
The phase portraits for some particular choices of α are
indicated by the dashed curves in Fig. 4(a), where the
Minkowskian fixed point at the origin of the phase space
is a common point for all portraits. Minkowski space,
in this case, is a semi-stable fixed point. Since the uni-
verse requires an infinite time to reach this Minkowskian
space, we find that H < 0 and H > 0 are two separate
regions. Firstly, we discuss the H <0 region, where the
universe begins with an initial finite-time singularity of
Type III as H and Ḣ diverge at t→ts, where

ts=

∫ −∞

H0<0

dH

Ḣ
=

(

H0

β

)1/α

,

from some value H0<0. Then, it evolves in the increasing
H direction towards a future fixed point H=0. However,
the time requires to approach that point is infinite, so the
universe has no future finite-time singularity. Secondly,
in the H > 0 region, the universe has no initial singu-
larity, since the time to reach its Minkowskian origin is
infinite. However, the universe evolves in a phantom
regime towards a future finite-time singularity of Type
III as t→ts, where

ts=

∫ ∞

H0>0

dH

Ḣ
=

(

H0

β

)1/α

,

from some value H0>0.

Case 2. α=− 1
n

(n>1 is an even positive integer):
The corresponding phase portraits are indicated by the
dashed curves in Fig. 4(b). Notably, in this subclass,
the phase portraits corresponding to ± β are identical.

125103-6



Chinese Physics C Vol. 41, No. 12 (2017) 125103

(a) α=− 1
n

, n = odd (b) α=− 1
n

, n = even

(c) α=−a
b
, a<b and a

b
6= 1

n

Fig. 4. (color online) Phase portraits of finite-time singularities of Type III for different choices of the parameter
−1<α<0 in Eq. (8). The dashed curves correspond to f0 <0 (β <0), and the solid curves correspond to f0 >0
(β > 0). Same-color curves show the same value of α. The phase portraits of (b) are typical for both β < 0 and
β>0.

In this case, the Minkowskian fixed point is stable (at-
tractor), and therefore the H <0 and H >0 regions are
separated by an infinite time. Therefore, we discuss each
as a separate region. In the positive H region, the cos-
mic behavior is the same as in case 1. However, in the
negative H region, the universe evolves effectively in the
phantom regime. It begins with a finite-time singular-
ity at ts = (H0/β)

1/α
, then it evolves towards the right

(increasing H). So the universe experiences an eternal
accelerated contraction phase with a Minkowskian fate
at an infinite time, i.e. it has no future singularity.

Case 3. α = − a
b

(a and b are positives, and a < b
but a

b
6= 1

n
): The corresponding phase portraits are in-

dicated by the dashed curves in Fig. 4(c). Remarkably,
the positive H region is not valid in this case. On the
other hand, the dynamical behavior of the universe is the
same as in cases 1 and 2 above, in the H<0 region.

2.3.2 f0>0 (β>0)

In this category, similarly, three patterns can be ob-
tained, depending on the value of α. Therefore, we have
the following subclasses.

Case 1. α = − 1
n

(n > 1 is an odd positive inte-
ger): The phase portraits for some particular choices
of α are indicated by the solid curves in Fig. 4(a),
where the Minkowskian fixed point at the origin of the

phase space is a common point for all portraits. The
Minkowski space, in this case, is a semi-stable fixed
point. Since the universe requires an infinite time to
reach this Minkowskian space, we find that H > 0 and
H < 0 are two separate regions. Firstly, we discuss the
H >0 region, where the universe evolves in the decreas-
ing H direction. As shown by the plots, the universe
has an initial finite-time singularity with a decelerated
expansion behavior, where the age of the universe, for
some value H0>0, can be given by

ts=

∫ H0

∞

dH

Ḣ
=

(

H0

β

)1/α

.

However, for a proper choice of the parameters α and β,
the universe can evolve from deceleration to acceleration
phase. If we assume that the transition has occurred
at some value Hde > 0, then the phase portrait should
cut the zero acceleration curve (i.e. Ḣ =−H2) at that
value. Using Eq. (8), at the transition point, the two
parameters can be related by

β=Hde

(

−Hde

α

)α

. (12)

For any value of −1<α<0, the above equation can pre-
dict the value of β when the Hubble parameter (or the
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red-shift) at transition is accurately measured by obser-
vations. For more detailed discussion about the possible
values of α and β to realize that transition, see Section
2.5. As shown in Fig. 4(a), the universe evolves towards
quasi-de Sitter, i.e. ωeff→−1, with a Minkowskian fate,
which is unusual when dark energy is interpreted as a
cosmological constant. Secondly, we discuss the H < 0
region, where the universe evolves in the decreasing H di-
rection. As shown by the plots, the universe evolves from
the Minkowskian fixed point, so it has no initial finite-
time singularity. However, it begins with an accelerated
contraction, then enters a later decelerated contraction

with a future finite-time singularity at ts=−
∣

∣

∣

H0

β

∣

∣

∣

1/α

from

some value H0 < 0. Similarly, in this region, the tran-
sition from an accelerated to a decelerated contraction
can be realized. In this case, if we assume a negative
cosmological constant in Eq. (8), we expect the phase
portrait to shift downwards, avoiding the Minkowskian
fixed point, where a turnaround cosmology occurs.

Case 2. α=− 1
n

(n>1 is an even positive integer):
The corresponding phase portraits are given in Fig. 4(b).
As mentioned in Section 2.3.1, the phase portraits of ± β
are identical. Therefore, we expect the same description
as given before.

Case 3. α = − a
b

(a and b are positives, and a < b
but a

b
6= 1

n
): The corresponding phase portraits are indi-

cated by the solid curves in Fig. 4(c). Remarkably, the
negative H region is not valid in this case. On the other
hand, the positive H region is valid, and the dynamical
evolution is just as in cases 1 and 2.

2.3.3 Physical description

In conclusion, we find that the choice of β > 0 pro-
vides an alternative to the ΛCDM models. In this sce-
nario, the universe begins with an initial singularity of
Type III, instead of the Type I of the standard cosmol-
ogy (big bang). Then, the universe traverses from de-
celeration to acceleration. However, it evolves towards a
Minkowskian fate, not de Sitter, which is distinguishable
from ΛCDM models when the dark energy is interpreted
as a cosmological constant. In Section 4.3, we provide a
complementary study through torsion gravity to explain
the late accelerating expansion phase of the model.

2.4 Type IV singularity phase portrait

This singularity occurs when the cosmic time ap-
proaches t → ts. All three quantities, a, ρeff and |peff |,
approach finite values, i.e. a→as, ρeff→ρs and |peff |→ps.
In addition, the Hubble parameter and its first derivative
are finite, while its second/higher derivatives diverge.
The Type IV singularity is the softest (not of the crush-
ing type) of four types, c.f. Refs. [10, 22, 25, 29–31].

Using the scale factor (5), the Type IV singularity case
occurs when α > 1. In this case, similar to the Type I
singularity, we have β =f0(1+α)<0, when f0 >0, while
β=f0(1+α)>0, when f0<0. Different cases of the phase
portraits corresponding to Eq. (8) are given in Fig. 5.
Although the singularity of Type IV is a fixed point as
well, as appears in the phase portrait, it can be reached
in a finite time. This argument can be verified as follows.
Since, in the Type IV case, the singularity occurs when
the higher derivatives of the Hubble rate are divergent
as H→Hs, this means that

lim
H→Hs

dnH

dtn
=±∞,

for some n>2. Let us compute the lowest derivative for
which the Type IV singularity could occur, which is for
n=2,

lim
H→Hs

Ḧ= lim
H→Hs

Ḣ

(

dḢ

dH

)

=±∞.

Since Ḣ is finite, it implies that

lim
H→Hs

dḢ

dH
=±∞. (13)

This can be shown graphically on the phase space, Fig.
5, as an infinite slope of the phase portrait at the Type
IV singularity phase point. Remarkably, this type of
singularity is the only one of the four which coincides
with a fixed point. In general, fixed points dominate
one-dimensional autonomous systems, where the time re-
quired to reach these points is infinite, as shown by Eq.
(10). However, Type IV singularities are exceptions and
the system can reach them in a finite time. In order to
clarify this point, we rewrite the Friedmann equation (2)
as

Ḣ=− κ2

2
(peff+ρeff).

It has been shown that for an equation of state peff(H),
where the pressure is continuous and differentiable, the
solution always reaches a fixed point in an infinite time
[32]. This leaves us with the other option where the pres-
sure is not differentiable, i.e. dpeff/dH is not continuous.
In this case, we can also have two possible cases. The
first is when the discontinuity of dpeff/dH is finite, and
the time to reach a fixed point is infinite. The second
case is when dpeff/dH is infinite discontinuous, and is
the only possible option to reach a fixed point in a fi-
nite time1). Since ρeff ∼ H2, we see that dpeff/dH is
infinite discontinuous if dḢ/dH diverges. Therefore, we
write the following conditions for a fixed point Hf to be
reached in a finite time:

(i) limH→Hf
Ḣ=0,

1) In the general relativistic picture, condition (13) leads to a divergence of the speed of sound dpm/dρm =c2s, so the solution will
not be causal.
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(ii) limH→Hf
dḢ/dH=±∞,

(iii) t=
∫ Hf

H
dH/Ḣ<∞.

The above conditions are always fulfilled in the case of
finite-time singularities of Type IV. Although the above
calculations have been carried out for the lowest diver-
gent derivatives Ḧ →±∞, they can be generalized for
other higher lowest divergent derivatives of the Hubble
parameter. We next turn our discussions of the phase
portraits associated with singularities of Type IV for
some particular values of the model parameters α and
β.

2.4.1 f0>0 (β<0)

The corresponding phase portraits are indicated by
the solid curves in Fig. 5. The universe has an initial sin-
gularity of Type IV at the Minkowskian unstable fixed
point, and then it evolves in a phantom regime. Al-
though the phase portrait evolves towards H → ∞, it
will not have a future finite-time singularity, as clarified
earlier after Eq. (8).

Fig. 5. Phase portraits of finite-time singularities
of Type IV for different choices of the parameter
α>1 in Eq. (8). The solid curves correspond to
f0 >0 (β <0), and the dashed curves correspond
to f0<0 (β>0). Same-color curves show the same
value of α.

2.4.2 f0<0 (β>0)

The corresponding phase portraits are indicated by
the dashed curves in Fig. 5. The universe begins with
a finite-time singularity of Type IV at a Minkowskian
unstable fixed point, then it evolves in a non-phantom
regime. It evolves towards H →−∞ with an early de-
celerated contraction phase. The universe then enters a
later accelerating contraction phase. Although the phase
portrait evolves towards a big crunch singularity, it can-
not be reached in a finite time, as clarified before. There-
fore, the universe will not have a future finite-time sin-
gularity.

2.4.3 Physical description

In conclusion, we mention that the universe takes an
infinite time to leave or to reach a fixed point. So if the
universe begins at a fixed point, it stays forever at that
point. However, singularities of Type IV allow the uni-
verse to leave or to reach fixed points in a finite time,
so these types of singularities may provide an important
key in inflationary models. In addition, if the phase por-
trait is double valued about a Type IV singularity, the
universe is capable of crossing the phantom divide line.
The latter situation provides important dynamical fea-
tures in bouncing cosmologies.

In the case at hand, which is shown in Fig. 5, the
plots show that the cosmic fluid flow is towards the right
(increasing H), whereas the Minkowskian fixed point co-
incides with the singular point of Type IV. The time to

reach the initial singularity is t =
(

H0

β

)1/α

for a some

value H0. On the other hand, the universe has no future
singularity, as the time required to approach H →∞ is
infinite.

2.5 General remarks

As shown in the previous sections, phase portrait
analysis is a powerful qualitative tool to extract dynami-
cal information by fitting all possible universes on a small
piece of paper. In this section, we summarize some gen-
eral conclusions which characterize the dynamical evolu-
tion associated with each finite-time singularity type. In
addition, we extract some useful quantitative informa-
tion to conform the evolution to some important cosmic
events. We noted that transition from acceleration to de-
celeration, see Section 2.1, or from deceleration to accel-
eration, see Section 2.3, could be realized for H>0 only
in Type I or Type III singularities, respectively. This
conclusion can be clearly seen using Fig. 6(a).

Type I (α<−1): For f0<0 (β>0), the transition from
acceleration to deceleration is allowed, see Fig. 2(b). So
this model is suitable to describe graceful exit inflation-
ary models, where the universe begins with a big bang
inflation, then it exits into a decelerated FLRW phase.
Since we deal with high energy scales, it is convenient
to measure the Hubble parameter in Planck units. We
assume that inflation ends at 10−34 . t . 10−31 s, i.e.
107.Hinf .109 GeV. Substituting into Eq. (11), we ob-
tain the values of (α, β) which allow a viable graceful
exit inflation. We represent the solution graphically in
Fig. 6(b).

Type II (0<α<1): For particular choices of α= 1
n
,

where n is a positive odd integer, we have a bouncing
cosmology with a singularity of type II at the bouncing
time, see Fig. 3(a). Here junction conditions should be
used to weld the contraction and the expansion phases.
In order to avoid the trans-Planckian problem of infla-
tionary model, it is convenient to choose the finite value
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(a) Full range of four singularity types (b) Type I (c) Type III

Fig. 6. (color online) (a) (α, β) diagram shows the values which allow transitions (11) and (12), and the dark regions
are forbidden values, the blue regions are excluded values, while the white regions are accepted values. (b) Values
of the parameters α and β which allow transition from acceleration to deceleration at 107.Hinf.109 GeV, with the
dotted curves showing the values of α and β which allow transition at Hinf =107 and 109 GeV exactly. (c) Values
of the parameters α and β which allow transition from deceleration to acceleration at redshift 0.72.zde.0.84 (i.e.
101.8.Hde .117.82 km/s/Mpc), with the dotted curves showing the values of α and β which allow transition at
Hde=101.8 and 117.82 km/s/Mpc exactly.

ρm to be at the Planckian density limit, or the minimal
Hubble parameter to have the Planck length. In this case
we would have a non-singular bouncing scenario that can
avoid the trans-Planckian problems of the inflationary
models.

Type III (−1<α<0): We noted that the transition
from deceleration to acceleration, in the H > 0 region,
can be achieved, so this model provides an alternative
to the ΛCDM universe. However, it evolves towards a
Minkowskian rather than a de Sitter universe, which is
unusual when dark energy is interpreted as a cosmologi-
cal constant. In general, if the red-shift at transition (or
the Hubble value Hde) is accurately measured by obser-
vations, we can solve Eq. (12) to obtain viable solutions
of (α, β). Since we deal with low energy scales, it is con-
venient to measure the Hubble parameter in SI units1)

[km/s/Mpc]. A recent analysis [36] shows that the de-
celeration to acceleration transition is at zde=0.72±0.05
(0.84±0.03) when the present Hubble constant is taken
as H0 =68±2.8 (73.24±1.74) km/s/Mpc. We provide a
graphical solution in Fig. 6 by assuming that the transi-
tion occurs in the range 101.8<Hde<17.82 km/s/Mpc.

Type IV (α> 1): Remarkably, the singular point in
this model is a repeller fixed point as well. Usually, the
universe takes an infinite time to reach that point. How-
ever, in a Type IV singularity the higher derivative of
the Hubble parameter diverges. Consequently, we have
dḢ/dH→±∞. This provides a unique case, that is, the
fixed point can be reached in a finite time. So we may
use this model to cross the phantom divide line between

phantom and non-phantom regimes, if the phase portrait
is a double valued function about the fixed point.

As shown in the above discussion, phase space anal-
ysis is a useful tool to understand the evolution of the
universe in a clear and transparent way. However, we
also need to reformulate this description within a field
theory framework for better understanding.

3 Generalized teleparallel gravity

In general relativity (GR), the Friedmann system
provides a power law scale factor, if we assume that the
matter content is a perfect fluid with a linear (fixed)
equation of state parameter ωm such that 06ωm61, to
guarantee the stability and causality conditions. Other-
wise, one needs to assume that the matter content has
an exotic equation of state, c.f. Refs. [31, 32, 37]. In
fact, the power law scale factor can predict perfectly the
thermal history during radiation/matter dominant eras.
However, it fails to describe the early and the late accel-
erating expansion epochs. In this sense, modified gravity
may explain these epochs by modifying the gravitational
sector.

However, as we clarified earlier, phase portrait anal-
ysis through the stability of its fixed points requires the
Friedman equations to be written as a one-dimensional
autonomous system. Among several extensions of GR,
we note that its teleparallel equivalent version (TEGR),
c.f. Ref. [38], and its f(T ) extension, have features which

1) Remember that 1 Mpc = 3.09 × 1019 km, so the quantity km/Mpc is dimensionless. Consequently, the Hubble parameter is
measured in [s]−1.
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make them compatible with our phase portrait analy-
sis [33]. That is, the teleparallel torsion is proportional
to the quadratic Hubble parameter so that the modi-
fied gravitational sector does not introduce the second
or any higher derivatives of the Hubble parameter. For
other extensions of teleparallel gravity see Refs. [39–42].
Since the modified Friedmann equations according to
f(T ) gravity contain only the Hubble parameter and its
rate of change, it is consistent with the phase space anal-
ysis. Therefore, the f(T ) theories, among many modified
gravity theories, can be considered as a natural extension
to GR.

3.1 Teleparallel space

In Riemannian space of n dimensions, the metric ten-
sor field gµν is the fundamental quantity. In Weitzenböck
space of n dimensions1), the vielbein vector field ea

µ is
the fundamental quantity. The latter can be defined as a
pair (M,ea), where M is an n-dimensional differentiable
manifold and the set {ea} contains n independent vec-
tor fields defined globally on M . This set at point p is
the basis of its tangent space TpM . Because of the inde-
pendence of ea, the determinant e≡det(ea

µ) is nonzero.
Then, one can define the linear (Weitzenböck) connec-
tion

Γ α
µν≡ea

α∂νea
µ=−ea

µ∂νea
α. (14)

This connection is characterized by the property that

∇νea
µ≡∂νea

µ+Γ µ
λνea

λ≡0, (15)

where the covariant derivative ∇ν is associated with the
Weitzenböck connection. This nonsymmetric connection
uniquely determines the teleparallel geometry, since the
vielbein vector fields are parallel with respect to it. In-
deed, a vielbein space admits the dual and the symmet-
ric connections associated with the Weitzenböck, except
they do not provide a teleparallel geometry. For more de-
tails about these connections and their applications see
Refs. [43–52]. Also, for more details of the parameterized
versions of these connections and their applications see
Refs. [53–61]. However, the vielbein vector fields satisfy

ea
µea

ν =δµ
ν and ea

µeb
µ=δb

a, (16)

where δ is the Kronecker tensor. Thus, we can construct
an associated (pseudo-Riemannian) metric for any set of
basis

gµν≡ηabe
a

µeb
ν , (17)

while the inverse metric

gµν =ηabea
µeb

ν . (18)

Also, it can be shown that e =
√−g, where g ≡ det(g).

In this sense, the vielbein space is pseudo-Riemannian

as well. Thus, we go further to define the symmetric
Levi-Civita connection

Γ̊α
µν =

1

2
gασ (∂νgµσ+∂µgνσ−∂σgµν). (19)

Recalling the absolute parallelism condition (15), it is
easy to show that the Weitzenböck and the Levi-Civita
connections are both metric connections, i.e.

∇σgµν≡0, ∇̊σgµν≡0,

where ∇̊ν is the covariant derivative associated with the
Levi-Civita connection.

The noncommutation of an arbitrary vector field Va

is given by

∇ν∇µVa
α−∇µ∇νVa

α = Rα
εµνVa

ε+T ε
νµ∇εVa

α,

∇̊ν∇̊µVa
α−∇̊µ∇̊νVa

α = R̊α
εµνVa

ε+T̊ ε
νµ∇̊εVa

α,

where Rα
εµν (R̊α

εµν) and T ε
νµ (T̊ ε

νµ) are the curvature
and torsion tensors of the Weitzenböck (Levi-Civita) con-
nection, respectively. The absolute parallelism condition
(15) and the noncommutation formula force the curva-
ture tensor Rα

µνσ of the Weitzenböck connection to van-
ish identically, i.e. Rα

εµν ≡0, while the symmetric Levi-
Civita connection provides a vanishing torsion tensor, i.e.
T̊ ε

νµ≡0.
The torsion tensor of the Weitzenböck connection

(14) is defined as

T α
µν≡Γ α

νµ−Γ α
µν =ea

α(∂µea
ν−∂νe

a
µ). (20)

Then, the contortion tensor Kα
µν is defined by

Kα
µν≡Γ α

µν−Γ̊α
µν =ea

α ∇̊νea
µ. (21)

Tµνσ is skew symmetric in the last pair of indices whereas
Kµνσ is skew symmetric in the first pair of indices. More-
over, the torsion and the contortion can be interchanged
following the useful relations:

Tαµν =Kαµν−Kανµ, (22)

Kαµν =
1

2
(Tναµ+Tαµν−Tµαν). (23)

In teleparallel space there are three Weitzenböck in-
variants: I1 = T αµνTαµν , I2 = T αµνTµαν and I3 = T αTα,
where T α=Tρ

αρ. We next define the invariant

T =
1

4
I1+

1

2
I2−I3,

by combining the three invariants I1, I2 and I3 with the
prefixes coefficients as appears above. This teleparallel
invariant is equivalent to the Ricci scalar R̊ up to a total
derivative term, as we will show below. Alternatively, the
teleparallel torsion scalar is given in the compact form

T≡T α
µνSα

µν , (24)

1) The Latin indices are the Lorentz indices and the Greek indices are the coordinate indices, where both run from 1,··· ,n and
additionally follow the Einstein summation convention.
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where the superpotential tensor,

Sα
µν =

1

2

(

Kµν
α+δµ

αT βν
β−δν

αT βµ
β

)

, (25)

is skew symmetric in the last pair of indices. Indeed, we
deal with exactly one space. However, Levi-Civita and
Weitzenböck connections can see this space with different
resolutions. The former represents an extreme picture
with a vanishing torsion tensor, while the latter repre-
sents another extreme with a vanishing curvature tensor.
Interestingly, one can find possible links between these
two extremes. Thus, a useful link in this context is the
following identity:

eR̊≡−eT+2∂µ(eT
µ), (26)

where the divergence term is sometimes given in terms of
the Levi-Civita covariant derivative as ∂µ(eT µ)=e∇̊µT µ.
Since the Ricci and the teleparallel torsion scalars differ
by a total derivative term, both would provide the same
set of field equations using the Lagrangian formalism,
GR, and TEGR. Although superficially equivalent on the
level of the field equations, the difference runs deep on
the Lagrangian level. It can be shown that the left-hand
side of the geometrical identity (26) is a diffeomorphism
scalar and Lorentz as well. However, the total deriva-
tive term on the right-hand side is not a Lorentz scalar.
Consequently, the teleparallel torsion scalar density is
a diffeomorphism scalar but not a Lorentz scalar. This
contrast is crucial in the generalization of the Lagrangian
of the GR and TEGR theories by taking, respectively,
f(R̊) and f(T ) extensions. The former provides field
equations invariant under local Lorentz transformation,
while the latter does not [62–65]. We consider the action
of the f(T ) gravity [66, 67]

S=
1

2κ2

∫

d4x ef(T )+Sm, (27)

where Sm is the matter action. The variation of the ac-
tion (27) with respect to the tetrad gives

1

e
∂µ(eS µν

a )f ′−eλ
aT ρ

µλS νµ
ρ f ′

+S µν
a ∂µTf ′′+

1

4
eν

af =
κ2

2
eρ

aT
ν

ρ , (28)

where f = f(T ), f ′ = ∂f(T )

∂T
, f ′′ = ∂2f(T )

∂T2 , and Tµ
ν is the

usual energy-momentum tensor of matter fields. It is
clear that the field equations (28) reproduce the TEGR
theory by setting f(T )=T . The f(T ) modified gravity
theories have been used widely in literature in cosmology
[20, 21, 23, 68–79], and in astrophysical applications [80–
90]. For more details about f(T ) gravity see the review
in Ref. [91].

3.2 Reconstructing f(T )

We consider the diagonal vierbein corresponding to
the FLRW metric (1), i.e.

eµ
a=diag(1,a(t),a(t),a(t)). (29)

This directly relates the teleparallel torsion scalar (24)
to the Hubble parameter as

T =−6H2. (30)

The useful relation above facilitates many cosmological
applications in f(T ) gravity. We assume that the stress-
energy tensor for perfect fluid is

Tµν =ρmuµuν+pm(uµuν−gµν), (31)

where uµ is the fluid 4 velocity, and ρm and pm are the
energy density and pressure respectively of the fluid in
its rest frame. Inserting the vierbein (29) into the field
equations (28) for the matter fluid (31), the modified
Friedmann equations of the f(T )-gravity read

ρm =
1

2κ2
[f(T )+12H2fT ], (32)

pm =
−1

2κ2

[

f(T )+4(3H2+Ḣ)fT−48ḢH2fTT

]

. (33)

In the above, the usual Friedmann equations are recov-
ered by setting f(T )=T . Assuming that the matter fluid
is governed by the linear equation of state pm = ωmρm,
where ωm = 0 for dust and ωm = 1/3 for radiation, the
system acquires the conservation (continuity) equation

ρ̇m+3H(1+ωm)ρm=0. (34)

As mentioned before, the modified Friedmann equations
of any f(T )-theory can be viewed as a one-dimensional

autonomous system, i.e. Ḣ =F(H), if we use the linear
equation of state of the universe matter. So it is conve-
nient now to represent Eqs. (32) and (33) in terms of H
[33],

ρm =
1

2κ2
[f(H)−HfH], (35)

pm =
−1

2κ2

[

f(H)−HfH−1

3
ḢfHH

]

, (36)

where fH := df

dH
and fHH := d2f

dH2 . After some manipula-
tion, we write

Ḣ=3(1+ωm)

[

f(H)−HfH

fHH

]

=F(H). (37)

Combining (8) and (37), we can obtain the f(H) which
produces some desired phase trajectory. The integral of
the continuity equation (34) can be given by

ρm=ρm,0 e
−3(1+ωm)

∫

H

Ḣ
dH

, (38)

where the integration constant

ρm,0≡ρm(t0)≈1.88×10−26 Ωm,0 h2
0 kg/m

3
,
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and the matter density parameter Ωm,0, and the dimen-
sionless Hubble constant h0 are given by the observations
at present time t0. Substituting (8) into (38), then Eq.
(35) reads

f(H)−HfH=2κ2ρm,0 e
−

3(1+ωm)H

−1+α

(

H
β

)

−1/α

.

Solving the above equation with respect to f(H), we ob-
tain

f(H) = A

[

B WhittakerM

(−2α−1

2+2α
,

2+α

2+2α
,
−C

1+α

)

+
1

3
WhittakerM

(

1

2+2α
,

2+α

2+2α
,
−C

1+α

)]

, (39)

where A, B and C are functions of the Hubble parame-
ter, which can be listed as follows

A≡A(H) =
6ρm,0κ

2

2+α

[

1+α

3(1+ωm)

]

3+2α
2+2α

×H−
3+2α
2α β

3+2α
2α(1+α) e

C
2+α , (40)

B≡B(H) =
1+α

3
(1−C), (41)

C≡C(H) = −3β(1+ωm)H

(

H

β

) 1
α

. (42)

We note that in Eq. (39), we omitted a term H∝
√
−T ,

because it has no contribution to the field equations. So
we omit this term without losing the generality of the so-
lution. Substituting (39) into (35) and (36), the density
and pressure of the matter fluid read

ρm(H) = ρm,0e
−

3(1+ωm)H

1+α

(

H
β

)

1
α

, (43)

pm(H) = ωmρm,0e
−

3(1+ωm)H

1+α

(

H
β

)

1
α

. (44)

By evaluating the density and the pressure of the ordi-
nary matter, we can provide a complementary descrip-
tion of the cosmic evolution by identifying the gravita-
tional sector contribution, which in our case is the torsion
contribution.

4 The role of torsion

In order to show the role of torsion in cosmic evolu-
tion near the singularities, it is convenient to transform
Eqs. (35) and (36) from the matter frame to the effective

frame in which the equations would have the standard
Einstein’s field equations in addition to the torsion con-
tribution as a higher order gravity of the f(T ) theory.
We write the modified Friedmann equations in the case

of f(T ) gravity as:

H2 =
κ2

3
(ρm+ρT ) ≡κ2

3
ρeff, (45)

2Ḣ+3H2 = −κ2(pm+pT )≡−κ2peff, (46)

where ρT and pT are the effective density and pressure
of the torsion fluid, respectively. By comparison with
Eqs. (35) and (36) we write

ρT (H) =
1

2κ2
[HfH−f(H)+6H2],

=
3

κ2
H2−ρm,0e

−
3(1+ωm)H

1+α

(

H
β

)

1
α

. (47)

pT (H) = − 1

6κ2
Ḣ (12+fHH)−ρT (H),

= − 1

κ2



3H2+2αH

(

β

H

)

1
α





−ωmρm,0e
−

3(1+ωm)H

1+α

(

H
β

)

1
α

. (48)

In the above we have replaced the value of Ḣ from
Eq. (37). One can show that ρT and pT vanish where
f(H)=−6H2 and the standard Friedmann equations are
recovered. In this case the effective torsion gravity ac-
quires the conservation equation

ρ̇T +3H [1+ωT (H)]ρT ≡0. (49)

We first evaluate the effective equation of state parame-
ter. Using Eq. (8), we obtain

ωeff ≡ pm+pT

ρm+ρT

=−1− 2Ḣ

3H2
,

= −1−2

3

α

H

(

β

H

)

1
α

. (50)

It is convenient to study the asymptotic behavior at large
Hubble regimes where H → ±∞. In general, for the
power-law phase portraits Ḣ ∝ Hγ , we have ωeff →−1
where γ <2, while ωeff→±∞ where γ >2. Also, we in-
vestigate the behavior of the effective equation of state
at the Minkowskian fixed point H = 0. We find that
ωeff→±∞ where γ<2, while ωeff→−1 where γ>2. For
the model at hand, by recalling Eq. (50), at the limit
H→±∞, we have the case of ωeff→−1 where α<−1 or
α > 0, which covers the singularities of Types I, II and
IV. For the same range, α <−1 or α > 0, at the limit
H→0, we obtain the following

lim
H→0

ωeff=Q0, lim
H→±∞

ωeff=−1, (51)

where Q0≡Q0(H)=− 2
3

α
H

(

β

H

)1/α
. However, for the range

−1<α<0, it is easy to verify that the effective equation
of state having the following limits

lim
H→0

ωeff=−1, lim
H→±∞

ωeff=Q0, (52)
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which describes the cosmic evolution associated with the
Type III singularity. In conclusion, the effective equation
of state evolves towards either −1 or ±∞. We summarize
the behavior of the effective fluid in Table 2 in Section
5.

We next turn the discussion to the dynamical descrip-
tion instead of the above kinematical one. Therefore, we
investigate the torsion role near the singularities using
the torsion equation of state parameter, that is

ωT ≡ pT

ρT

=−1+
1

3

Ḣ (12+fHH)

f(H)−6H2−HfH

,

= −1+
2αH(β/H)

1
α e

3(1+ωm)H

(1+α)

(

H
β

)

1
α

−(1+ωm)ρm,0κ
2

ρm,0κ2−3H2e
3(1+ωm)H

(1+α)

(

H
β

)

1
α

.

(53)

The above expression has been evaluated by recalling
Eqs. (47) and (48). In the physical models, we have
κ2≡8πG=1.68×10−9 m3/kg/s2, and ρm,0 =2.84×10−27

kg/m3. Therefore, the value κ2ρm,0→0 s−2 so that Eq.
(53) reduces to

ωT →−1−2

3

α

H

(

β

H

)

1
α

=ωeff,

which coincides with the effective equation of state (50).
In order to investigate the exact role of the torsion fluid,
it is convenient to study the behavior of the torsion equa-
tion of state near the singularity. It is clear from Eq. (53)
that the torsion equation of state is too sensitive to the
choices of the parameters α and β. Therefore, we will
discuss each case individually in the following sections.

In Section 2, we presented a generic study of the dif-
ferent types of finite-time singularities by analyzing their
phase portraits. In the following, we perform a comple-

mentary analysis of the cosmologies related to these sin-
gularity types through the effective and the torsion equa-
tions of state to find out the role of the torsion fluid and
its behavior near these singularities. In fact, the cosmic
accelerated expansion can be modeled using the cosmo-
logical constant in the simplest case, when this constant
is introduced into Einstein’s field equations as a matter
source of so-called dark energy with a fixed equation of
state ω=−1. Although it fits with the Planck observa-
tions, it does not provide information about the nature
of the dark energy. Other proposals have been intro-
duced using a quintessence (−1<ω<−1/3) or phantom
(ω <−1) scalar field, where crossing between these two
regimes within the single canonical scalar field models is
impossible [92]. This is contrary to the quintom models,
where crossing the phantom divide line can be achieved.
A comprehensive criticism of quintom bounce is given
in the review in Ref. [93]. Usually, quintom models are
realizable by introducing two scalar fields (quintessence
+ phantom) [94, 95], or adding extra degrees of freedom
by including higher derivative terms into the action [96–
98]. As we have shown, the f(T ) cosmology provides
a dynamical system equivalent to the general relativis-
tic model when using an exotic equation of state, e.g.
quintessence, phantom or quintom. This equivalence can
also be justified by studying the role of the torsion equa-
tion of state.

4.1 Type I singularity

Using Eqs. (50) and (53), we plot their evolutions as
given in Fig. 7. As we have shown earlier in Section 2.1,
there are two cases which can be discussed for models
with singularities of Type I (α<−1):

4.1.1 f0>0 (β<0)

As we have discussed for this case using the phase
portrait, Fig. 2(a), the universe begins with a finite-time

(a) f0>0 (β<0) (b) f0<0 (β>0)

Fig. 7. (color online) The evolution of the effective and the torsion equation of state parameters, Eqs. (50) and
(53), in the vicinity of a finite-time singularity of Type I.
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singularity of Type I in a contracting phase in a phan-
tom regime, and evolves towards a future fixed point
H → 0 in an infinite time. Using Eqs. (50) and (53),
we have, at the limit H →−∞, and the universe effec-
tively follows the torsion fluid as ωeff = ωT → −1. At
the limit H→0, the effective equation of state diverges
as ωeff = Q0 → −∞ but the universe needs an infinite
time to approach that fate. Therefore, the universe will
not feel this future singularity. On the other hand, the
torsion fluid evolves towards ωT →−∞ similar to the ef-
fective fluid, but in a finite time. As seen in Fig. 7(a),
the irregular behavior of torsion fluid is just before the
Minkowskian fixed point, where the torsion equation of
state parameter changes its sign from −∞ to +∞. This
behavior usually results in sudden singularities. In other
words, although the universe effectively will not feel the
singularity at the fixed point, the torsion fluid feels it as
a finite-time singularity of Type II. However, the torsion
fluid crosses the phantom divide line through a singular-
ity, then it evolves towards the matter equation of state,
i.e. ωT →ωm, as its final fate.

We note that the limits of Eqs. (50) and (53) are
both regular at H→+∞, where ωeff=ωT →−1. Guided
by the phase portraits of Fig. 2, we should ignore these
limits. However, we record them in Table 2 in Section 5
just for completeness.

4.1.2 f0<0 (β>0)

In these models, the universe begins with a finite-time
singularity of Type I (big bang) similar to the standard
cosmology. However, it experiences an early accelerated
expansion phase, then enters a later decelerating phase.
For more details, recall Section 2.1.2.

Case 1. In the subclass −2 < α <−1, the universe
begins with a big bang singularity where the asymptotic
behavior of the effective equation of state (50) can be ob-
tained as ωeff→−1 as H→∞. As seen in Fig. 7(b), the
universe effectively crosses ωeff =−1/3 ending the early

inflationary phase, and enters a late deceleration phase
as ωeff >−1/3. We note that the plots of Fig. 7(b) are
just to visualize the qualitative behavior of the model.
For physical models, however, one may consult Fig. 6(b)
to use the correct values of the parameters α and β in
order to end the inflation period at a suitable energy
scale 107<H <109 GeV. Then, the effective equation of
state diverges, i.e. ωeff =Q0 →+∞ as H drops to zero.
That is, a fixed point and effective fluid takes an infinite
time to reach that point. On the other hand, using Eq.
(53), we find that the torsion fluid matches the matter
fluid during cosmic time, ωT ∼ ωm, with an oscillatory
behavior at the limit H→0.

Case 2. In the subclass α6−2, the evolution is very
similar to case 1 above, as seen in Fig. 7(b). However,
we find that the torsion equation of state has an asymp-
totic behavior ωT →−1 at the limit H→−∞ instead of
ωm. This is shown in Table 2 in Section 5. However, the
negative H region should be excluded as guided by the
phase portraits in Fig. 2(b). So we note that the two
cases of β>0, in general, are identical.

4.2 Type II singularity

Using Eqs. (50) and (53), we plot their evolutions as
shown in Fig. 8. As in Section 2.2, we discuss two main
categories of the models which have a Type II singularity
(0<α<1), β<0 and β>0. Recalling the phase portraits
of Fig. 3, we note that the singularity is at Hs=0, where
Ḣ diverges. This leads the effective pressure to diverge
as well. Consequently, it will be common for all the fol-
lowing categories to have a divergent effective equation
of state at that point, i.e. ωeff→±∞ as H→0.

4.2.1 f0<0 (β<0)

Case 1. In the subclass α = 1
n

(where (n > 1 is
an odd positive integer), we plot the evolution of both
the effective equation of state and the torsion equation of

(a) α= 1
n

, n = odd (β<0) (b) α= 1
n

, n = even (β<0 or β>0) (c) α= 1
n

, n = odd (β>0)

Fig. 8. (color online) The evolution of the effective and the torsion equation of state parameters, Eqs. (50) and
(53), in the vicinity of a finite-time singularity of Type II.
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state as shown in Fig. 8(a). The evolution goes in the
direction of decreasing Hubble parameter. Since the sin-
gularity is not of a crashing type and the geodesics are
complete, a transition from expansion to contraction is
conceivable. This can be called a big brake model. These
usually suffer from a singularity crossing paradox, where
tachyon cosmological models [9] or anti-Chaplygin gas [4]
play an essential role in making the singularity crossing
physically possible. We note, for this model, that the tor-
sion fluid asymptotically matches the matter component,
i.e. ωT →ωm. However, its equation of state feels the sin-
gularity earlier and becomes irregular. In the vicinity of
the singularity H→0±, from Eq. (53), we have

lim
H→0±

ωT =Q1→−∞; since β<0 and 0<α<1, (54)

where Q1 ≡ Q1(H) = 2
ρ0κ2 αH

(

β

H

)1/α
. However, in the

contraction phase the torsion fluid evolves towards the
matter component.

Case 2. In the subclass α = 1
n

(where (n > 1 is an
even positive integer), we plot the evolution of both the
effective equation of state and the torsion equation of
state as shown in Fig. 8(b). The sudden singularity at
H = 0 acts as a repeller; the universe evolves with in-
creasing Hubble parameter in the H > 0 region and it
evolves with decreasing Hubble parameter in the H <0
region. In this subclass, the effective fluid evolves in the
vicinity of the singularity as

lim
H→0±

ωeff=Q0→∓∞,

while it asymptotically evolves towards the cosmological
constant, i.e. ωeff→−1 as H →±∞. In the right-hand
region, the torsion evolves towards a cosmological con-
stant, i.e. ωT →−1 as H→+∞. In the left-hand region,
it evolves towards the matter component, i.e. ωT →ωm

as H →−∞. However, in the vicinity of the singular-
ity H = 0, the torsion equation of state alters its sign
opposite to the effective fluid as

lim
H→0±

ωT =Q1→±∞.

Case 3. In the subclass α = a
b
6= 1

n
, where (a and b

are positive integers such that a < b), we find two pat-
terns. The first is when 0 < α < 1/2; it follows case 2
and can be visualized in Fig. 8(a). The second is when
1/2<α<1; it follows case 1 and can be visualized in Fig.
8(b). For both cases, only the H<0 region is allowed for
this subclass.

4.2.2 f0>0 (β>0)

Case 1. In the subclass α = 1
n

(where (n > 1 is an
odd positive integer), we plot the evolution of both the
effective equation of state and the torsion equation of
state as shown in Fig. 8(c). This subclass can be used
to describe a bouncing cosmology model, since crossing
the singularity at H =0 from contraction (H <0) to ex-

pansion (H>0) is a valid scenario. In general, bouncing
models suffer from two main problems: ghost instability
and anisotropy growth. The first arises when the null en-
ergy condition has been broken. In f(T ) gravity, it has
been shown that the null energy condition is violated ef-
fectively only, while the matter component is free from
forming ghost degrees of freedom [23]. The second prob-
lem arises during the contraction phase before bounce,
since the anisotropies grow faster than the background
so that the universe ends up as a complete anisotropic
universe and bouncing to expansion will not occur.

As shown in Fig. 8(c), the effective fluid acts asymp-
totically H→±∞ as a cosmological constant ωeff→−1,
then it runs deeply in the phantom regime near the sin-
gular bounce as

lim
H→±

ωeff=Q0→−∞.

However, the torsion fluid in the vicinity of the bouncing
(singular) point has a large equation of state,

lim
H→0±

ωT =Q1→+∞,

which allows the torsion gravity background to dominate
over the anisotropy during the contraction, avoiding the
main remaining problem of bouncing models. Therefore,
the model at hand can be considered as a healthy bounc-
ing scenario, where the torsion gravity plays the main
role to avoid the usual problems of bounce cosmological
models.

Case 2. In the subclass α = 1
n

(where (n > 1 is an
even positive integer), the evolution is identical to that
obtained in case 2 of Section 4.2.1, so the evolution can
be realized from Fig. 8(b).

Case 3. In the subclass α= a
b
6= 1

n
, where (a and b are

positive integers such that a<b), we find two patterns.
The first is when 0<α<1/2. It follows case 2 and can be
visualized in Fig. 8(c). The second is when 1/2<α<1,
which follows case 1 and can be visualized in Fig. 8(b).
For both, only the H >0 region is valid, and the H <0
region is not allowed for this subclass.

We note that the asymptotic behavior of both the ef-
fective and the torsion equations of state in the vicinity
of the Type II finite-time singularity is summarized in
Table 2 in Section 5.

4.3 Type III singularity

Using Eqs. (50) and (53), we plot their evolutions as
given in Fig. 9. As in Section 2.2, we discuss two main
categories of the models which have Type III singulari-
ties (−1<α<0), β<0 and β>0.

4.3.1 f0<0 (β<0)

Case 1. In the subclass α=− 1
n

(where (n>1 is an
odd positive integer), we plot the evolution of both the
effective and the torsion equations of state as shown in
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Fig. 9(a). From Eqs. (50) and (53), we find that both
equation of state parameters, asymptotically, evolve as
ωeff=ωT =Q0→−∞ as H→±∞. However, as H→0, the
effective fluid evolves towards a cosmological constant,
i.e ωeff→−1, while the torsion fluid evolves towards the
matter component, i.e. ωT → ωm. In other words, the
universe evolves effectively in a phantom regime towards
the cosmological constant, while the torsion fluid crosses
the phantom divide line towards the matter component

at that point. We note that the point H = 0 is a fixed
point so the fluids reaches the mentioned fate in an infi-
nite time, while asymptotically there are finite-time sin-
gularities of Type III, and therefore, they reach their fate
in a finite time. Also, the evolution in both regions, H<0
and H>0, occur in the phantom regime as ωeff<−1. This
is in agreement with the corresponding phase portraits
of Fig. 4(a).

(a) α=− 1
n

, n = odd (β<0) (b) α=− 1
n

, n = even (β<0 or β>0) (c) −1<α=− a
b
6=− 1

n
<−1/2 (β<0)

(d) α=− 1
n

, n = odd (β>0) (e) −1<α=− a
b
6=− 1

n
<−1/2 (β>0)

Fig. 9. (color online) The evolution of the effective and the torsion equation of state parameters, Eqs. (50) and
(53), in the vicinity of a finite-time singularity of Type III.

Case 2. In the subclass α = − 1
n

(where (n > 1 is
an even positive integer), we plot the evolution of both
the effective and the torsion equations of state as shown
in Fig. 9(b). From Eqs. (50) and (53), noting that n
is even and β < 0 in the case at hand, the sign of the
asymptotic behavior will be sensitive only to the sign of
the Hubble parameter. Thus, we write

lim
H→±∞

ωeff= lim
H→±∞

ωT =Q0→±∞.

However, at the limit H→0, both fluids evolve towards
the cosmological constant, i.e. ωeff = ωT → −1. As is
clear from Fig. 9(b), in the H < 0 region the universe

evolves effectively in the phantom regime towards a cos-
mological constant. However, in the H > 0 region the
universe evolves effectively in a non phantom regime to-
wards the cosmological constant at the Minkowski fixed
point universe, so it realizes a late transition to acceler-
ating expansion universe as it crosses from ωeff>−1/3 to
−1<ωeff<−1/3. Although we can choose suitable values
of α and β, as shown in Section 2.5, to realize the late
transition at redshift zde∼0.7 as required by the ΛCDM
model, the universe evolves towards a Minkowski rather
than a de Sitter universe. This is not usual when dark
energy is interpreted as a cosmological constant.
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Case 3. In the subclass α=− a
b
6=− 1

n
, where (a and

b are positive integers such that a<b), we find two pat-
terns. The first is when −1/2<α < 0, it follows case 2
and can be visualized in Fig. 9(a), but only the H<0 re-
gion, as the H>0 region is not allowed for this subclass.
The second is when −1<α<−1/2, where the evolution
at the limits H →0, ±∞ follows case 1 as given in Ta-
ble 2 in Section 5. However, we plot the instantaneous
evolution of both the effective equation of state and the
torsion equation of state as shown in Fig. 9(c), where
the H<0 region is the only valid scenario.

4.3.2 f0>0 (β>0)

Case 1. In the subclass α=− 1
n

(where (n>1 is an
odd positive integer), we plot the evolution of both the
effective and the torsion equations of state as appear in
Fig. 9(d). From Eqs. (50) and (53), we find that both
equation of state parameters, asymptotically, evolve as
ωeff = ωT = Q0 →+∞ as H →±∞. This is opposite to
the similar case of Section 4.3.1 as we examine β >0 in
this section. However, as H→0, both parameters evolve
towards the cosmological constant, i.e ωeff = ωT → −1.
Thus, the universe evolves effectively in a non phantom
regime towards the cosmological constant, where a late
transition from acceleration to deceleration is valid. This
is in agreement with the corresponding phase portraits
of Fig. 4(a).

Case 2. In the subclass α = − 1
n

(where (n > 1 is
an even positive integer), the evolution is identical to
that has been obtained in case 2 of Section 4.3.1. So the
evolution can be realized from Fig. 9(b).

Case 3. In the subclass α=− a
b
6=− 1

n
, where (a and

b are positive integers such that a<b), we find two pat-
terns. The first is when −1/2 < α < 0. It follows case
2 and can be visualized in Fig. 9(d), but only for the
H >0 region, as the H <0 region is not allowed for this
subclass. The second is when −1 < α<−1/2. We plot
the evolution of both the effective equation of state and
the torsion equation of state as shown in Fig. 9(e). From
Eqs. (50) and (53), we find that both equation of state
parameters, asymptotically, evolve as

lim
H→±∞

ωeff= lim
H→±∞

ωT =Q0→±∞,

with the H <0 region not allowed for this class. At the
limit H→0, both parameters evolve towards the cosmo-
logical constant. However, the torsion fluid parameter
can be irregular in the vicinity of that point.

All three cases above where β>0, in addition to case
2 with β < 0, can perform a late deceleration to accel-
eration transition. For possible suitable choices of the
parameters α and β, recall Section 2.5, in particular Fig.
6(c).

4.4 Type IV singularity

Using Eqs. (50) and (53), we plot their evolutions as
given in Fig. 10. As we have shown earlier in Section 2.4,
two cases can be discussed for the models which have a
Type IV (α>1) singularity.

4.4.1 f0>0 (β<0)

As discussed for this case using the phase portrait,
Fig. 5, the universe begins with a finite-time singularity

(a) f0>0 (β<0) (b) f0<0 (β>0)

Fig. 10. (color online) The evolution of the effective and the torsion equation of state parameters, Eqs. (50) and
(53), in the vicinity of a finite-time singularity of Type IV.
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Table 2. The evolution of the effective/torsion equations of state (50) and (53) near H→0, ±∞, corresponding to
different choices of α and β parameters. We take n>1 (m>1) as a positive odd (even) integer, and a<b where a
and b are positive integers.

parameters ωeff ωT

singularity f0 β α H→0± H→∞ H→−∞ H→0± H→∞ H→−∞

Type I

>0 <0 <−1 Q0→−∞ −1 −1 ωm −1 −1

<0 >0
∈(−2,−1) Q0→+∞ −1 −1 ωm ωm ωm

6−2 Q0→+∞ −1 −1 ωm ωm −1

Type II

<0 <0

1

n
or

1

2
<

a

b
6=

1

n
<1 Q0→+∞ −1 −1 Q1→−∞ ωm ωm

1

m
or 0<

a

b
6=

1

m
<

1

2
Q0→∓∞ −1 −1 Q1→±∞ −1 ωm

>0 >0

1

n
or

1

2
<

a

b
6=

1

n
<1 Q0→−∞ −1 −1 Q1→+∞ −1 −1

1

m
or 0<

a

b
6=

1

m
<

1

2
Q0→∓∞ −1 −1 Q1→±∞ −1 ωm

Type III

<0 <0

−1

n
or −1<

−a

b
6=

−1

n
<

−1

2
−1 Q0→−∞ Q0→−∞ ωm Q0→−∞ Q0→−∞

−1

m
or

−1

2
<

−a

b
6=

−1

m
<0 −1 Q0→+∞ Q0→−∞ −1 Q0→+∞ Q0→−∞

>0 >0

−1

n
or −1<

−a

b
6=

−1

n
<

−1

2
−1 Q0→+∞ Q0→+∞ −1 Q0→+∞ Q0→+∞

−1

m
or

−1

2
<

−a

b
6=

−1

m
<0 −1 Q0→+∞ Q0→−∞ −1 Q0→+∞ Q0→−∞

Type IV

>0 <0 >1 Q0→−∞ −1 −1 ωm −1 −1

<0 >0
∈(1,2) Q0→+∞ −1 −1 ωm ωm ωm

>2 Q0→+∞ −1 −1 ωm −1 ωm

Note: The quantities Q0 and Q1 above are as given in Eqs. (51) and (54), respectively.

of Type IV in Minkowski space, which is a fixed point as
well. Therefore, the corresponding effective equation of
state parameter has an infinite value at the Minkowiskian
point. From Eq. (50), we have

lim
H→0+

ωeff=Q0=−∞.

However, the torsion fluid at the same limit begins with
an equation of state parameter equivalent to the matter
component, i.e. ωT →ωm as H → 0. Then the effective
fluid evolves, in the phantom regime, smoothly towards
the cosmological constant, ωeff→−1, in increasing H di-
rection. On the other hand, the torsion equation of state
parameter matches the effective fluid asymptotically as
H→+∞. It is irregular in the vicinity of the initial sin-
gularity. Since ωT changes its sign near the singularity,
it feels the singularity of Type IV as if it is a sudden
singularity, see Fig. 10(a). Recalling Eq. (9) and the re-
lated discussion, we find that the effective fluid will not
be singular at H→∞, and consequently the torsion fluid
as ωeff∼ωT at that limit.

4.4.2 f0<0 (β>0)

Alternatively, in these models, the universe begins ef-
fectively with ωeff→+∞ in a singular Minkowskian uni-

verse of Type IV. However, the torsion equation of state
parameter initially begins with a value equivalent to the
matter component, see Fig. 10(a). Only the H < 0 re-
gion is allowed in this scenario, so the universe contracts
with a deceleration after the Minkowskian universe as
ωeff>−1/3, then it crosses the quintessence limit towards
the cosmological constant asymptotically as H →−∞.
The torsion fluid matches the matter component at that
limit.

We note that the torsion fluid in the two subclasses
−2<α<−1 and α6−2 has different limits at H→+∞.
In the first subclass, the torsion fluid evolves asymptot-
ically towards the matter component, while it evolves
towards the cosmological constant in the second. How-
ever, the positive H region should be excluded for β>0,
as guided by the phase portraits in Fig. 5. So we note
that the two cases of β>0, in general, are identical.

Finally, as clear from the discussions throughout this
work, investigating the asymptotic solutions and the
fixed points is essential to understand one-dimensional
autonomous dynamical systems. We summarize all the
limits of the effective and the torsion equation of state
parameters at H→0, ±∞ as given in Table 2 in Section
5.
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5 Concluding remarks

For a modified gravity theory and by assuming the
effective fluid has a linear equation of state, we have
shown that the Friedmann equations can represent a one-
dimensional autonomous system, if the first derivative of
the Hubble parameter is written as a function of the Hub-
ble parameter only. This allows us to interpret the Fried-
mann system as a vector field on a line, introducing one
of the basic techniques of dynamics. Consequently, we
draw the (H−Ḣ), phase space allowing a clear geometri-
cal representation of the dynamical system by identifying
its fixed points and asymptotic behavior.

In this paper we have investigated phase portraits
of the different types of finite-time singularities. We
adopted a scale factor containing two model parameters
α and β, which can realize the finite-time singularity
types. General analysis of the phase portraits has shown
that:

(1) For a singularity of Type I (α <−1), the model
realizes an early accelerating expansion (inflation) with
possible transition to a later decelerated expansion for
some suitable values β>0. We plot the viable values of
α and β which allow this transition to occur at a cosmic
energy scale 109 to 107 GeV, when inflation is assumed
to be during 10−34 and 10−31 s. This provides suitable
conditions for a graceful exit inflation model.

(2) For a singularity of Type II (0 < α < 1), when

α is chosen such that α =
1

n
and n is a positive inte-

ger, the universe evolves effectively in a phantom regime.
The universe contracts before the singularity, while it ex-
pands after it. This may give a singular bounce with a
finite-time singularity at the bouncing time. However,
junction conditions could be used to overcome the singu-
larity by welding the contraction an the expansion phases
around the singularity point. This point needs further
investigation.

(3) For a singularity of Type III (−1 < α < 0), the
model realizes a late transition from decelerating to ac-
celerating expansion. We plot the viable values of α
and β which allow this transition to occur at redshift

zde = 0.72±0.05 (0.84±0.03), i.e. Hde = 101.8 (117.82)
km/s/Mpc. Although the model realizes the transition
to the late accelerating expansion phase, it evolves to-
wards a Minkowski and not a de Sitter fate as expected
by the ΛCDM models. This is unusual when dark energy
is assumed to be a cosmological constant.

(4) For a singularity of Type IV (α>1), the singular
point is also a repeller fixed point, which provides an un-
stable de Sitter universe. In this case, we expect unusual
behavior by having a fixed point that can be reached
at a finite time. The phase portrait analysis show that
the Type IV singularities can be used for crossing be-
tween phantom and non phantom cosmologies safely as
the geodesics in this model are completed.

We also shown that torsion based gravity is compat-
ible with the phase portrait analysis. This is because
the teleparallel torsion T is a function of the Hubble pa-
rameter H only and it contains no higher derivatives of
H . Consequently, it allows the modified Friedmann sys-
tem to be written as a one-dimensional autonomous sys-
tem. Among several versions of the generalized telepar-
allel gravity, we investigated the f(T ) gravity theories.

We reconstructed the f(T ) function which gener-
ates the proposed phase portraits. This allows us to
perform a complementary investigation of the singu-
larity types through the torsion equation of state. In
addition, we note that since some cases of the singular-
ities are in fact a Minkowskian space rather a de Sitter
one, an investigation of the torsion role in the vicinity
of different singularity types on the perturbation level
will be needed. For perturbation analysis in f(T ) see
Refs. [20, 23, 99, 100]. In fact the singular phases can be
shifted from Minkowski to de Sitter as needed by mod-
ifying the phase portrait (8) by adding a constant Hds.
As we have shown, the dynamics of one-dimensional au-
tonomous systems is dominated by the stability of the
fixed points and the asymptotic behavior. We summa-
rize the results obtained in Table 2.

The authors would like to thank Prof. A. Awad for

several discussions.
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