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CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm:

effect of resonance states *
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Abstract: Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete

fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb

barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered

for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to

separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption

potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3− of 144Sm and 2+, 4+ of
154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the

effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2,Jπ =3+,2+,1+ is also calculated.

The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b)

by omitting these states from the full discretized energy space. Among other things, it is found that both resonance

and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered.
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1 Introduction

Lately, reaction mechanisms involving weakly bound
nuclei, both stable and radioactive, have been a focus of
experimental and theoretical research [1–5]. Among the
most interesting and widely-studied subjects is the effect
of breakup of a weakly bound projectile on elastic scat-
tering and fusion reaction processes. The characteristic
low binding energy associated with this type of projectile
affects reaction mechanisms in two main ways. The first
is the static effect due to the large diffusivity of the pro-
jectile matter density. This stretched density lowers the
Coulomb barrier and hence enhances fusion. The sec-
ond is that the high projectile breakup probability pro-
duces strong repulsive couplings that affect elastic and
fusion mechanisms. The repulsive polarization potentials
so produced are most important at energies around the

barrier and cause fusion suppression.
Other features of reactions with weakly bound nuclei,

of current interest, are the different fusion mechanisms
that take place, such as complete and incomplete fusion.
Complete fusion (CF) can be direct (DCF) or sequen-
tial fusion (SCF). Direct complete fusion is a process
similar to fusion between strongly bound nuclei, that is,
fusion that occurs without a prior excitation of breakup
channels. Sequential complete fusion consists of fusion
of all the projectile fragments after a previous breakup.
From an experimental point of view, it is very difficult to
distinguish the evaporation products from a compound
nucleus produced by DCF or SCF. Another important
reaction mechanism is incomplete fusion (ICF), which
is the partial absorption of some fragments while oth-
ers fly away to the continuum. Total fusion (TF), com-
monly the quantity measured, is the sum of complete
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and incomplete fusion. Recently, separate experimen-
tal determination of complete and incomplete fusion has
been achieved for some reactions with light weakly bound
projectiles on medium mass and heavy targets. This
has been possible since, different from the case of light
targets, compound nuclei decay by the emission of un-
charged particles [6–11].

Another important process with weakly bound pro-
jectiles that has been extensively studied is the elas-
tic breakup (EB). This mechanism occurs when none
of the fragments after breakup is captured by the tar-
get. It is now well known that couplings to continuum
breakup states have a profound effect on other processes
like elastic, inelastic, transfer or fusion reaction mech-
anisms. To study these effects, a complete theoretical
description should include all of the aforementioned reac-
tion channels in a single calculation. Presently, the most
powerful theoretical tool to do this type of calculations
is the Continuum Discretized Coupled-Channel (CDCC)
model [12–14]. This approach has been used in a large
range of weakly bound nuclear systems, for instance, a
2n-halo 6He projectile on 59Co and 208Pb [15, 16], 6Li
with targets 28Si, 59Co, 58Ni, 144Sm and 208Pb [12, 15, 17–
22], 7Li with 28Si [23, 24] and 144Sm [25], n-halo 11Be with
208Pb [26], and p-halo 8B with 58Ni [19, 27], 12C [28] and
208Pb [29].

Due to the experimental difficulty of performing sep-
arate measurements of complete and incomplete fusion
cross sections, most of these works study the effect of
breakup couplings on elastic scattering or total fusion
processes. However, measurements of CF and ICF have
recently been reported for some weakly bound nuclei
with spherical and deformed medium mass targets. For
instance, 6Li with targets 96Zr [30], 144Sm and 152Sm
[31, 32], and the projectile 9Be with 181Ta [33], 169Tm
and 187Re [34].

Also, measurements of CF and ICF cross sections for
the weakly bound 6Li projectile with the highly deformed
target 154Sm at energies above the barrier have recently
been reported [35]. Here, coupled-channel (CC) calcula-
tions are used to study the effect on complete fusion from
couplings from inelastic excited states of 154Sm. As ex-
pected, this effect is increasingly important as the energy
decreases towards the barrier. A comparison of these re-
sults with those for the spherical 144Sm is also discussed.
Similar, theoretical studies that account for the effect of
breakup on complete fusion have been performed for a
number of systems, see Refs. [36–38].

Although most of the theoretical efforts are based on
slightly modified versions of the CDCC model, which is
widely used to manage the effect of breakup states in the
continuum on fusion, a considerable theoretical effort has
been dedicated to formulate a classical and quantum me-
chanical treatment of separate ICF and CF cross sections

for reactions with weakly bound systems [39–43]. In par-
ticular, the classical dynamical model (CDM), described
in Refs. [44–47], unambiguously calculates complete and
incomplete contributions to total fusion. It is shown in
this treatment that the sequential complete fusion pro-
cess has a more important role in complete fusion than
has been assumed. However, the CDM, being a clas-
sical model, can calculate fusion at energies above the
Coulomb barrier. Tunneling effects at energies below
the barrier can be accounted for by a quantum dynami-
cal model like the CDCC. Our calculations of total and
incomplete fusion include some energies below the bar-
riers for 6Li+144Sm and 6Li+154Sm. It is interesting to
notice that CDM calculations for the system 6Li+209Bi
[48] show that the contribution to ICF from α-capture
is smaller than that from the deuteron. As will be seen,
our calculations show that the contributions to ICF are
very similar. Our explanation for this is that while the
Coulomb barrier for α+target system is indeed about
twice that for deuteron+target, this is compensated by
the incident energy E of 6Li being shared by (2/6)E for
the deuteron and (4/6)E by the alpha-particle.

In the work presented here, CDCC calculations for
total, complete and incomplete fusion cross sections of
the weakly bound 6Li projectile with targets 144,154Sm
at energies below and above the barrier are performed.
In the calculations, we assume the cluster structure of
6Li→ α+d (Ethres = −1.47 MeV). Since the masses of
the fragments α and d are not so different, their cen-
ter of mass is not strongly directed towards either of
them. Therefore, total fusion cannot be calculated by
the absorption of their center of mass as in other weakly
bound nuclei, such as the projectile 11Be→10 Be+n, for
which the absorption of the center of mass of 11Be en-
sures the capture of the charged core 10Be [39]. Hence,
total fusion is calculated following the approach given in
Ref. [49]. That is, two short-range imaginary potentials
inside the l=0 nominal Coulomb barrier are used to ac-
count for absorption of both or any of the fragments α
and d by the target. So, complete and incomplete fusion
are implicitly accounted for in this way. These imagi-
nary potentials depend on the relative distance between
the fragments and the target. In the coupled-channel
equations, we include the lowest excited states of the
targets, so as to determine their effect on fusion. The re-
sults show that couplings to excited states of the spher-
ical 144Sm and the largely deformed 154Sm produce an
increasing total fusion enhancement as the collision en-
ergy decreases below the barrier. As will be shown, this
effect is more evident for 154Sm than for 144Sm. This
indicates that, the strength of the attractive polariza-
tion potentials produced by these couplings is stronger
for rotational deformed states.

To describe complete and incomplete fusion, we fol-
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low the CDCC procedure of V.V. Parkar et al. [50]
for the systems 6Li, 7Li with targets 209Bi and 198Pt.
That is, real nuclear potentials VαT and VdT , as well
as volume Woods-Saxon short-range imaginary poten-
tials Wα−T and Wd−T , are used for the interactions be-
tween the fragments and the target. These potentials
depend on the relative coordinates between the projec-
tile fragments and the target. Besides, another short-
range imaginary potential WP−T (without a real part)
in the incident 6Li(g.s.)-T channel is introduced. The
potential WP−T simulates complete fusion between the
incident 6Li (g.s.) and the target. Incomplete fusion
from deuteron absorption σICF,d is determined by turn-
ing off the imaginary potential Wd−T . That is, all fu-
sion absorption σP−T,α come from the WP−T and Wα−T

potentials. Since total fusion σTF is previously and
separately calculated following Ref. [49], the incom-
plete fusion from deuteron absorption can be found by
σICF,d = σTF −σP−T,α. The parameters of the Woods-
Saxon WP−T are fixed so that a CC calculation (with-
out breakup states) fits the complete fusion data of 6Li
(g.s.) and the target. Conversely, by turning off the ab-
sorption potential between the α-particle and the target
Wα−T , the incomplete fusion σICF,α can be similarly cal-
culated. Then, complete fusion can be unambiguously
determined by σCF =σTF −σICF,α−σICF,d. It is impor-
tant to point out that, in the calculation of σICF,α or
σICF,d, absorption by the WP−T potential is considered
only for the incident ground state of 6Li. In this way, ex-
cited breakup states of 6Li, in which the center of mass
of the fragments α−d is inside the range of absorption of
WP−T , are excluded. To reduce the possibility of double
counting, the range of the potentials Wα−T and Wd−T

will be assumed to be smaller than that of WP−T . This
will be explained in more detail in Section 3.

It is important to emphasize that the present calcu-
lations assume that the main breakup channel of 6Li is
into α and d fragments. It has recently been established
[51], however, that significant breakup of 6Li is triggered
by neutron (deuteron) transfer forming 5Li(8Be), leading
to sequential breakup into α+p (α+α) breakup. However,
inclusion of these sequential breakup channels triggered
by particle transfer requires more complicated four-body
CDCC calculations. Due to the complexity of the numer-
ical calculations these channels have not been considered
here.

In a different calculation, the effect of continuum res-
onance state couplings of the weakly bound nucleus 6Li
on total fusion is also studied. We follow a similar tech-
nique as in Refs. [52, 53], where the effect on elastic
scattering from couplings to resonance continuum states
of 6Li was determined for reactions with targets 28Si, 58Ni
and 144Sm. It was found that resonant states have an im-
portant effect on elastic scattering at the lowest collision

energies and for the lightest targets. Following a similar
technique, the effect of continuum resonance states l=2,
jπ = 3+,2+, 1+ of 6Li on total fusion is studied in this
work. Two approaches are used: i) omission of resonant
state couplings from the full discretized breakup energy
space and ii) considering only the resonance state cou-
plings in the CDCC calculation of fusion, that is, non-
resonance states are omitted.

In Section 2, a brief description of the CDCC model
is given. Section 3 gives a detailed description of the
CDCC discretized energy space for resonance and non-
resonance states. A full description of the calculations
of total, complete and incomplete fusion cross sections
are also given. The results on the effects on fusion from
inelastic excited states of the target and from resonance
and non-resonance continuum breakup couplings of the
projectile are given as well. Finally, a summary and con-
clusions are presented in Section 4.

2 Brief description of CDCC

A complete description of the CDCC method is given
in Refs. [12–14]. Here, only the basic equations that
are required to perform our calculations are presented.
We consider the two-body cluster structure of 6Li (α-d)
with ground state energy Ethres=−1.47 MeV. The model
space for the ground and continuum states of 6Li is that
given in Ref. [49]. The wave function for the breakup
continuum states of 6Li is

ψP
lj (r,k)={Ylml

(r̂)⊗χIµsσ}lj

ϕlsj(r,k)

r
, (1)

where the internal wave function of the α-d system is
χIµsσ, with I=0 and s=1. ϕlsj(r,k) describes the α-d
relative radial motion with asymptotic wave-number k,
orbital angular momentum l and total angular momen-
tum j.

The radial continuum states ϕlsj(r,k) in Eq. (1) are
not square-integrable. However, Ref. [12] provides a pre-
scription for constructing square-integrable wave func-
tions known as bin states. A bin state u(i)

β (r) is obtained
by a superposition of scattering wave functions within a
given interval i, of continuum k values, ki−1<k<ki, i.e.,

u(i)
β=lsj(r)=

√

2

πηl

∫ ki

ki−1

wi(k,l)e
−iδk(l)ϕlsj(r,k)dk, (2)

where δk(l) are scattering phase-shifts of ϕβ and wi(k,l)
are weight functions defined by,

ηl=

∫ ki

ki−1

|wi(k,l)|
2
dk. (3)

Actually, the weight functions wi associated with non-
resonant bin states are usually set as wi(k,l)=1, while
for resonant states wi(k,l)=sin[δk(l)].
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The total wave function of the three-body system (α-
d-target) is given by,

Ψ(R,r,ξ)=
∑

q

∑

β

Fβq(R)ψP
β (r)⊗ΦT

q (ξ), (4)

where ΦT
q (ξ), q = 0,1,2,3.. correspond to the ground

and inelastic states of the target satisfying HTΦT
q (ξ) =

εT
q Φ

T
q (ξ). Fβq(R) represents the projectile-target relative

motion in the βq-channel. Projecting the equation of mo-
tion of the system onto the projectile states β and onto
the excited states of the target q, the following coupled
equations are obtained,

[

T̂R+U (J)
βq,βq(R)−(E−εβ−ε

T
q )

]

F (J)
βq (R)=

−
∑

β′q′

U
(J)

βq,β′q′(R)F
(J)

β′q′(R). (5)

Here, εβ is the excitation energy of the projectile in

the β-state. U (J)
βq,βq and U (J)

βq,β′q′ are the radial dependent
diagonal and non-diagonal matrices of the interaction po-
tentials V̂dT +V̂αT , where V̂dT and V̂αT are the nuclear
interactions between the deuteron and α-particle with
the target. Notice that U (J)

00,00 corresponds to the elastic
incident channel. As a matter of fact, the interaction
potential matrices are given by,

U (J)

βqβ′q′(R)=<uβΦ
T
q

∣

∣

∣
V̂dT (rdT ,ξ)+V̂αT (rαT ,ξ)

∣

∣

∣
uβ′ΦT

q′>,

(6)
where rdT = R− 2

6
r and rαT = R+ 4

6
r represent the ra-

dial distance between the fragments and the target. The
integrations in Eq. (6) are carried out over the internal
radial coordinate r, the angular coordinates of R and
the internal coordinates of the target ξ.

The code FRESCO [54] will be used in our calcula-
tions of fusion. It is important to mention the approxi-
mations we adopted, to account for the collective degrees
of freedom of the target in conjunction with breakup
states of the projectile. First, inelastic states of the pro-
jectile are not considered. Now, in the coupling matrix
elements UJ

β=0,β′=0(R), the single folding of the interac-
tion potentials over the projectile g.s. wave function, i.e.,
<u0|V̂dT +V̂αT |u0>, is calculated and expanded in mul-
tipoles as in the usual coupled channel calculations. On
the other hand, to introduce simultaneous target exci-
tation and projectile continuum, multipole expansion of
the α−target and deuteron-target potentials is carried
out. These potentials depend not only on their relative
distance, but also on the internal degrees of freedom of
the target. Then Eq. (6) is integrated over all the vari-
ables except the fragment-target relative distance. The
procedure of decoupling target excitations and breakup
states of the projectile is shown in detail in Ref. [55],
where applications to some reactions with weakly bound
projectiles are presented as well. In particular, we used
CDCC to calculate the ground state optical potential by

folding the α−target and deuteron-target potentials by
the ground state of the projectile, considering that the
target is in its ground state. This potential was then
deformed to account for target excitation. Finally, when
one compares the results of Refs. [55] and Ref. [56] for
6Li + 144Sm, a system studied in this work, the results
of the full calculation and the decoupling results for the
elastic and inelastic excitation of the target are very sim-
ilar, showing that this approximation might be quite rea-
sonable. For this reason we will adopt this approximate
procedure in the present work.

3 Calculations

3.1 Discretization of continuum space and nu-

clear interaction potentials

The ground and discretized breakup states of 6Li→
d+α are constructed by using the interaction given in Ref.
[49]. The discretization of the continuum is made as fol-
lows. The maximum angular momentum for the relative
motion of the fragments is lmax=3. Larger values do not
have any effect on the calculated fusion cross sections.
Bin states are constructed from an initial energy ε0 =0
MeV (above the threshold energy Ethres=−1.47 MeV) up
to a maximum energy εmax = 6.8 MeV. For states with
l= 0, jπ = 1+ and l= 1, jπ = 0−,1−,2−, an energy step
is fixed at ∆ε= 0.5 MeV. Finer and variable steps are
used for the resonant states l=2, jπ=3+,2+, 1+, so as to
obtain centroid excitation energies and widths close to
the corresponding measured values [49]. For bin states
l=3, jπ =4+,3+,2+, a larger step ∆ε=1.0 MeV is used.
Convergence tests at εmax = 7.0,7.5 and 8.0 MeV were
done with no effect on fusion. Similarly, larger steps
∆ε= 0.75 and 1.0 MeV were used with no appreciable
effect. Coulomb and nuclear potential multipoles are in-
cluded up to LQ=4.

As for the nuclear interactions between the fragments
α, d and the target of Eq. (6), we use the same po-
tentials as in our previous work for elastic scattering
[52, 53]. That is, the systematic Woods-Saxon potentials
of Ref. [57] for V̂dT and the density dependent double-
folding Sao Paulo potential (SPP) for V̂αT [58, 59]. These
potentials have been modified to account for vibrational
and deformed effects of the excited states of the targets.
The following excited states are included: for the spher-
ical 144Sm, the 2+ (1160 keV) and 3− (1810 keV) states
with β2=0.087 and β3=0.15; for the deformed 154Sm, the
2+ (82 keV) and 4+ (267 keV) states, with deformation
parameters β2=0.34 and β4=0.08 [60–62].

3.2 Total, complete and incomplete fusion

CDCC elastic scattering angular distributions and
the effect of resonances of the projectile 6Li with targets
28Si, 58Ni and 144Sm have been reported in Refs. [52, 53].
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In these calculations, the volume and surface imaginary
potentials of Refs. [57–59] were used for the α−T and
d−T interactions. In the calculations presented here, the
deformed nuclear potentials of Refs. [57–59] are used,
but short-range volume imaginary potentials are applied
to account for fragment-target fusion absorption. The
inclusion of an adequate surface Woods-Saxon potential
WS in the elastic incident channel of 6Li-target, in the
region of strong absorption, would certainly be more re-
alistic. By fitting the parameters of WS , the calculated
total reaction σTR=σTF +σDR, given by

σR=
2

~v

∑

βqJ

1

2J+1
<F (J)

βq |W |F (J)
βq >, (7)

where W =WF +WS, would become closer to the data
and hence elastic scattering. However, the fusion cross
section would not be appreciably affected. We have per-
formed calculations with the inclusion of a surface poten-
tial with parameters WS0 =10.0 MeV, rS0 =1.4 fm and
aS0=0.4 fm in the elastic channel for 144Sm and 144Sm at
some energies below and above the barrier. The results
show an effect on fusion around 1% for the higher ener-
gies and 8% for the lower energies with respect to when
WS is not included. Thus, in what follows only imaginary
short-range potentials are used in the fragment-target in-
teractions.

In the first calculation, the total fusion cross section
σTF between the 6Li projectile and targets 144Sm and
154Sm is determined for incident energies around and
above the Coulomb barriers. Two short-range imagi-
nary volume Woods-Saxon potentials Wα−T and Wd−T

are considered to account for absorption of the α-particle
and deuteron by the target. Both Wα−T and Wd−T de-
pend on the radial distance between the fragments and
the target respectively. Therefore, when both fragments
or any one of them are inside the range of these poten-
tials, complete or incomplete fusion is accounted for. The
parameters of these potentials are fixed with strength
W0 = 25 MeV, reduced radius r0 = 0.9 fm and diffuse-
ness a0 = 0.1 fm for both 144Sm and 154Sm. Absorp-
tion by these potentials happens inside the correspond-
ing Coulomb barriers, VB,d =13.92 MeV, RB,d = 6.4 fm
and VB,α =26.5 MeV, RB,α =6.83 fm, respectively. So,
the incident flux that passes above or through the bar-
rier, inside the short-range potential, contributes to fu-
sion. Figure 1(a) shows the results of σTF for the system
6Li+144Sm. The calculation with the whole energy state
spectrum, that is, ground and discrete breakup state cou-
plings of the projectile and inelastic state couplings of the
target, is presented by the solid line. The calculation
without excited states of the target, that is, when cou-
plings between ground states of the target and projectile
are considered, as well as breakup states of the projec-
tile, is shown by the dashed line. The calculation for the

elastic channel, i.e., without couplings from continuum
breakup states of the projectile and excited states of the
target, is shown by the dashed-dotted line. The total
fusion data of Fig. 1(a) are obtained by the sum of com-
plete and incomplete fusion data of Refs. [31, 32]. The
results show that the calculated total fusion is above the
data for energies above the barrier, however there is a
better agreement around and below the barrier.

Fig. 1. (color online) (a) Total fusion cross section
for 6Li+144Sm with the full breakup space of 6Li
(solid line), without excited states of the target
(dashed line) and without breakup states of the
projectile (dashed-dotted line). (b) Fusion en-
hancement and suppression factors from excited
states of 144Sm (dashed line) and from breakup
states of 6Li (dashed-dotted line).

Regarding the sensitivity of the TF calculations just
described, with respect to the short-range potential pa-
rameters, it is important to point out that smaller values
of the reduced radius parameter r0 do not have an appre-
ciable effect as long as R=r(A1/3

T +A1/3
6Li

) is well inside the
Coulomb barrier. With respect to the strength W0 and
diffuseness a0, there is no effect if the range of the po-
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tential is larger than the mean free path of the fragment
inside the barrier [49].

Fig. 2. (color online) (a) Total fusion cross section
for 6Li+154Sm with the full breakup space of 6Li
(solid line), without excited states of the target
(dashed line) and without breakup states of the
projectile (dashed-dotted line). (b) Fusion en-
hancement and suppression factors from excited
states of 154Sm (dashed line) and from breakup
states of 6Li (dashed-dotted line).

Figure 1(b) shows the numerical effect EF on total
fusion due to couplings from inelastic excited states of
the target (dashed line) and from continuum breakup
states of 6Li (dashed-dotted line). EF is defined by

EF=1−
σF,n

σTF

, (8)

where σF,n with n=1 is the calculation without couplings
from inelastic states of the target and with n=2 is that
without breakup couplings of the projectile. Couplings
to inelastic excited states of 144Sm enhance fusion, par-
ticularly for energies around and below the Coulomb bar-
rier. Here, the enhancement factor EF reaches a value

of about 38% at Ec.m. = 20 MeV. On the other hand,
the effect of couplings to breakup states of the projectile
produces a net fusion suppression for all energies. The
strength of the suppression factor EF increases as the
collision energy decreases towards the barrier VB to then
decrease at lower energies. That is, breakup state cou-
plings produce a net repulsive potential that increases
the fusion barrier and therefore reduces fusion. Figure
2 shows the corresponding results for 154Sm. The solid
line of Fig. 2(a) presents the total fusion calculation with
all couplings, while the circles represent the data of Ref.
[35]. The dashed line of Fig. 2(b) shows that the effect of
the excited states of the deformed 154Sm is stronger than
for the spherical 144Sm at energies below the barrier. The
enhancement factor EF reaches a value of about 50% at
Ec.m. = 22 MeV, while for 144Sm it is about 30%. The
dashed-dotted line of Fig. 2(a) shows that breakup state
couplings of the projectile are essential to fit the data.
This can be seen in Fig. 2(b), where it is observed that
these couplings produce a net repulsive effect that raises
the barrier. Breakup state couplings are more important
for 154Sm than for 144Sm, as shown by the dotted-dashed
lines of Figs. 1(b) and 2(b).

Complete and incomplete fusion cross sections are
calculated in a similar manner as in Ref. [50]. That is,
besides Wα−T and Wd−T , another short-range imaginary
potential WP−T is included to simulate fusion absorption
from the ground state incident channel of 6Li-T . Then,
either Wα−T or Wd−T is turned off and we calculate, say,
σP−T,d (Wα−T =0), that accounts for fusion absorption
through the incident and d−T channels. Similarly, if
Wd−T =0, we calculate σP−T,α, which is fusion through
the incident and α−T channels. It should be noted that
WP−T is not generated by Wα−T and Wd−T , since one of
these potentials is set to zero. Then, by using the previ-
ous calculation of total fusion σTF , it is possible to deter-
mine the incomplete fusion from deuteron absorption by
σICF,d=σTF−σP−T,α. Clearly, σICF,α can be determined
in a similar manner. It is important to indicate that ab-
sorption by the potential WP−T is not directly complete
fusion absorption, but instead, it is only useful to cal-
culate absorption of any fragment. As a matter of fact,
once the total incomplete fusion σICF = σICF,α+σICF,d

is known, complete fusion σCF can be determined by
σCF =σTF−σICF . It should also be established that, in
the calculation of σP−T,α and σP−T,d, double counting
occurs only when the center of mass of the ground state
of the 6Li projectile and either one of the fragments are
simultaneously inside their corresponding regions of ab-
sorption. So, to reduce double counting, the regions of
absorption of Wα−T and Wd−T are assumed to be much
shorter than that ofWP−T . In the calculations, we fix the
parameters as WP−T =50 MeV, reduced radius rP−T =
1.0 fm and diffuseness aP−T =0.4 fm for both targets
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144,154Sm. For the potentials Wα−T and Wd−T , the same
parameters as Ref. [50] are used. As in the case of total
fusion, similar considerations are relevant regarding the
sensitivity of the calculations with respect to these pa-
rameters. Particularly, the reduced radius r=0.62 fm for
α−T and r=0.66 fm for d−T guarantee that the imag-
inary potentials are centered well inside the respective
Coulomb barriers.

Fig. 3. (color online) (a) Complete (solid line) and
incomplete (dashed line) fusion cross sections for
the reaction 6Li+ 144Sm. The dashed-dotted line
represents the contribution to ICF from α-particle
absorption while the dotted line corresponds to
deuteron absorption. (b) The same as (a) but for
154Sm.

The potentials are centered about 2 fm inside the
barrier. Figures 3(a) and (b) show the results for 144Sm
and 154Sm respectively. The experimental data for com-
plete (full circles) and incomplete fusion (empty circles)
are those of Refs. [31, 32] for 144Sm and Ref. [35] for
154Sm. The complete fusion calculation (solid lines) is

slightly above the data for 144Sm, while there is a bet-
ter agreement for 154Sm. For both targets, incomplete
fusion results (dashed lines) are close to the data at en-
ergies around the Coulomb barrier and over-predicted
for higher energies. In both cases, incomplete fusion
becomes more important than complete fusion at ener-
gies below the barriers. Also, incomplete fusion from
α-particle absorption (dashed-dotted lines) is rather sim-
ilar to that of deuteron absorption (dotted lines) except
at the higher energies where it is slightly stronger. This
result agrees with the calculations of Ref. [50] for the 6Li
projectile with 209Bi and 198Pt targets. That is, deuteron
and α-particle absorption are of similar magnitude. It
is equally important to point out that the independent
calculations of incomplete fusion for both fragments ne-
glects the correlation that can appear by the absorption
of one fragment on the other. This effect is negligible
if breakup of the projectile happens at large distances
from the target. The fact that the calculations for com-
plete and incomplete fusion are above the data for 144Sm,
as Fig. 3(a) shows, is consistent with the calculation for
total fusion of Fig. 1(a), where there is also an over-
prediction. Also, from Fig. 3(b) for 154Sm, a better agree-
ment for CF is observed except at the higher energies,
where the calculated values are below the data. The ICF
results are above the data for the higher energies. Since
the calculated total fusion of Fig. 2(a) for 154Sm is in
good agreement with the corresponding data at all ener-
gies, the effect of double counting can be inferred from
the behavior of the CF and ICF results. It is clear that
the effect is stronger at higher energies for both CF and
ICF. This can be understood as follows: at high collision
energies, it is easier for both the incident ground state
of the projectile and either one of the fragments to be
inside their regions of absorption.

3.3 Effect of resonance and non-resonance

breakup states on fusion

In this section, we present the calculations of the ef-
fect on total fusion from resonance breakup states l=2,
jπ = 3+,2+, 1+ of the weakly bound nucleus 6Li. The
procedure is the same at that used in Refs. [52, 53],
where a study of the effect of these resonances on elas-
tic scattering was presented. Two different calculations
are performed, First, fusion is calculated when resonance
states are excluded from the full discretized energy space,
and then when only couplings between the elastic chan-
nel and resonance states are considered. The results are
shown in Fig. 4(a) for 144Sm and Fig. 4(b) for 154Sm.
The solid lines represent the calculation with the full
discretized energy space, the dashed lines the case when
only couplings between resonance states are included,
and the dashed-dotted lines the case when resonance
states are omitted from the full space. The effects of
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resonance and non-resonance subspace couplings are of
similar magnitude for each target but are more impor-
tant for 154Sm than for 144Sm. Also, for all the energies
considered, both calculations are above that for the full
discretized space. This implies that separate couplings
of resonance and non-resonance subspaces generate net
repulsive polarization potentials, that in turn raise the
Coulomb barrier and thus suppress fusion. Moreover,
the fact that the effect is more evident for 154Sm than
for 144Sm implies that the deformed Coulomb and nu-
clear potentials of Eq. (6) produce stronger repulsive po-
larizations than for the vibrational 144Sm.

Fig. 4. (color online) (a) Total fusion cross section
for 144Sm with the full breakup space of 6Li (solid
line), with only couplings from resonance breakup
states (dashed line), and with only non-resonance
ones (dashed-dotted line). (b) The same as (a)
but for 154Sm.

4 Summary and conclusions

CDCC calculations of total, complete and incomplete
fusion cross sections have been presented for the nuclear
systems 6Li with targets 144Sm and 154Sm at energies

around and above the Coulomb barrier. In the CDCC
calculations, resonance and non-resonance states of 6Li
were discretized up to a maximum energy of 6.8 MeV
with discretization steps such that centroid energies of
the resonances and widths are close to the experimental
values. To account for the effect of excited states of the
targets on fusion, low-lying excited states were included
in the calculations. The cluster structure of the projec-
tile 6Li→α+d was assumed, with global nuclear interac-
tions for the α-target and d-target sub-systems. For the
energies around the barrier studied in this work, it has
been shown that calculations with coupling to only the
elastic channel (without breakup discretized states) are
insufficient to fit the fusion data, so couplings to breakup
states are very important. On the other hand, the effect
of inelastic states of the targets produce attractive polar-
izations, that in turn, lower the fusion barrier and hence
enhance fusion. This effect is larger for the deformed
154Sm than for the spherical 144Sm. For the calculation
of total fusion, short-range imaginary fusion potentials
inside the Coulomb barrier have been used for absorp-
tion of the fragments α and d by the target. So, complete
fusion is accounted for when both fragments are inside
the region of absorption, and incomplete fusion when
only one of them is inside.

To calculate the contributions to incomplete fusion
from α-particle or deuteron capture, another imaginary
potential for absorption through the incident channel was
introduced (6Li in the ground state). Then, fusion ab-
sorption in the incident and any one of the fragments
was calculated by turning off the imaginary potential of
any one of the fragments. The imaginary potential in the
incident channel is not generated by those correspond-
ing to the fragments, since one of them is turned off. To
reduce double counting, the short range potentials were
chosen to have different ranges. The result of this calcu-
lation was subtracted from the prior calculation of total
fusion to determine the fragment contribution. There-
fore, incomplete fusion for α-particle and deuteron was
explicitly calculated. Once the total incomplete fusion
is known, complete fusion was similarly calculated by
subtraction from total fusion.

In a different calculation, the effect on total fusion
due to couplings from resonance state couplings of 6Li,
namely, l= 2, Jπ = 3+,2+ and 1+, has been presented.
This effect was calculated by following two approaches,
(a) by omitting the states corresponding to the reso-
nances from the whole energy discrete space and (b) by
considering only resonance state couplings. The effects
of resonance and non-resonance couplings are stronger
for 154Sm than for 144Sm. This is due to the deformed
Coulomb and nuclear potentials used for the interac-
tions between the fragments α and d with 154Sm. These
deformed potentials produce stronger repulsive polariza-
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tion potentials than those for the vibrational 144Sm.
Finally, it is important to mention that, in order to

obtain a complete picture of the projectile breakup effect

on fusion, couplings of transfer-triggered breakup chan-
nels, along with α+d, should be included in the CDCC
calculation.
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52 A. Gómez Camacho, A. Diaz-Torres, P. R. S. Gomes et al,

Phys. Rev. C, 91: 014607 (2015)
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