
Chinese Physics C Vol. 41, No. 11 (2017) 114106

Dirac and Pauli form factors of nucleons using nonlocal chiral

effective Lagrangian *

Fangcheng He(Û�¤)1,2;1) Ping Wang(�²)1,3;2)

1 Institute of High Energy Physics, Beijing 100049, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Sciences, Beijing 100049, China

Abstract: Dirac and Pauli form factors are investigated in the relativistic chiral effective Lagrangian. The octet and

decuplet intermediate states are included in the one-loop calculation. The 4-dimensional regulator is introduced to

deal with the divergence. Different from the non-relativistic case, this 4-dimensional regulator is generated from the

nonlocal Lagrangian with the gauge link, which guarantees local gauge invariance. As a result, additional diagrams

appear which ensure electric charge 1 and 0 for proton and neutron respectively. The obtained Dirac and Pauli form

factors of the nucleons are all reasonable up to relatively large Q2.

Keywords: chiral effective lagrangian, nonlocal lagrangian, form factors

PACS: 13.40.Gp, 21.10.Gv, 21.45.Bc DOI: 10.1088/1674-1137/41/11/114106

1 Introduction

The study of the electromagnetic properties of the nu-
cleons is very important to help us understand hadron
structure. Though QCD is the fundamental theory which
describes the strong interaction, it is difficult to study
hadron structure using QCD directly due to its nonper-
turbative behavior. A lot of phenomenological models,
such as the cloudy bag model [1], the constituent quark
model [2, 3], the 1/Nc expansion approach [4], the per-
turbative chiral quark model [5], the extended vector me-
son dominance model [6], the SU(3) chiral quark model
[7], the quark-diquark model [8, 9], etc., have been pro-
posed. They are widely applied in the calculation of
hadron properties, including electromagnetic quantities.

As well as the above model calculations, there are also
many lattice simulations on the electromagnetic form
factors [10–16]. Though lattice QCD is the most rigor-
ous approach, most quantities are simulated with large
quark (π) mass because of computing limitations.

Chiral perturbation theory (χPT ) is another useful
method to study low-energy physics. Both relativistic
and heavy baryon chiral effective field theory have been
applied to study the nucleon electromagnetic form fac-
tors [17–20]. The results from χPT with dimensional
regularization show that it can only describe the form
factors at very low Q2, say Q2 < 0.1 GeV2 [18]. When
the contributions of vector mesons are included, the re-

sults are close to those of experiments with Q2<0.4 GeV2

[20].
Another effective way to deal with the divergence

of the loop integral is finite-range-regularization (FRR).
This has been widely applied to calculate the baryon
mass, electromagnetic form factors, strange form fac-
tors, charge radii, first moments, proton spin, etc [21–
35]. Various investigations show that FRR can be suc-
cessfully applied to study hadron structure at relatively
large pion mass and momentum transfer.

Currently, FRR can only be applied with heavy
baryon χPT . In the relativistic case, if we add the covari-
ant/relativistic regulator as in FRR, charge conservation
will be destroyed. Therefore, we need to start from a
nonlocal gauge invariant Lagrangian to derive the regu-
lator. The advantage of the nonlocal Lagrangian is that
it can automatically generate the regulator. The local
gauge invariant Lagrangian can be constructed from the
gauge link. With this nonlocal Lagrangian, the Ward
identity and charge conservation are satisfied. For ex-
ample, with wave function renormalisation, the proton
charge is 1. The neutron charge and the strange charge
of the nucleons are also zero. These cannot be obtained
with the covariant regulator in the local Lagrangian.

Therefore, in this paper, we will provide a relativis-
tic version of FRR and apply it to the investigation of
the Dirac and Pauli form factors of the nucleons. The
paper is organized as follows. In Section 2, we briefly in-
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troduce the chiral Lagrangian and nonlocal Lagrangian.
The Dirac and Pauli form factors of the nucleons are de-
rived in Section 3. Numerical results are presented in
Section 4. Finally, Section 5 gives a summary.

2 Chiral effective lagrangian

The lowest order chiral Lagrangian for the interaction
of octet baryons B and decuplets T with pseudoscalar
fields φ can be written as [36, 37]:

L=DTrB̄γµγ5{Aµ,B}+F TrB̄γµγ5 [Aµ,B]

+iTrB̄ /DB−mBTrB̄B+
f 2

4
Tr∂µΣ∂µΣ+

+
C

f
εabcT̄ ade

µ (gµν+zγµγν)B
e
c∂νφd

b+H.C, (1)

where D, F and C are the coupling constants. The chiral
covariant derivative Dµ is written as DµB=∂µB+[Vµ,B].
The pseudoscalar meson octet couples to the baryon field
through the vector and axial vector combinations

Vµ=
1

2
(ζ∂µζ†+ζ†∂µζ), Aµ=

i

2
(ζ∂µζ†−ζ†∂µζ), (2)

where
ζ=eiφ/f , f =93 MeV. (3)

The matrix of pseudoscalar fields φ is expressed as

φ=
1√
2















1√
2
π

0+
1√
6
η π

+ K+

π
− − 1√

2
π

0+
1√
6
η K0

K− K̄0 − 2√
6
η















. (4)

The explicit form of the baryon octet is written as

B=













1√
2
Σ0+

1√
6
Λ Σ+ p

Σ− − 1√
2
Σ0+

1√
6
Λ n

Ξ− Ξ0 − 2√
6
Λ













. (5)

In the SU(3) chiral limit, the octet baryons will have
the same mass mB. In our calculation, we use the phys-
ical masses for baryon octets and decuplets. The lead-
ing order electromagnetic interaction can be obtained by
minimal substitution as

Vµ→Vµ+
1

2
ieA µ(ζ+Qζ+ζQζ+),

Aµ→Aµ−
1

2
eA µ(ζQζ+−ζ+Qζ),

∂µΣ→∂µΣ+ieAµ[Q,Σ]. (6)

For baryon decuplets, the covariant Lagrangian is

L=T̄ abc
µ (iγµναDα−mT γµν)T abc

ν . (7)

MT is the decuplet mass in the chiral limit. DνT
abc
µ =

∂νT
abc
µ +(Γν ,Tµ)abc, where Γν is the chiral connection de-

fined by (X,Tµ) = (X)a
dT

dbc
µ +(X)b

dT
adc
µ +(X)c

dT
abd
µ [38].

γµνα and γµν are the antisymmetric gamma matrices,
expressed as

γµν =
1

2
[γµ,γν ] and γµνρ=

1

4
{[γµ,γν ],γρ}. (8)

For the baryon decuplets, there are three indices defined
as

T111=∆++, T112=
1√
3
∆+, T122=

1√
3
∆0,

T222=∆−, T113=
1√
3
Σ∗,+, T123=

1√
6
Σ∗,0,

T223=
1√
3
Σ∗,−, T133=

1√
3
Ξ∗,0, T233=

1√
3
Ξ∗,−,

T333=Ω−. (9)

The octet, decuplet and octet-decuplet transition mag-
netic operators, which are the next-to-leading-order elec-
tromagnetic interaction, are needed in the one-loop cal-
culation of nucleon Dirac and Pauli form factors. The
baryon octet magnetic Lagrangian is written as

L=
e

4mN

(

c1TrB̄σµν
{

F+
µν ,B

}

+c2TrB̄σµν
[

F+
µν ,B

])

,

(10)
where

F+
µν =−1

2

(

ζ†FµνQζ+ζFµνQζ†). (11)

Q is the charge matrix Q=diag{2/3,−1/3,−1/3}. At the
lowest order, the Lagrangian will generate the following
nucleon anomalous magnetic moments as

F p
2 =

1

3
c1+c2, F n

2 =−2

3
c1. (12)

The effective decuplet magnetic operator is expressed as
[39]

L=− egd

4mT

T̄ abc
µ σρσgµν(F+

ρσ,Tν)
abc (13)

with gd=3.88.
The transition magnetic operator is [40]

L=
−3iegm√

2m(m+mT )
B̄abεcdaQce(∂µTν)dbeεµναβ∂αAβ (14)

with gM =3.16.
Finite-range-regularization has previously been ap-

plied to deal with divergence in the loop integral in heavy
baryon χPT [23, 41]. Physically, this regularization
method reflects the size effect of the baryons and mesons.
In the relativistic case, as we explained in the Introduc-
tion, we need to introduce a nonlocal gauge invariant La-
grangian to derive the covariant regulator. Taking the
size effect of the hadrons into account, the interaction
between baryons and mesons or between baryons and
photons will be nonlocal. We can use the gauge link to
generate the gauge invariant non-local Lagrangian. This
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method has been used in Refs. [42, 43]. For instance, the
local interaction including a π meson can be written as

Llocal
π

=

∫

dx
D+F√

2f
p̄(x)γµγ5n(x)(∂µ+ieAµ(x))π+(x).

(15)
The nonlocal Lagrangian for this interaction is expressed
as

Lnl
π

=

∫

dx

∫

dy
D+F√

2f
p̄(x)γµγ5n(x)F (x−y)

×exp[ie

∫ y

x

dzν

∫

daA
ν(z−a)F (a)]

×(∂µ+ie

∫

daAµ(y−a))F (a)
)

π
+(y), (16)

where F (x) is the correlation function. With the same
idea, the nonlocal electromagnetic interaction can also
be obtained. For example, the local interaction between
proton and photon is written as

Llocal
EM =−ep̄(x)γµp(x)Aµ(x)

+
(c1+3c2)e

12mN

p̄(x)σµνp(x)Fµν(x). (17)

The corresponding nonlocal Lagrangian is expressed as

Lnl
EM =−e

∫

dap̄(x)γµp(x)Aµ(x−a)F (a)

+
(c1+3c2)e

12mN

∫

dap̄(x)σµνp(x)Fµν(x−a)F (a).

(18)

The above nonlocal electromagnetic interaction will gen-
erate Q2 dependent form factors at tree level. The non-
local Lagrangian is invariant under the following gauge
transformation

π
+(y)→eiα(y)

π
+(y), p(x)→eiα(x)p(x),

Aµ(x)→Aµ(x)−1

e
∂µα′(x), (19)

where α(x) =
∫

daα′(x−a)F (a). From the expansion of
the nonlocal Lagrangian, one can get the following inter-
action including one photon

Lnor =

∫

dx

∫

dy
D+F√

2f
p̄(x)γµγ5n(x)F (x−y)

×ieπ+(y)

∫

daAµ(y−a)F (a), (20)

Ladd=

∫

dx

∫

dy
D+F√

2f
p̄(x)γµγ5n(x)F (x−y)

×ie

∫ y

x

dzν

∫

daA
ν(z−a)F (a)∂µπ

+(y). (21)

The first Lagrangian is the normal interaction with a
photon, and is the same as in the local case. The second
Lagrangian is the additional term, which is essential to
ensure the renormalized charge of the proton (neutron)

is 1 (0). With the obtained nonlocal Lagrangian, we can
calculate the Dirac and Pauli form factors.

ba

c d

e f

g

Fig. 1. One-loop Feynman diagrams for nucleon
form factors. The solid, dashed and wavy lines
are for the baryons, pseudoscalar mesons and
photons, respectively. The rectangles and black
dots represent magnetic and additional interac-
tions with the photon.

3 Dirac and Pauli form factors

The form factors of the nucleons are defined as

<N(p′)|Jµ|N(p)>=ū(p′){γµF N
1 (Q2)

+
iσµνqν

2mN

F N
2 (Q2)}u(p), (22)

where q=p′−p and Q2 =−q2. F N
1 (Q2) and F N

2 (Q2) are
the Dirac and Pauli form factors. According to the La-
grangian in Eq. (18), the tree level form factors of the
proton are expressed as

F p
1 (Q2)=F̃ (Q2), F p

2 (Q2)=
c1+3c2

3
F̃ (Q2), (23)

where the function F̃ (k2) is the Fourier transformation
of the correlation function F (a). In the numerical calcu-
lation, it is chosen to be a dipole form

F̃ (k2)=
1

(1−k2/Λ2)2
. (24)

Similarly, the neutron form factors at tree level are ex-
pressed as

F n
1 (Q2)=0, F n

2 (Q2)=−2c1

3
F̃ (Q2). (25)

The above tree level contribution is very important to
get the final results. The momentum dependence of the
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tree level form factors provides more curvature than the
loop contribution.

The one-loop Feynman diagrams which contribute to
the nucleon form factors are plotted in Fig. 1. In our
calculation, both octet and decuplet intermediate states
are included. Because the expressions for the decuplet
part are much more complicated, we will only show the
expressions for the octet part.

This updated relativistic version of FRR is also
needed for the study of hadron structure at relatively
large Q2, especially for the calculation of parton distri-
bution functions where the formalism is relativistic. A
lot of investigations of FRR have been done and we have
good knowledge of the non-relativistic regulator, which
was kept the same for all the above calculations. How-
ever, we know little about the relativistic regulator and
this is the first try to determine the relativistic regula-
tor from the well-known form factors of the nucleons.
In FRR, there is no cut-off for the k0 integral in the
loop calculation. The regulator is in 3-dimensional ~k
space. This non-relativistic regulator is only applied in
the heavy baryon chiral effective model calculation. As
a result, there are no Kroll-Ruderman or additional dia-
grams from the gauge link, i.e. Fig. 1(c), 1(d), 1(e) and
1(f) do not appear in that case. In addition, the regu-
lator in the FRR is added when doing the loop integral.
There is no momentum dependence of the form factors
at tree level. When extrapolating the lattice data, the
extrapolation has to be done separately at different Q2.
In other words, the low energy constants are Q2 depen-
dent, as shown in Table I and II of Ref. [23]. This Q2

dependence was obtained from fitting lattice data at dif-
ferent momentum transfers. Here, the regulator and the
momentum dependence of form factors at tree level is
derived from the nonlocal Lagrangian. This make it pos-
sible to get the correct momentum dependence of form
factors with only one free parameter in the correlation
function.

For the octet intermediate states, the contributions
of Fig.1(a) are expressed as

Γ µ(p)
a =− (D+F )2

2f 2
INN

aπ
− (3F+D)2

12f 2
INΛ

aK − (D−F )2

4f 2
INΣ

aK ,

(26)

Γ µ(n)
a =

(D+F )2

2f 2
INN

aπ
− (D−F )2

2f 2
INN

aK . (27)

We will only show the expression of the above integrals

for the intermediate nucleon state as an example. The
loop integral INN

aπ
is expressed as

INN
aπ

=ū(p′)

∫

d4k

(2π)4
(/k+/q)γ5 F̃ (q+k)

i

Dπ(k+q)

× ie

Dπ(k)

(2k+q)µ

/p−/k−mN

(/kγ5)F̃ (k)u(p), (28)

where Dπ(k) is expressed as

Dπ(k)=k2−M 2
π
+iε. (29)

Using FeynCalc to simplify the γ matrix algebra and
Feynman parameters, we can get the separate expres-
sions for the Dirac and Pauli form factors. The contri-
bution of Fig. 1(b) is expressed as

Γ µ(p)
b =

1

4f 2
(D+F )2INN

cπ
+

(3F−D)2

12f 2
INN

cη +
(D−F )2

2f 2
INΣ

cK ,

(30)

Γ µ(n)
b =

(D+F )2

2f 2
INN

cπ
− (D−F )2

2f 2
INΣ

cK , (31)

where

INN
bπ

=ū(p′)F̃ (q)

∫

d4k

(2π)4
/kγ5 F̃ (k)

i

Dπ(k)

i

/p′−/k−mN

×(−ieγµ)
i

/p−/k−mN

(−/kγ5)F̃ (k)u(p). (32)

The contribution from Fig. 1(c)+1(d) can be written as

Γ µ(p)
c+d =

−(D+F )2

2f 2
INN
(c+d)π−

(3F+D)2

12f 2
INΛ
(c+d)K

− (D−F )2

4f 2
INΣ
(c+d)K , (33)

Γ µ(n)
c+d =

(D+F )2

2f 2
INN
(c+d)π−

(D−F )2

2f 2
INN
(c+d)K , (34)

where

INN
(c+d)π=ū(p′)F̃ (q)

∫

d4k

(2π)4
/kγ5F̃ (k)

i

/p′−/k−mN

i

Dπ(k)

×(−eγµγ5)F̃ (q−k)u(p)

+ū(p′)F̃ (q)

∫

d4k

(2π)4
eγµγ5F̃ (q+k)

× i

/p−/k−mN

i

Dπ(k)
(−/kγ5)F̃ (k)u(p). (35)

The separate expressions for F1 and F2 are expressed as

F np
1c+d(Q

2)=
(D+F )2

f 2
Λ8F̃ (q)

[∫ 1

0

dx1dx4

x4 (x1+x4−1)

8π
2∆3

2

+

∫ 1

0

dx1dx3dx4

3x3x4(−x4q
2−x1m

2
N+mx1mN+M 2

π
)

8π
2∆4

1

]

, (36)

F np
2c+d(Q

2)=
(D+F )2

f 2
Λ8F̃ (q)

∫ 1

0

dx1dx3dx4

3x2
4x3mN (mN+m)

4π
2∆4

1

, (37)
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where

∆1 = (x2
1−x1)m

2
N+(x2

4−x4)q
2+x1x4q2+m2x1

+M 2
π
(1−x1−x3−x4)+Λ2(x3+x4)

and

∆2=x4(x1+x4−1)q2+x1(m
2−m2

N)+x2
1m

2
N+Λ2(1−x1).

The expressions of F N
1 and F N

2 for the other diagrams
are tedious. Here we only show this simplest F1 and F2

as an example. The contribution of Fig. 1(e)+1(f) can
be written as

Γ µ(p)
e+f =

−(D+F )2

2f 2
INN
(e+f)π−

(3F+D)2

12f 2
INΛ
(e+f)K

− (D−F )2

4f 2
INΣ
(e+f)K , (38)

Γ µ(n)
e+f =

(D+F )2

2f 2
INN
(e+f)π−

(D−F )2

2f 2
INN
(e+f)K , (39)

where the loop integral is written as

INN
(e+f)π=F̃ (q)ū(p′)

∫

d4k

(2π)4
/kγ5F̃ (k)

i

/p′−/k−mN

ie

Dπ(k)

×/kγ5

(−2k+q)µ

−2kq+q2
[F̃ (k−q)−F̃ (k)]u(p)

+F̃ (q)ū(p′)

∫

d4k

(2π)4
e/kγ5

i

/p−/k−mN

i

Dπ(k)

×(−/kγ5)F̃ (k)
(2k+q)µ

2kq+q2
[F̃ (k+q)−F̃ (k)]u(p).

(40)

The contribution from Fig. 1(g) is expressed as

Γ µ(p)
g =

(c2−c1)(D+F )2

4f 2
INN

gπ
+(

1

3
c1+c2)

(3F−D)2

12f 2
INN

gη

− (3F+D)2c1

36f 2
INΛ

gK +
(D−F )2(c1+2c2)

4f 2
INΣ

gK

− (D−F )(3F+D)c1

6f 2
INΛΣ

gK , (41)

Γ µ(n)
g =

c2(D+F )2

2f 2
INN

gπ
−c1(3F−D)2

18f 2
INN

gη

− (3F+D)2c1

36f 2
INΛ

gK +
(D−F )2(c1−2c2)

4f 2
INΣ

gK

+
(D−F )(3F+D)c1

6f 2
INΛΣ

gK , (42)

where the loop integral is expressed as

INN
gπ

=ū(p′)F̃ (q)

∫

d4k

(2π)4
/kγ5F̃ (k)

i

/p′−/k−mN

×−eσµνqν

2mN

i

/p−/k−mN

i

Dπ(k)
/kγ5F̃ (k)u(p). (43)

With the obtained formulas we can do the numerical cal-
culations, and the results are shown in the next section.

4 Numerical results

In the numerical calculations, the coupling constants
are chosen as D=0.76 and F =0.50 (gA =D+F =1.26).
The constant C is chosen to be 1, which is the same as
in Ref. [39]. The low energy constants c1 and c2 are de-
termined by F p

2 (0) = 1.79 and F n
2 (0) =−1.91. There is

only one free parameter Λ, which is in the dipole regula-
tor. It is found that when Λ is around 0.8 GeV, we can
get reasonable results for both proton and neutron form
factors.

The proton Dirac form factor F p
1 (Q2) versus Q2 is

plotted in Fig. 2. The solid line is the empirical re-
sult, which is obtained from the combination of the em-
pirical value of Gp

E(Q2) = 1/(1+ Q2

0.71
)2 and Gp

M (Q2) =

2.79/(1+ Q2

0.71
)2. The three dashed lines, from bottom to

top, represent the results with Λ=0.7 GeV, 0.8 GeV and
0.9 GeV, respectively. As a comparison, the result with
dimensional regularization is also shown, by the dotted
line. From the figure, one can see at Q2 = 0, F1p is
1. The contribution from the additional diagrams gen-
erated from the expansion of the gauge link is essential
to ensure F p

1 (0) = 1. In other words, the local gauge
invariance guarantees charge conservation. Though for
the choices of Λ, our results are a little smaller than the
empirical values, they are much better than that with
dimensional regularization, especially at large Q2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Q
2�GeV2�

F
1p

Fig. 2. The Dirac form factor of the proton F
p
1

versus momentum transfer Q2. The three dashed
lines, from bottom to top, are for the results with
Λ=0.7 GeV, 0.8 GeV and 0.9 GeV, respectively.
The solid and dotted lines are for the empirical
and dimensional regularization result [18] respec-
tively.

The result of F p
2 (Q2) is plotted in Fig. 3. The solid,

dashed and dotted lines have the same meaning as in
Fig. 2, but are for F p

2 . Again, our results are much better
than that with dimensional regularization. The empiri-
cal lines is within our obtained range of F p

2 (Q2). From
these two figures for the proton form factors, one can see
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that the size effect of the nucleon at tree level is very
important to get a reasonable result at relatively large
Q2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Q
2�GeV2�

F
2p

Fig. 3. The Pauli form factor of the proton F
p
2 ver-

sus momentum transfer Q2. The three dashed
lines, from bottom to top, are for the results with
Λ=0.7 GeV, 0.8 GeV and 0.9 GeV, respectively.
The solid and dotted lines are for the empirical
and dimensional regularization result [18] respec-
tively.

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

Q
2�GeV2�

F
1n

Fig. 4. The Dirac form factor of the neutron F n
1

versus momentum transfer Q2. The three dashed
lines are for the results with Λ=0.7 GeV, 0.8 GeV
and 0.9 GeV, respectively. The dotted line is for
the dimensional regularization result [18]. The
dots with error bars are experimental data [44].

Next we will show the results for the neutron. When
we calculate F n

1 and F n
2 , the parameters are chosen to be

the same as in the proton case. The results of F n
1 versus

Q2 are shown in Fig. 4. The experimental data with er-
ror bars are from Ref. [44]. The sum of all the diagrams
in Fig. 1 automatically gives neutron charge 0 at zero
momentum transfer. The dashed curves correspond to
the three Λs, which are close to each other. All of them
are much better than the result with dimensional regu-
larization and comparable with the experimental data.

The curves of F n
2 are plotted in Fig. 5. The empir-

ical values are reproduced very well up to 1 GeV2 with

the proper choice of Λ. In the dimensional regulariza-
tion, all the calculated proton and neutron form factors
are almost linearly dependent on the momentum trans-
fer. It can only describe the form factors at very small
Q2. Numerical calculation shows the loop contribution
from K and η mesons is about one order of magnitude
smaller than that from the π meson. The major differ-
ence of the loop contribution from the chiral perturbation
theory calculation is due to the different regularization
scheme as applied to the pion loops. Another impor-
tant difference is that the nonlocal Lagrangian generates
both the regulator and momentum dependence of the
form factors at tree level, which is quite different from
that in pure chiral perturbation theory.

0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

Q
2�GeV2�

F
2n

Fig. 5. The Pauli form factor of the neutron F n
2

versus momentum transfer Q2. The three dashed
lines, from top to bottom, are for the results with
Λ=0.7 GeV, 0.8 GeV and 0.9 GeV, respectively.
The solid and dotted lines are for the empirical
and dimensional regularization result [18] respec-
tively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Q
2�GeV2�

F
2p

Fig. 6. The Pauli form factor of the proton F
p
2

versus momentum transfer Q2 with Λ 0.9 GeV.
The dashed, dotted and solid lines are for the tree
level, loop and total contributions respectively.

To see clearly how important the tree level contri-
bution to the form factors is, we show the proton Pauli
form factor in Fig. 6 as an example. The dashed, dot-
ted and solid lines are for the tree level, loop and total
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contributions to F p
2 respectively. From the figure, the

nonlinear Q2 dependence at tree level is crucial to get
a reasonable form factor. The loop contribution gives
less curvature. At Q2=0, the loop contributes 0.4, while
the 3-quark core contributes 1.4 to F p

2 . The importance
of the nonlinear Q2 dependence at tree level is similar
for the other form factors except for F n

1 , where the tree
level contribution is zero. To save space, instead of show-
ing the momentum dependence of the other form factors
with figures, we list the results in the table. In Table
1, we list the separate tree and loop contribution to the
form factors as well as the total contribution at differ-
ent momentum transfers. From the table, the tree level
contribution is always dominant. Similar to F p

2 , the mo-
mentum dependence of F p

1 and F n
2 at tree level is cru-

cial to get a final reasonable Q2 dependence. The loop
contribution provides less curvature in these cases. Our
calculation shows that the size effect is very important
to get a correct description of the nucleon form factors.
The nonlocal Lagrangian generates the momentum de-
pendence of the form factors at tree level. It also gen-

erates the regulator for the loop integral. Both of these
reflect the non-pointlike nature of the hadrons. There-
fore, the regulator makes the loop integral convergent.
It also makes the calculated form factors close to the
empirical data up to relatively large Q2.

We should mention that in our calculation, only one
free parameter in the dipole regulator is used. The pa-
rameters c1 and c2 are fixed by experimental F p

2 and F n
2

as in the dimensional regularization. However in the di-
mensional regularization, besides c1 and c2, the lines in
the above figures are obtained by four other additional
parameters (low energy constants) in order to get the
correct electromagnetic radii of the proton and neutron.
In our calculation, besides c1 and c2, only one parameter
in the dipole regulator is used. With this one free param-
eter, we can get reasonable form factors up to 1 GeV2.
The charge and magnetic radii are calculated instead of
fitted, and are comparable with the experimental data.
The parameters and the calculated moments and radii
are listed in Table 2.

Table 1. The separate tree, loop and total contribution to the nucleon form factors for different Q2 with Λ=0.9 GeV.

Q2/GeV2 F p
1 F p

2 F n
1 F n

2

tree loop total tree loop total tree loop total tree loop total

0 0.658 0.342 1 1.4 0.39 1.79 0 0 0 −1.52 −0.39 −1.91

0.25 0.384 0.187 0.571 0.815 0.27 1.085 0 0.00222 0.00222 −0.887 −0.254 −1.141

0.5 0.251 0.119 0.37 0.534 0.201 0.735 0 -0.00126 -0.00126 −0.581 −0.182 −0.763

0.75 0.177 0.083 0.26 0.376 0.155 0.531 0 -0.0037 -0.0037 −0.409 −0.137 −0.546

1 0.132 0.061 0.193 0.28 0.121 0.401 0 -0.00511 -0.00511 −0.304 −0.105 −0.409

Table 2. The parameters and obtained moments and radii for three choices of Λ. The experimental values are listed
in the last row.

Λ/GeV Z c1 c2 F p
2 F n

2 rMp/fm rEp/fm rMn/fm r2
En /fm2

0.7 0.77 3.29 1.05 1.79 −1.91 0.960 1.052 0.956 −0.145

0.8 0.71 3.37 1.03 1.79 −1.91 0.846 0.941 0.846 −0.146

0.9 0.66 3.46 0.97 1.79 −1.91 0.760 0.856 0.764 −0.149

EXP. - - - 1.79 −1.91 0.836 0.847 0.889 −0.113

5 Summary

We have constructed a nonlocal chiral effective La-
grangian which makes it possible to apply the successful
finite-range-regularization to the relativistic case. Dif-
ferent from FRR in the non-relativistic case, here the
regulator is not added by hand. It is derived from the
nonlocal Lagrangian. The local gauge invariance is re-
gained by the gauge link. As a result, the Dirac form
factor of the proton (neutron) at Q2 = 0 is automati-
cally 1 (0) when we study the nucleon form factors with

this nonlocal chiral Lagrangian. In this chiral effective
model calculation, baryon octet and decuplet intermedi-
ate states are included in the one-loop calculation. Com-
paring with the calculation in dimensional regularization,
besides c1 and c2, we have only one parameter instead
of four parameters in the case of dimensional regulariza-
tion. With fewer parameters, our results for both proton
and neutron are much better, especially at large Q2. The
parameter Λ is found to be 0.8±0.1 GeV, which will give
reasonable form factors for both proton and neutron up
to Q2 = 1 GeV2. The calculated charge and magnetic
radii are all comparable with the experimental data.
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