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Abstract: In the framework of the canonical seesaw model, we present a simple but viable scenario to explicitly

break an S3L×S3R flavor symmetry in the leptonic sector. It turns out that the leptonic flavor mixing matrix

is completely determined by the mass ratios of the charged leptons (i.e., me/mµ and mµ/mτ) and those of light

neutrinos (i.e., m1/m2 and m2/m3). The latest global-fit results of the three neutrino mixing angles {θ12,θ13,θ23}
and two neutrino mass-squared differences {∆m2

21,∆m2
31} at the 3σ level are used to constrain the parameter space

of {m1/m2,m2/m3}. The predictions for the mass spectrum and flavor mixing are highlighted: (1) the neutrino mass

spectrum shows a hierarchical pattern and a normal ordering, e.g., m1≈2.2 meV, m2≈8.8 meV and m3≈52.7 meV;

(2) only the first octant of θ23 is allowed, namely, 41.8◦ . θ23 . 43.3◦; (3) the Dirac CP -violating phase δ ≈−22◦

deviates significantly from the maximal value −90◦. All these predictions are ready to be tested in ongoing and

forthcoming neutrino oscillation experiments. Moreover, we demonstrate that the cosmological matter-antimatter

asymmetry can be explained via resonant leptogenesis, including the individual lepton-flavor effects. In our scenario,

leptonic CP violation at low- and high-energy scales is closely connected.
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1 Introduction

Recent neutrino oscillation experiments have firmly
established that neutrinos are massive particles and that
lepton flavors are significantly mixed [1, 2]. The leptonic
flavor mixing is described by a 3×3 unitary matrix V , the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [3,
4], which is conventionally parametrized through three
mixing angles {θ12,θ13,θ23}, one Dirac CP -violating
phase δ, and two Majorana CP -violating phases {ρ,σ}.
As usual, we take the standard parametrization of the
PMNS matrix [5],

V =







c13c12 c13s12 s13e
−iδ

−s12c23−c12s13s23e
iδ +c12c23−s12s13s23e

iδ c13s23

+s12s23−c12s13c23e
iδ −c12s23−s12s13c23e

iδ c13c23






·Pν , (1)

where cij≡cosθij and sij≡sinθij have been defined, and
Pν ≡Diag{eiρ,eiσ,1} is a diagonal matrix of two Majo-
rana CP -violating phases. The latest global analysis of
neutrino oscillation data [6] yields the best-fit values of
the three mixing angles as θ12 ≈ 33.6◦, θ13 ≈ 8.5◦ and

θ23≈41.6◦, and those of the two neutrino mass-squared
differences as ∆m2

21 ≡ m2
2−m2

1 ≈ 7.50×10−5 eV2 and
∆m2

31 ≡ m2
3−m2

1 ≈ 2.52×10−3 eV2. Although the nor-
mal ordering of neutrino masses (i.e., m1 < m2 < m3)
is slightly favored and there is a preliminary hint of a
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nearly-maximal CP -violating phase δ ≈ 261◦ or equiv-
alently δ ≈ −99◦, the possibility of an inverted mass
ordering (i.e., m3 < m1 < m2) and CP conservation in
the leptonic sector has not yet been excluded [6]. See
also the independent global-fit results from two other
groups [7–9]. An unambiguous determination of neu-
trino mass ordering and a robust discovery of leptonic
CP violation in neutrino oscillations are two primary
goals of future medium-baseline reactor (e.g., JUNO [10]
and RENO-50 [11]) and long-baseline accelerator neu-
trino experiments (e.g., T2K [12], NOνA [13] and LBNF-
DUNE [14]).

In order to accommodate neutrino masses, we can in-
troduce one right-handed neutrino N

αR (for α=e,µ,τ) for
each lepton family and write down the gauge-invariant
Lagrangian relevant for lepton masses and flavor mixing
as follows:

−L`=`LYlHER+`LY
ν
H̃NR+

1

2
NC

R MRNR+h.c., (2)

where `L and H̃ ≡ iσ2H
∗ denote respectively the left-

handed lepton doublet and the Higgs doublet, and ER

and NR the right-handed charged-lepton and neutrino
singlets. While Yl and Y

ν
are the 3×3 Yukawa cou-

pling matrices for charged leptons and neutrinos, MR

is a symmetric mass matrix for right-handed Majorana
neutrinos. After the Higgs field acquires its vacuum
expectation value 〈H〉 = v ≈ 174 GeV, the gauge sym-
metry is spontaneously broken down, and the charged-
lepton mass matrix Ml ≡ Ylv and Dirac neutrino mass
matrix MD ≡ Y

ν
v can be obtained. Since the Majo-

rana mass term of right-handed neutrinos is not sub-
ject to the gauge symmetry breaking, its absolute scale
O(MR) could be much higher than the electroweak scale
ΛEW ∼ 100 GeV, e.g., O(MR) ∼ 1014 GeV, close to the
scale of grand unified theories. At low energies, one can
integrate out heavy right-handed neutrinos, and the ef-
fective neutrino mass matrix is then given by the see-
saw formula M

ν
≈MDM−1

R MT
D [15–19]. In this canonical

seesaw model, the smallness of left-handed neutrinos can
be attributed to the heaviness of right-handed neutrinos,
and the lepton flavor mixing arises from the mismatch
between the diagonalizations of Ml and M

ν
. However,

the seesaw mechanism itself has told us nothing about
the flavor structures of the lepton mass matrices Ml,
MD and MR. Hence the lepton mass spectra and flavor
mixing remain to be understood in the canonical seesaw
model [20].

One typical approach to constrain the flavor struc-
tures is to impose a continuous or discrete flavor symme-
try on the generic Lagrangian in the first place, and then
a spontaneous or explicit symmetry breaking is intro-
duced to help accommodate realistic fermion mass spec-
tra, flavor mixing angles and CP violation [21, 22]. In
Ref. [21], Harari, Haut and Weyers proposed a specific

model for quark mass spectra and flavor mixing based
on an S3L×S3R symmetry, predicting a flavor democracy
in the quark sector. Since then, there have been a great
number of theoretical works on how to break the flavor
democracy or the S3L×S3R symmetry in order to explain
mass spectra and flavor mixing in both quark and lepton
sectors [23–62]. In this paper, we put forward a simple
but viable scenario for lepton mass spectra and flavor
mixing, in which the S3L×S3R symmetry in the lepton
sector is explicitly broken. We assume the following lep-
ton mass matrices:

Ml=M 0
l +∆Ml , MD=M 0

D+∆MD , MR=M 0
R+∆MR ,(3)

where M 0
x (for x=l,D,R) are determined by the S3L×S3R

flavor symmetry, and the perturbations ∆Mx (for x =
l,D,R) explicitly break the flavor symmetry and will be
specified later. Here the subscripts “L” and “R” of the
flavor symmetry S3L×S3R indicate that the correspond-
ing S3 symmetry transformation is nontrivially acting
only on left-handed or right-handed fermion fields, re-
spectively. As shown in Appendix A, it is straightforward
to prove that the lepton mass matrices in the symmetry
limit are uniquely given by

M 0
l =

cl

3







1 1 1

1 1 1

1 1 1






, M 0

D=
cD

3







1 1 1

1 1 1

1 1 1






,

M 0
R=

cR

3













1 1 1

1 1 1

1 1 1






+rR







1 0 0

0 1 0

0 0 1












, (4)

where cx characterizes the absolute mass scale of M 0
x (for

x = l,D,R), and rR is a dimensionless parameter. The
relative size of rR is able to determine whether the mass
spectrum of heavy Majorana neutrinos is hierarchical or
degenerate.

The present work differs from previous studies in
two aspects. First, we propose a rather simple form of
the perturbation matrices ∆Ml, ∆MD and ∆MR such
that neutrino masses and flavor mixing can be accom-
modated. Interestingly, the PMNS matrix is fully fixed
by the ratios of charged-lepton masses and those of neu-
trino masses, and a hierarchical pattern of neutrino mass
spectrum is favored. Moreover, the prediction for the
CP -violating phase is δ≈−22◦, which can be confirmed
or disproved in future long-baseline accelerator neutrino
oscillation experiments. Second, we calculate the CP
asymmetries in the decays of heavy Majorana neutrinos
in the early Universe, and find that the observed matter-
antimatter asymmetry can be successfully explained via
thermal leptogenesis [63]. However, one has to require a
mass degeneracy of heavy Majorana neutrinos and imple-
ment the mechanism of resonant leptogenesis [64, 65]. A
direct connection between the low-energy CP violation
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in neutrino oscillations and the high-energy CP asym-
metries in heavy Majorana neutrino decays can be es-
tablished.

The rest of our paper is organized as follows. In
Section 2, we specify the perturbation terms ∆Mx (for
x=l,D,R) and explore their implications for lepton mass
spectra, flavor mixing and CP violation. Then, the CP
asymmetries from the heavy Majorana neutrino decays
are calculated in Section 3. After taking account of res-
onant enhancement in CP asymmetries and individual
lepton-flavor effects, we show that the predicted baryon
number asymmetry can be compatible with cosmological
observations. We finally summarize our main results in
Section 4.

2 Mass spectra, flavor mixing and CP

violation

2.1 Analytical results

In the symmetry limit, the lepton mass matrices M 0
l ,

M 0
D and M 0

R are given in Eq. (4), where the democratic
matrix with all matrix elements being one is present. In
the Majorana mass matrix of heavy neutrinos, there is
an extra term proportional to the identity matrix, which
is however not affected by any orthogonal transforma-
tion to diagonalize the democratic matrix. As is well
known, the democratic matrix can be diagonalized by
the following orthogonal matrix

V0=
1√
6







√
3 1

√
2

−
√

3 1
√

2

0 −2
√

2






. (5)

All three matrices M 0
l , M 0

D and M 0
R are to be diago-

nalized by V0, as is the effective neutrino mass matrix
M 0

ν
=M 0

D(M 0
R)−1(M 0

D)T. Thus, the first two generations
of charged leptons and light neutrinos are massless, im-
plying no flavor mixing in the limit of exact S3L×S3R

flavor symmetry.
To account for lepton mass spectra and flavor mix-

ing, we shall introduce the perturbation terms ∆Ml and
∆MD, which explicitly break the S3L×S3R flavor symme-
try. Note that one can also break the mass degeneracy
of heavy neutrinos by assuming a proper ∆MR, which
is not necessary for our discussions on low-energy phe-
nomenology. We find that simple diagonal perturbations
will suffice for our purpose:

∆Ml=
cl

3







+iδl 0 0

0 −iδl 0

0 0 εl






, ∆MD=

cD

3







0 0 0

0 −δD 0

0 0 εD






, (6)

where 0 < δl � εl � 1 and 0 < δD � εD � 1 are implied.
Some discussions on different forms of perturbations can
be found in Ref. [58]. Then, we separately diagonalize

the charged-lepton and neutrino mass matrices.
1) Charged-lepton mass matrix M

l
— It is con-

venient to work in the hierarchical basis, which is de-
fined by the transformation V T

0 MlV0=M ′
l . In this basis,

one has to further diagonalize the symmetric matrix be-
low [30, 41, 49]

M ′
l =

cl

9







0 i
√

3δl i
√

6δl

i
√

3δl 2εl −
√

2εl

i
√

6δl −
√

2εl 9+εl






. (7)

The perturbation matrix ∆Ml leads not only to nonzero
electron and muon masses, but also to leptonic CP vio-
lation at both low- and high-energy scales. Based on the
relation of a strong hierarchy δl�εl�1, we can diago-
nalize M ′

l and obtain the masses of the charged leptons:

me≈
δ2
l

6εl

cl , m
µ
≈ 2εl

9
cl , m

τ
≈cl . (8)

In addition, the unitary matrix Vl, diagonalizing
the total charged-lepton mass matrix via V †

l MlV
∗
l =

Diag{me,mµ
,m

τ
}, is found to be:

Vl ≈ V0+
i√
6

√

me

m
µ







1 +
√

3 0

1 −
√

3 0

−2 0 0







+
1

2
√

3

m
µ

m
τ







0
√

2 −1

0
√

2 −1

0
√

2 2






. (9)

A salient feature is that all three model parameters
(cl,εl,δl) in the charged-lepton sector are determined
by three charged-lepton masses, as shown in Eq. (8),
and the unitary matrix Vl depends only on two mass
ratios. By making use of the running charged-lepton
masses at the energy scale of MZ = 91.2 GeV [66, 67]:
me ≈ 0.486570 MeV, m

µ
≈ 102.718 MeV and m

τ
≈

1746.17 MeV, we get me/m
µ
≈ 0.00474 and m

µ
/m

τ
≈

0.0588. From Eq. (8), one can immediately observe
the relations εl ≈ (9/2) ·(m

µ
/m

τ
) and δl/εl ≈ (2/

√
3) ·

(me/m
µ
)1/2, and then arrive at εl≈0.265 and δl≈0.0211,

which are consistent with the assumption that εl and δl

can be taken as small perturbation parameters.
2) Effective neutrino mass matrix M

ν
— Ac-

cording to the seesaw formula, the effective neutrino
mass matrix is given by

M
ν
≈ c2

D

3cRrR






rR







1 1 1

1 1 1

1 1 1






+

1

3







0 0 0

0 2δ2
D δDεD

0 δDεD 2ε2
D












,(10)

where 0<rR�δ2
D�ε2

D�1 has been assumed. Diagonal-
izing the effective neutrino mass matrix via V †

ν
M

ν
V ∗

ν
=

Diag{m1,m2,m3} and defining c
ν
≡c2

D/(3cRrR), the neu-
trino masses take on a normal ordering and the three
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mass eigenvalues are

m1≈rRc
ν
, m2≈

1

2
δ2
Dc

ν
, m3≈

2

3
ε2
Dc

ν
. (11)

The corresponding unitary matrix is

V
ν
≈















1
m1

m2

m1

m3

−m1

m2

1
1√
3
·
√

m2

m3

−m1

m3

− 1√
3
·
√

m2

m3

1















, (12)

where only the leading term of each matrix element is
kept. Similar to Vl in the charged-lepton sector, V

ν

is completely fixed by the ratios of the mass eigenval-
ues. Even with precise values of the three neutrino
masses, one cannot calculate all the model parameters
{cD,δD,εD} and {cR,rR} which appear in Eq. (11). The
determination of all these parameters calls for more ob-
servables related to heavy Majorana neutrinos, such as
the baryon number asymmetry, which is discussed in the
next section.

Therefore, the PMNS matrix can be calculated via
V =V †

l V
ν
, where the unitary matrices Vl and V

ν
can be

found in Eq. (9) and Eq. (12), respectively. More explic-
itly, we have

V ≈ 1√
6







√
3 −

√
3 0

1 1 −2√
2

√
2

√
2






− i√

6

√

me

m
µ







1 1 −2√
3 −

√
3 0

0 0 0






+

1

2
√

3

m
µ

m
τ







0 0 0√
2

√
2

√
2

−1 −1 2







+
1

3
√

2

√

m2

m3







0 0 −
√

3

0 2 1

0 −
√

2
√

2






+

1√
6

m1

m2







√
3

√
3 0

−1 1 0

−
√

2
√

2 0






+

1√
6

m1

m3







0 0
√

3

2 0 1

−
√

2 0
√

2






. (13)

The contribution proportional to m1/m3 from the neu-
trino sector has been retained, while that proportional
to me/m

τ
from the charged-lepton sector has been ne-

glected. The main reason is that although neutrino mass
spectrum in Eq. (11) is also hierarchical, the mass hier-
archy of neutrinos cannot be as strong as that of charged
leptons. This observation will become clearer soon when
the PMNS matrix in Eq. (13) is confronted with the lat-
est neutrino oscillation data. Some comments on the
phenomenological implications for the three flavor mix-
ing angles, CP -violating phases and neutrino masses are
in order:

1) Comparing the PMNS matrix V in Eq. (13) and
the standard parametrization in Eq. (1), we find:

sin2θ13 = |Ve3|2≈
1

6
·m2

m3

− 1√
3
·m1

m2

(

m2

m3

)3/2

+
1

2

(

m1

m2

)2(
m2

m3

)2

+
2

3
·me

m
µ

. (14)

The smallest mixing angle θ13 is mainly determined by
the mass ratio m2/m3, but with sub-leading contribu-
tions from both me/m

µ
and m1/m2. For a rough esti-

mate, we neglect all the terms associated with me/m
µ

and m1/m2. Given the best-fit value θ13 ≈ 8.5◦ or
sin2θ13≈0.022 from the latest neutrino oscillation data,
we obtain m2/m3≈0.132. However, as θ13 itself is very
small, the neglected terms may have a significant im-
pact on the determination of m2/m3. For instance, if
m1/m2 ≈ 0.25 is assumed, one can get m2/m3 ≈ 0.167
by numerically solving Eq. (14) with the best-fit value
sin2θ13≈0.022.

2) Then we proceed to calculate the other two mixing

angles θ12 and θ23. Adopting the standard parametriza-
tion, we have

sin2θ12 =
|Ve2|2

1−|Ve3|2
≈ 1

2

(

1−m1

m2

)2(

1+
1

6
·m2

m3

)

, (15)

sin2θ23 =
|V

µ3|2
1−|Ve3|2

≈ 2

3

[

1− 1

2
√

3
·
√

m2

m3

−1

2

(

m
µ

m
τ

+
m1

m3

)]2

×
(

1+
1

6
·m2

m3

)

, (16)

where only the dominant term of sin2θ13 in Eq. (14) is
considered. As indicated by Eq. (15), sin2θ12 is more
sensitive to the mass ratio m1/m2 than to m2/m3. How-
ever, from Eq. (16), the opposite is true for sin2θ23.
To estimate the predictions for θ12 and θ23, we in-
put m1/m2 = 0.25 and m2/m3 = 0.167, and then find
θ12≈32.5◦ or sin2θ12≈0.289 from Eq. (15) and θ23≈43.5◦

or sin2θ23≈0.474 from Eq. (16). Both values of θ12 and
θ23 lie in the allowed ranges 31.38◦ ≤ θ12 ≤ 35.99◦ and
38.4◦≤θ23≤52.8◦ at the 3σ level.

3) Now let us look at the CP -violating phases from
the PMNS matrix. Since the complex term in the PMNS
matrix is proportional to (me/m

µ
)1/2 ≈0.069, as shown

in Eq. (13), it is important for Ve3 but negligible for
other matrix elements. Therefore, the Dirac-type CP -
violating phase is approximately given as

δ ≈ −arctan

[

2

√

me

m
µ

·
√

m3

m2

(

1−
√

3·m1

m2

√

m2

m3

)−1
]

≈ −22.3◦ , (17)

where m1/m2 = 0.25 and m2/m3 = 0.167 have been
used. Recent measurements from T2K and NOνA
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have shown a preliminary hint of δ ≈ −90◦. The fu-
ture long-baseline accelerator neutrino oscillation exper-
iments, such as LBNF-DUNE [14] and T2HK [68], and
neutrino super-beam experiments, like ESSνSB [69] and
MOMENT [70, 71], are promising to unambiguously dis-
cover leptonic CP violation in neutrino oscillations.

Then, considering the freedom of rephasing the
charged-lepton fields, we can also extract two Majorana-
type CP -violating phases

ρ ≈ −arctan

[

1√
3

√

me

m
µ

(

1+
m1

m2

)−1
]

≈−1.8◦,

σ ≈ +arctan

[

1√
3

√

me

m
µ

(

1−m1

m2

)−1
]

≈+3.0◦, (18)

where are close to the trivial value π or 0. This is con-
sistent with our previous observation that all the PMNS
matrix elements but Ve3 are real at leading order.

4) Finally, we come to the neutrino mass spectrum.
The best-fit value of the neutrino mass-squared differ-
ence ∆m2

21≈7.50×10−5 eV2, together with m1/m2≈0.25
and m2/m3 ≈ 0.167, results in a full determination of
neutrino masses, i.e.,

m1 =
m1

m2

√

∆m2
21

1−(m1/m2)2
≈2.2 meV,

m2 ≈ 8.8 meV,

m3 ≈ 52.7 meV. (19)

On the other hand, the other neutrino mass-squared dif-
ference ∆m2

31≈2.77×10−3 eV2 can be computed by us-
ing the neutrino masses in Eq. (19), which is slightly
larger than the observed value 2.41×10−3 eV2.∆m2

31.

2.64×10−3 eV2 in the 3σ range. In order to see if the
ansätze of lepton mass matrices in Eqs. (4) and (6) are
really consistent with neutrino oscillation data, we shall
carry out a complete numerical analysis in the next sub-
section.

Given the perfectly measured charged-lepton masses,
the PMNS matrix is now completely fixed by two neu-
trino mass ratios m1/m2 and m2/m3, which can be de-
termined mainly from the observed values of sin2θ12 and
sin2θ13, respectively. Together with the mass-squared
difference ∆m2

21, these two neutrino mass ratios can then
be used to predict the mixing angle θ23, the CP -violating
phase δ, and three neutrino masses {m1,m2,m3}, which
will be soon tested in future precision data from neu-
trino oscillation experiments [72]. Moreover, the sum of
the three absolute neutrino masses will be probed with
unprecedented precision by the observations of cosmic
microwave background and large-scale structures [73].

2.2 Numerical analysis

Since a rough estimate of m1/m2 and m2/m3 leads
to predictions for the neutrino mixing angles and mass-
squared differences only in marginal agreement with neu-
trino oscillation data, a complete numerical calculation
is necessary to demonstrate the validity of the ansätze of
lepton mass matrices in Eqs. (4) and (6). Now we outline
the strategy to carry out our numerical calculations.

First, the values of m1/m2 and m2/m3 are randomly
chosen from the range [0,1], as expected for a normal
neutrino mass ordering. Then, we extract the three mix-
ing angles {θ12,θ13,θ23} directly from the PMNS matrix
elements, which are functions of m1/m2 and m2/m3. The
ratio of two neutrino mass-squared differences

∆m2
21

∆m2
31

=
m2

2

m2
3

(

1−m2
1

m2
2

)(

1−m2
1

m2
2

·m
2
2

m2
3

)−1

, (20)

can also be calculated. Both three mixing angles
{θ12,θ13,θ23} and the ratio ∆m2

21/∆m2
31 are then required

to lie within their 3σ ranges according to the latest
global-fit analysis [6]:

0.2716 sin2θ12 60.345,

0.019346 sin2θ13 60.02392, (21)

0.3856 sin2θ23 60.635,

for the mixing angles; and

7.03×10−5 eV26 ∆m2
21 68.09×10−5 eV2 ,

2.407×10−3 eV26 ∆m2
31 62.643×10−3 eV2 , (22)

for the neutrino mass-squared differences [6]. In addi-
tion, the lightest neutrino mass m1 can be found by
choosing one value of ∆m2

21 in its 3σ range, and then
the other mass-squared difference ∆m2

31 is computed and
confronted with Eq. (22). Finally, the viable values of
m1/m2 and m2/m3 satisfying the above requirements are
recorded, and the corresponding predictions for the three
mixing angles, the CP -violating phase δ, and the neu-
trino masses can be obtained.

The numerical results are given in Fig. 1, where we
show the allowed regions of the two neutrino mass ratios,
the three mixing angles, the Dirac CP -violating phase
and the absolute neutrino mass. Some comments on the
main features are in order.

1) As indicated in Fig. 1(a), only the ranges 0.19.

m1/m2 . 0.27 and 0.165 . m2/m3 . 0.185 are allowed
by current neutrino oscillation data. Hence, the neu-
trino mass spectrum is moderately hierarchical, namely,
m1 : m2 : m3 ≈ 1 : 5 : 30. In constrast, the mass hierar-
chy of charged leptons is extremely strong, i.e., me :mµ

:
m

τ
≈1:200:3400. With the help of Eq. (11), we obtain

rR/δ2
D≈m1/(2m2)≈ 0.1 and δ2

D/ε2
D ≈ 4m2/(3m3)≈ 0.22,

which are in reasonable agreement with the hierarchical
limit rR�δ2

D�ε2
D.
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Fig. 1. (a) The allowed regions of neutrino mass ratios (m1/m2,m2/m3), (b) the absolute neutrino mass m1 versus
the ratio of two neutrino mass-squared differences ∆m2

21/∆m2
31, and the mixing parameters (c) (sin2θ12,sin

2θ23)
and (d) (sin2θ13,δ), where the 3σ ranges of neutrino mixing parameters in Eqs. (21) and (22) have been used [6].

2) In general, the lightest neutrino mass m1 is
allowed to be zero. However, given the best-fit
value of ∆m2

21/∆m2
31 ≈ 0.0298, we have m2/m3 =

(∆m2
21/∆m2

31)
1/2 ≈ 0.17 in the limit of m1 = 0, imply-

ing sin2θ13≈(1/6)·(m2/m3)≈0.028 via Eq. (14). This is
obviously in contradiction with the 3σ upper bound on
sin2θ13 given in Eq. (21). As a consequence, a nonzero
value of m1 or m1/m2 is indispensable to reconcile a
larger value of ∆m2

21/∆m2
31≈0.0298 and a smaller value

of sin2θ13. In Fig. 1(b), the lightest neutrino mass is
strictly constrained to 1.6 meV.m1.2.6 meV, and the
other two masses can accordingly be obtained by using
the two mass ratios.

3) Fig. 1(c) and (d) give us the allowed regions of
(sin2θ12,sin

2θ23) and (sin2θ13,δ). The first octant of θ23,
i.e., θ23 <45◦, is favored, and the maximal mixing angle
θ23=45◦ is not reachable. Due to the strong correlation,
the allowed regions of three mixing angles are severely
constrained: 41.8◦ . θ23 .43.3◦, 31.4◦ . θ12 .35.5◦, and
8.45◦ . θ13 . 8.90◦. Compared to the 3σ ranges from
current neutrino oscillation data, only a relatively small
value of θ12 and a relatively large value of θ13 can survive.
Note that the CP -violating phase δ≈−22◦ does not vary

much, as it is determined by m2/m3 and m1/m2, whose
values have already been narrowed down to small re-
gions. All these features are ready to be tested in future
neutrino oscillation experiments.

Although we have not explored any implications for
the effective neutrino mass in tritium beta decays or in
neutrinoless double-beta decays, it is straightforward to
estimate them by using the PMNS matrix elements in
Eq. (13) and the corresponding absolute neutrino masses.
A normal mass ordering and the hierarchical mass spec-
trum imply an effective neutrino mass of a few meV,
which seems very difficult to detect in the foreseeable
future.

3 Baryon number asymmetry in the uni-

verse

In this section, we examine whether the lepton mass
matrices given in Eqs. (4) and (6) are also able to ex-
plain the baryon number asymmetry in our Universe
via thermal leptogenesis [63]. In particular, we focus
on the most attractive scenario in which heavy Majo-
rana neutrinos can be thermally produced in the early
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Universe, even with a vanishing initial abundance. The
central idea of leptogenesis is to first generate lepton
number asymmetries from the CP -violating and out-of-
equilibrium decays of heavy Majorana neutrinos, which
are subsequently converted into baryon number asym-
metry via efficient nonperturbative sphaleron processes.
See, e.g., Refs. [74–77] for excellent reviews on recent
developments in leptogenesis.

3.1 Exactly degenerate masses

To calculate the CP asymmetries from the decays of
heavy Majorana neutrinos, we should first diagonalize
their mass matrix MR to derive the mass spectrum. As
seen from the previous section, even with the Majorana
mass matrix M 0

R in the limit of exact S3L×S3R flavor sym-
metry, one can explain lepton mass spectra, flavor mixing
and leptonic CP violation at low energies. Hence, in this
subsection, we will not introduce an explicit symmetry-
breaking term in the right-handed neutrino sector. In
this case, it is evident that V †

0 MRV ∗
0 =Diag{M1,M2,M3},

where V0 is the democratic mixing matrix in Eq. (5) and
the three mass eigenvalues are given by

M1=M2=cRrR/3, M3=cR(1+rR/3). (23)

The mass spectrum is exactly degenerate between M1

and M2, and hierarchical for rR�1, i.e., M3�M2=M1.
We shall comment on how to break this mass degeneracy

in the next subsection.
In thermal leptogenesis, we assume that heavy Majo-

rana neutrinos can be thermally produced at high tem-
perature, and the lepton asymmetries generated from
N3 decays will be completely washed out by the lepton-
number-violating processes mediated by two relatively
light neutrinos N1 and N2. Therefore, we concentrate
only on the CP asymmetries from N1 and N2 decays

εiα≡
Γ (Ni→`αH)−Γ (Ni→`αH†)

∑

α

[

Γ (Ni→`αH)+Γ (Ni→`αH†)
] , (24)

for α=e,µ,τ and i=1,2, which arise from the interference
between the tree and one-loop decay amplitudes. Since
the Yukawa interactions of charged leptons are governed
by their masses and come into thermal equilibrium at
different temperatures, the production and washout of
lepton number asymmetries in individual lepton flavors
should be taken into account [78]. It has been found that
these lepton-flavor effects could significantly modify the
final baryon number asymmetry [79, 80]. This is also the
reason why we have to compute the CP asymmetries for
all distinct lepton flavors in Eq. (24).

In the flavor basis where the charged-lepton mass
matrix Ml and the heavy Majorana neutrino mass ma-
trix MR are diagonal, the Dirac neutrino mass matrix
M̃D=V †

l MDV ∗
0 can be written as

M̃D=cD

































−1

6
δD

1

6
√

3
δD

1

3
√

6
δD

1

6
√

3
δD

2

9
εD −

√
2

9
εD

1

3
√

6
δD −

√
2

9
εD 1+

1

9
εD

















−i

√

me

m
µ













1

6
√

3
δD

2

9
εD −

√
2

9
εD

−1

6
δD

1

6
√

3
δD

1

3
√

6
δD

0 0 0





























, (25)

where m
µ
/m

τ
� δD � εD � 1 is assumed and only

the leading-order terms are retained. As the imaginary
parts of the matrix elements in M̃D are suppressed by
(me/m

µ
)1/2 ≈ 0.069, compared to the real parts, small

CP asymmetries are generally expected. Taking account
of both self-energy and vertex corrections to heavy Ma-
jorana neutrino decays, one can get [20, 76]

εiα =
1

8πv2Hii

∑

k 6=i

{

Im
[

(M̃D)∗
αi(M̃D)

αkHik

]

F (xki)

+Im
[

(M̃D)∗
αi(M̃D)

αkH∗
ik

]

G(xki)

}

, (26)

with H≡M̃ †
DM̃D and xki≡M 2

k/M 2
i . The loop functions

are G(x)≡1/(1−x) and

F (x)≡
√

x

[

1+
1

1−x
+(1+x)ln

(

x

1+x

)]

. (27)

Some discussion of the CP asymmetries in Eq. (26) is
helpful. First, the total CP asymmetries εi =

∑

α
εiα ∝

Im[H2
ik] are vanishing due to the fact that H≡M̃ †

DM̃D=
V T

0 M †
DMDV0 is a real matrix. Consequently, CP asym-

metry exists only for each lepton flavor, and one has
to study the generation and evolution of lepton number
asymmetry of each lepton flavor. In addition, as shown
in Eq. (25), the matrix elements of M̃D in the third row
are real, so the tau-flavor asymmetries are zero. Second,
the exact mass degeneracy requires a more careful treat-
ment of the would-be singularity in 1/(M 2

2−M 2
1 ) residing

in the loop functions. In fact, the contribution to CP
asymmetries from the self-energy diagram is vanishing
for M1 =M2. Third, in the limit of M3�M2 =M1, the
loop function can be simplified as F (x)→−3/(2

√
x) and

G(x)→−1/x for x→+∞. With the help of Eqs. (25)
and (26), we can obtain
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ε1e = −ε1µ
≈−m1M1

48πv2

[

√

m2

m1

(1−2ln2)−3
√

6

2
·
√

M1

M3

]

√

m3

m1

·
√

me

m
µ

,

ε2e = −ε2µ
≈+

m1M1

48πv2

[

√

m2

m1

·
√

m2

m3

(1−2ln2)+
9√
2
·
√

M1

M3

]

√

m2

m1

·
√

me

m
µ

, (28)

and ε1τ = ε2τ = 0, where the relations in Eq. (11) and
(23) have been implemented to express the parameters
{cD,δD,εD} in terms of mass ratios of light and heavy
Majorana neutrinos. Unfortunately, it turns out that
the CP asymmetries in Eq. (28) are not sufficient to
achieve a successful leptogenesis. The main reasons are
summarized below:

1) As we have mentioned before, the total CP asym-
metry in Ni decays is vanishing, namely, εi≡εie+εiµ+εiτ=0
for i=1,2. If M1&1012 GeV, the one-flavor treatment of
leptogenesis is valid and only the total CP asymmetry
εi matters. For 109 GeV.M1.1012 GeV, the tau-flavor
Yukawa interaction of charged leptons comes into ther-
mal equilibrium, so we have to deal with tau flavor and
the other lepton flavors separately. However, the CP
asymmetries εi = 0 in the former case, and εiτ = 0 and
εie+εiµ = 0 in the latter case, indicate that no lepton
number asymmetries can be produced.

2) For M1 . 109 GeV, both tau- and muon-flavor
Yukawa interactions of charged leptons are in thermal
equilibrium, and thus we have to distinguish the produc-
tion and washout of lepton asymmetries in electron and
muon flavors, which will be converted into baryon num-
ber asymmetry via sphaleron processes. Since the source
of CP violation comes in with a factor of (me/m

µ
)1/2,

both the Dirac CP -violating phase in Eq. (17) and CP
asymmetries in Eq. (28) are suppressed. For an order-
of-magnitude estimate, we have

|εie|=|εiµ|≈
m1M1

48πv2

√

me

m
µ

.3×10−11 , (29)

where m1 ≈ 2.2 meV and M1 . 109 GeV have been
used. These CP asymmetries are too small to account
for the observed baryon-to-photon ratio ηB ≡ nB/nγ =
(6.09±0.06)×10−10 at the 95% confidence level [81].

In summary, the flavor structures of lepton mass ma-
trices in Eqs. (4) and (6) cause zero total CP asymmetry,
but this is not the case for the CP asymmetries of indi-
vidual lepton flavors. For the flavor effects to be at work,
the lightest heavy neutrino mass is bounded from above,
i.e., M1 .109 GeV, leading to insufficient production of
lepton number asymmetries. In the next subsection, we
shall go beyond the scenario of the partially degenerate
mass spectrum M1=M2�M3, and consider a tiny mass
splitting between M1 and M2.

3.2 Nearly degenerate masses

If the S3L×S3R symmetry is also explicitly broken

down in the right-handed neutrino sector, the mass de-
generacy between M1 and M2 will be shifted. For illus-
tration, we take the following perturbations for the heavy
Majorana neutrino mass matrix:

∆MR=
cR

3







−δR +δR 0

+δR −δR 0

0 0 0






, (30)

where |δR|� 1 is responsible for the mass splitting be-
tween N1 and N2. Even with this nontrivial pertur-
bation matrix, the full mass matrix MR can be diag-
onalized in the same way as before, i.e., V T

0 MRV0 =
Diag{M1,M2,M3}, where the mass eigenvalues are given
by

M1=cR(rR−2δR)/3, M2=cRrR/3, M3=cR(1+rR/3).
(31)

The mass degeneracy parameter, defined by ∆≡ (M2−
M1)/M2=2δR/rR, can be very small, since it is just the
ratio of the symmetry-breaking to symmetry-preserving
terms. Another advantage of the perturbations in
Eq. (30) can be immediately recognized: the mass spec-
trum of three light neutrinos and lepton flavor mixing are
not affected at all. Hence, all the previous conclusions
on low-energy phenomena are still valid.

As pointed out in Refs. [64, 65], the CP asymmetries
arising from the self-energy corrections involving N1 and
N2 will be greatly enhanced when their masses are nearly
degenerate. For this reason, we neglect the minor contri-
butions from the vertex correction, and those from the
heaviest neutrino N3 as well, and arrive at [82, 83]

εiα =
1

8πv2Hii

∑

k 6=i

{

Im
[

(M̃D)∗
αi(M̃D)

αkHik

]√
xki

+Im
[

(M̃D)∗
αi(M̃D)

αkH∗
ik

]

}

G′(xki), (32)

where xki≡M 2
k/M 2

i has been defined and the regularized
loop function reads

G′(xki)=
1−xki

(1−xki)
2+r2

ki

. (33)

Note that the regulator rki ≡ Γk/Mi, with Γk ≡
HkkMk/(8πv2) being the total decay width of Nk at the
tree level, guarantees the correct behavior of the CP
asymmetries in the limit of exact mass degeneracy, i.e.,
εiα → 0 for M1 →M2. With the help of Eq. (25), it is
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straightforward to derive

ε1e = −ε1µ
=+

1

3
·
√

m2

m3

·
√

me

m
µ

· r̃21∆

∆2+r̃2
21

,

ε2e = −ε2µ
=+

1

3
·
√

m2

m3

·
√

me

m
µ

· r̃12∆

∆2+r̃2
12

, (34)

where r̃21 ≡ r21/2 ≈ M1m3/(16πv2) and r̃12 ≡ r12/2 ≈
M1m2/(16πv2). Similar to the Dirac CP -violating phase
δ, the CP asymmetries are suppressed by the small
parameter (me/m

µ
)1/2. However, they can be reso-

nantly enhanced and the maximum of r̃21|∆|/(∆2+r̃2
21)

or r̃12|∆|/(∆2+r̃2
12) could reach 1/2, when |∆|≈r̃21 or r̃12

is satisfied. Note also that the sign of ∆ will be fixed by
the observed baryon number asymmetry.

In the strong washout regime, where heavy Majo-
rana neutrinos can be thermally produced, the final
baryon number asymmetry is independent of the ini-
tial conditions. We assume that the initial abundance
of heavy Majorana neutrinos follows the thermal distri-
bution at temperatures much higher than their masses,
i.e., T & M1 ≈ M2. The lepton number asymmetries
generated in heavy neutrino decays will not be com-
pletely destroyed by the lepton-number-violating inverse
decays and scattering processes. In this case, the final
baryon number asymmetry can be approximately com-
puted by [74, 75]

ηB≈−0.96×10−2
∑

i

∑

α

εiακiα , (35)

where the efficiency factors κiα measure how efficiently
the lepton number asymmetries will be destroyed. To
accurately calculate the efficiency factors, one should
solve a full set of Boltzmann equations for the evolu-
tion of lepton number asymmetries in different flavors.
However, we instead follow an approximate and ana-
lytical approach by introducing the decay parameter
Ki ≡ m̃i/m∗, where the effective neutrino mass is de-
fined as m̃i≡Hii/Mi and the equilibrium neutrino mass
is m∗ ≈ 1.08×10−3 eV. If the individual decay param-
eter Kiα ≡Ki|(M̃D)

αi|2/Hii happens to be in the range
5.Kiα .100, κiα ≈0.5/K1.2

iα [84, 85] is a good approxi-
mation. In the limit of degenerate masses, i.e., M1≈M2,
one has to replace Kiα by the sum K1α+K2α in calculat-
ing the individual efficiency factor κiα. In our case, it is
easy to derive m̃1≈m2 and m̃2≈m3, and K1e/K1≈1/2,
K1µ

/K1≈1/6, and K2e/K2≈m2/(6m3), K2µ
/K2≈2/3.

For illustration, we take m2=8.8 meV and m3=52.7 meV
as in Eq. (26), and then obtain

K1≈
m2

m∗

≈8.15, K1e≈4.07, K1µ
≈1.36, (36)

and

K2≈
m3

m∗

≈48.8, K2e≈1.36, K2µ
≈32.5, (37)

implying κ1e = κ2e ≈ 0.5/(K1e+K2e)
1.2 ≈ 6.6×10−2 and

κ1µ
=κ2µ

≈0.5/(K1µ
+K2µ)1.2≈7.3×10−3. Putting it all

together, we finally get

ηB ≈ −5.4×10−6· r̃21∆

∆2+r̃2
21

(

1+0.167
∆2+r̃2

21

∆2+r̃2
12

)

=















6.3×10−6
r̃21

|∆| , |∆|�r̃21

3.8×10−5
|∆|
r̃21

, |∆|�r̃21

, (38)

where ∆ should be negative in order to account for the
observed positive ηB, and the parameter

r̃21≈3.5×10−14

(

M1

103 GeV

)

, (39)

depends crucially on the heavy Majorana neutrino mass
M1. For M1=1 TeV, the best-fit value ηB=6.09×10−10

requires the mass degeneracy parameter to be ∆ =
−3.6×10−10 or −5.6×10−19. As ∆=2δR/rR arises from the
soft breaking of S3L×S3R flavor symmetry, it is naturally
expected to be small. If M1 ≈ 109 GeV is assumed, we
shall obtain ∆=−3.6×10−4 or −5.6×10−13. Therefore,
we have demonstrated that the baryon number asymme-
try can also be explained in our scenario by implementing
the mechanism of resonant leptogenesis, including lepton
flavor effects. It is worth stressing that the CP -violating
phase δ ≈ −22◦ leads to a wrong sign of baryon num-
ber asymmetry, which however can be corrected by the
degeneracy parameter ∆.

4 Summary

In this paper, we have examined a simple but viable
scenario to explicitly break the S3L×S3R flavor symmetry
in the canonical seesaw model. In the symmetry limit,
both charged-lepton mass matrix Ml and Dirac neutrino
mass matrix MD take on the democratic form, while the
heavy Majorana neutrino mass matrix MR consists of
a democratic part and another part proportional to the
identity matrix. After introducing the diagonal pertur-
bation matrices ∆Ml and ∆MD, we have explored their
implications for lepton mass spectra, flavor mixing angles
and CP -violating phases at low energies, and calculated
the baryon number asymmetry in our Universe via the
mechanism of thermal leptogenesis.

At the low-energy scale, the effective neutrino mass
matrix is given by the famous seesaw formula M

ν
=

MDM−1
R MT

D . The leptonic flavor mixing matrix V , aris-
ing from the diagonalizations of Ml and M

ν
, is com-

pletely determined by the mass ratios of charged leptons,
i.e., me/m

µ
and m

µ
/m

τ
, and those of neutrinos, i.e.,

m1/m2 and m2/m3. The 3σ ranges of the three neutrino
mixing angles and two mass-squared differences from the
latest global analysis of neutrino oscillation data have
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been used to constrain the parameter space of the neu-
trino mass ratios. It turns out that our scenario is consis-
tent with current neutrino oscillation data, and the neu-
trino mass ratios are found to be 0.19.m1/m2.0.27 and
0.165.m2/m3.0.185. Consequently, a hierarchical pat-
tern of the neutrino mass spectrum (e.g., m1≈2.2 meV,
m2 ≈ 8.8 meV and m3 ≈ 52.7 meV) and a normal mass
ordering are favored. The allowed regions of mixing an-
gles are 41.8◦ . θ23 . 43.3◦, 31.4◦ . θ12 . 35.5◦, and
8.45◦.θ13.8.90◦, together with the Dirac CP -violating
phase δ≈−22◦, are ready to be tested in future neutrino
oscillation experiments.

If the S3L×S3R symmetry is preserved in the right-
handed neutrino sector, the two heavy neutrinos N1 and
N2 are exactly degenerate in mass. As a consequence
of the flavor structures of the lepton mass matrices, the
CP asymmetries in the heavy neutrino decays are found
to be εiτ = 0 and εie + εiµ = 0 for i = 1,2. An up-
per bound M1 = M2 . 109 GeV should be met for the
flavored leptogenesis to work efficiently. However, we
find that the CP asymmetries for M1 = M2 . 109 GeV
are insufficient to explain the observed baryon number
asymmetry. If the flavor symmetry is explicitly broken

for heavy Majorana neutrinos as well, the CP asymme-
tries from the mixing between N1 and N2, which are
nearly degenerate in mass, will be resonantly enhanced.
In this case, even for M1 ≈ M2 ≈ 1 TeV, we can suc-
cessfully explain the observed baryon-to-photon number
ratio ηB≈6.09×10−10 by setting a tiny mass degeneracy
∆≡(M2−M1)/M2≈−3.6×10−10 or −5.6×10−19. As such a
mass splitting comes from the flavor symmetry breaking,
it is naturally expected to be small.

Notice that the Dirac CP -violating phase, stemming
from the perturbation matrix ∆Ml, is also responsible
for the CP asymmetries in heavy Majorana neutrino de-
cays, which are indispensable for explaining cosmologi-
cal matter-antimatter asymmetry. Thus, the generation
of electron mass, the Dirac CP -violating phase and the
baryon number asymmetry are closely connected in this
simple scenario. Certainly, further efforts should be de-
voted to constructing a full model for lepton mass spectra
and flavor mixing based on the S3L×S3R flavor symmetry.
The phenomenological studies in this paper are helpful
in looking for a viable way of flavor symmetry breaking,
and instructive for understanding lepton mass spectra,
flavor mixing pattern and CP violation.

Appendix A

In this appendix, we show explicitly how to derive the lep-
ton mass matrices in Eq. (4) in the limit of an exact S3L×S3R

symmetry. First of all, let us summarize the main properties
of the symmetry group S3 of the permutations of three ob-
jects. The order of S3 is equal to 3!=6, and the six elements
correspond to the following transformations

e: (x1,x2,x3)→(x1,x2,x3),

a1 : (x1,x2,x3)→(x2,x1,x3),

a2 : (x1,x2,x3)→(x1,x3,x2),

a3 : (x1,x2,x3)→(x3,x2,x1),

a4 : (x1,x2,x3)→(x3,x1,x2),

a5 : (x1,x2,x3)→(x2,x3,x1), (A1)

which can also be represented by six matrices

P (e):







1 0 0

0 1 0

0 0 1






, P (a1):







0 1 0

1 0 0

0 0 1






, P (a2):







1 0 0

0 0 1

0 1 0






,

P (a3):







0 0 1

0 1 0

1 0 0






, P (a4):







0 0 1

1 0 0

0 1 0






, P (a5):







0 1 0

0 0 1

1 0 0






,

(A2)

acting on a reducible triplet x≡(x1,x2,x3)
T. These six group

elements can be categorized into three conjugacy classes

C1 ={e}, C2 ={a1a2,a2a1}, and C3 ={a1,a2,a2a1a2}, where
a1a2 =a4, a2a1 =a5, and a1a2a1 =a2a1a2 =a3 can be easily
identified. The irreducible representations of S3 contain two
singlets 1 and 1′, and one doublet 2. The representations of
the singlets 1 and 1′ are just given by their characters, while
those of the doublet 2 are found to be

D(e):

(

1 0

0 1

)

, D(a1):

(

−1 0

0 1

)

, D(a2):







1

2

√
3

2√
3

2
−1

2






,

D(a3):







1

2
−
√

3

2

−
√

3

2
−1

2






,

D(a4):







−1

2
−
√

3

2√
3

2
−1

2






,

D(a5):







−1

2

√
3

2

−
√

3

2
−1

2






. (A3)

For a reducible triplet x=(x1,x2,x3)
T, it is always possible

to find a unitary matrix U which can be used to diagonal-
ize P (a1) and leads to a block-diagonal form of P (ai) (for
i=2,··· ,5) in the transformed basis x′=U†x. One can verify

113105-10
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that the new representation matrices P ′(ai)=U†P (ai)U turn
out to be

P ′(ai):

(

D(ai) 0

0 1

)

, (A4)

for i=0,1,··· ,5 and a0≡e, and that the unitary matrix U is
just the democratic mixing matrix V0 in Eq. (5). Now that







x′
1

x′
2

x′
3






=V †

0







x1

x2

x3






=

1√
6







√
3(x1−x2)

x1+x2−2x3√
2(x1+x2+x3)






, (A5)

we can identify the singlet and doublet states

S=
1√
3
(x1+x2+x3), M =







1√
2
(x1−x2)

1√
6
(x1+x2−2x3)






. (A6)

The direct product of two doublets M1 = (b1,c1)
T and

M2=(b2,c2)
T can be decomposed into three irreducible rep-

resentations

(

b1

c1

)

2

⊗
(

b2

c2

)

2

= (b1b2+c1c2)1+(b1c2−b2c1)1′

+

(

b1c2+b2c1

b1b2−c1c2

)

2

. (A7)

For more details about the S3 symmetry group, refer to recent
reviews on discrete flavor symmetries and their applications
in particle physics [86, 87].

Second, we explain the assignments of fermion fields
and write down the Lagrangian for lepton masses under the
S3L ×S3R symmetry, following the idea of Ref. [21]. All
the left-handed (right-handed) fermion fields are assigned as
a reducible three-dimensional representation of S3L (S3R),
namely, (`eL,`µL,`τL)T, (eR,µR,τR)T and (NeR,NµR,NτR)T,
and as a trivial representation of S3R (S3L). The correspond-
ing representations of S3L or S3R group elements are given
in Eq. (41). To construct an S3L×S3R-invariant Lagrangian
for lepton masses, we are only allowed to use the left-handed
singlet S`

L
≡ (`eL+`µL+`τL)/

√
3 and right-handed singlets

SE
R
≡ (eR+µR+τR)/

√
3 for the charged-lepton Yukawa in-

teraction, and S`
L

and SN
R

≡ (NeR +NµR +NτR)/
√

3 for
the Dirac neutrino Yukawa interaction. However, for the
Majorana mass term of right-handed neutrinos, the doublet
MN

R
= ((NeR−NµR)/

√
2,(NeR+NµR−2NτR)/

√
6)T is also

available. Hence, the invariant Lagrangian with respect to
an S3L×S3R symmetry is given by

−L` = ylS`
L

HSE
R
+yνS`

L

H̃SN
R

+
1

2

[

αRSC
N

R

SN
R
+βR(MC

N
R

MN
R
)1

]

+h.c.. (A8)

Comparing Eq. (47) and Eq. (2), we can obtain Eq. (4)
by identifying cl = ylv, cD = yνv, cR = αR−βR and rR =
3βR/(αR−βR).
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