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Abstract: We have studied Yang-Baxter deformations of supercoset sigma models with Z4m grading. The defor-

mations are specified by a skew-symmetric classical r-matrix satisfying the classical Yang-Baxter equations. The

deformed action is constructed and the Lax pair is also presented. When m=1, our results reduce to those of the

type IIB Green-Schwarz superstring on AdS5×S
5 background recently given by Kawaguchi, Matsumoto and Yoshida.

Keywords: sigma model, supercoset target, Yang-Baxter deformation, Lax pair

PACS: 11.10.Lm, 11.15.-q, 02.30.Ik DOI: 10.1088/1674-1137/41/11/113101

1 Introduction

Non-linear sigma models with supermanifolds as tar-
gets have attracted much interest due to their appli-
cations to string theory and condensed matter physics.
String theory on AdSd×Sd (d=2,3,5), AdSp(p=2,4,6),
AdS5×S1 and AdS4×CP 3 backgrounds are described
by superspace sigma models with Z4 grading [1–9]. The
Z4-grading property of the supercoset ensures its classi-
cal integrability. Bena, Polchinski and Roiban [10] found
that string theory on AdS5×S5 has an infinite number of
non-local classically conserved charges. Thus the model
is classically integrable. Subsequently Vallilo showed [11]
that such charges also exist in the pure spinor formalism
for the superstring. A complete proof of classical inte-
grability of the superstring on AdS5×S5 was achieved in a
-weak.sense in the pure spinor formalism by Schafer-
Nameki and Mikhailov [12] and in a -strong.sense in
both the Green-Schwarz and pure spinor formalisms by
Magro [13].

The study of integrable deformations of integrable
non-linear sigma models is an interesting topic. The
Yang-Baxter sigma-model description, which was orig-
inally introduced by Klimcik [14], is a systematic way

to consider integrable deformations of 2D non-linear
sigma models. By following this approach, the de-
formations are specified by skew-symmetric classical r-
matrices satisfying the modified classical Yang-Baxter
equations (mCYBE). Delduc, Magro and Vicedo ex-
tended this to sigma models defined on bosonic sym-
metric cosets [15] and succeeded in constructing a q-
deformed action of the AdS5×S5 superstring [16, 17]. The
deformed metric and the B-field of the deformed AdS5×S5

superstring were determined in Ref. [18] and the full
background has been discussed in Ref. [19]. Some special
cases of the background were examined in Ref. [20] and
a mirror TBA was proposed in Ref. [21]. Giant magnon
solutions were constructed in Ref. [22]. The deformed
Neumann models were obtained in Ref. [23].

As a generalization of Ref. [16], one may consider the
integrable deformations with classical r-matrices satisfy-
ing the classical Yang-Baxter equation (CYBE), rather
than mCYBE. Deformations of the AdS5×S5 superstring
by the CYBE were proposed in Ref. [24] and the super-
gravity solution was constructed in Ref. [25]. The super-
coset construction of Yang-Baxter deformed AdS5×S5

backgrounds was performed in Ref. [26]. The generic
formulation for group manifolds and bosonic cosets was
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introduced in Ref. [27]. In a series of works [24, 28–33],
the associated classical r-matrices were identified with
the well-known type IIB supergravity solutions including
the γ deformations of S5, gravity duals for noncommu-
tative gauge theories, and Schrödinger spacetimes. The
Yang-Baxter deformations have been further generalized
to 4D Minkowski spacetime [34, 35].

Young [36] generalized Bena, Polchinski and Roiban’s
results [10] to all coset (super-)spaces G/H in which, at
the level of the Lie algebras, h is the grade-zero sub-
space of a Zm-grading of g. The quantum behaviour
and the Hamiltonian analysis of supercoset sigma mod-
els with Z2n grading were discussed in Refs. [37, 38]. The
supercoset sigma models with the Z4m grading are inte-
grable non-linear sigma models which include the Green-
Schwarz sigma models with the Z4 grading as a special
case m=1. The action and the flat currents of supercoset
sigma models with Z4m grading was investigated in Ref.
[39]. The classical exchange algebra of the model was
studied in Ref. [40]. This type of sigma model may have
applications in condensed matter physics, string theory
and other domains in physics. In this paper, we investi-
gate Yang-Baxter deformations of supercoset sigma mod-
els with Z4m grading.

2 Yang-Baxter deformations of super-

coset sigma models with Z4m
grading

Let g be a Lie superalgebra admitting a Z4m grading.

That is, g may be written as a direct sum g=
4m−1
∑

k=0

g(k) of

vector subspaces where g(0) =h, and this decomposition
satisfies the algebra

[

g(r),g(s)
]

⊂ g(p) with p = r+s mod
4m. Let G denote the corresponding supergroup (for
examples, the supergroup PSL(2r|2r), SU(2m,2m|4m)
etc). The supertrace is compatible with the Z4m grading,
which means that StrX (i)Y (j)=0 for X (i)∈g(i), Y (j)∈g(j)

and i+j 6= 0 mod 4m. Let g(xµ) be a two-dimensional
field valued in an even faithful matrix representation of
G, where x0 =τ,x1 =σ are time and spatial coordinates
of the string world-sheet. The left-invariant one-form
is defined as A = g−1dg ∈ g and can be decomposed as

A=
4m−1
∑

k=0

A(k), here A(k)∈g(k),k=0,1,2,...,4m−1.

The deformed action of the supercoset sigma models
with Z4m grading is given by

S=−1

4
(γαβ−εαβ)

∫

∞

−∞

dτ

∫ 2π

0

dσStr

(

Aαd◦ 1

1−ηRg◦d
Aβ

)

.

(1)

Here γαβ=hαβ
√
−h is the Weyl-invariant combination of

the world-sheet metric hαβ with detγ =−1. In the con-
formal gauge γαβ = diag(−1,+1) . The anti-symmetric
tensor εαβ is normalized as ετσ = 1. The real constant

η ∈ [0,1) measures the associated deformation. In the
η → 0 limit, the action (1) reduces to the undeformed
one [39]. The operator Rg is defined as

Rg(X)≡Ad−1
g ◦R◦Adg(X)=g−1R(gXg−1)g, X∈g,

(2)

where the linear operator R is antisymmetric

Str(R(X)Y )=−Str(XR(Y )), (3)

and satisfies the classical Yang-Baxter equation (CYBE)

[R(X),R(Y )]−R([R(X),Y ]+[X,R(Y )])=0. (4)

The R-operator is related to a classical r-matrix in the
tensorial notation through

R(X)=Str2[r(1⊗X)]=
∑

i

(aiStr(biX)−biStr(aiX)), (5)

with
r=

∑

i

ai∧bi≡
∑

i

(ai⊗bi−bi⊗ai), (6)

where the generators ai,bi are some elements of g. The
r-matrix satisfies the CYBE in the tensorial notation

[r12,r13]+[r12,r23]+[r13,r23]=0. (7)

The operators d and d̃ are defined as linear combina-
tions of operators Pk,k=1,2,3,...,4m−1,

d=

2m−1
∑

r=1

qrPr+2P2m−
2m−1
∑

r=1

qrP4m−r , (8)

d̃=−
2m−1
∑

r=1

qrPr+2P2m+

2m−1
∑

r=1

qrP4m−r , (9)

where Pi (i=0,1,2,...,4m−1) are the projections to the
Z4m-graded components of g, Pi(X)=X(i),X(i)∈g(i),qr=
r

m
. The operator d̃ is the transpose of d and satisfies

Str(Xd̃(Y ))=Str(d(X)Y ). (10)

We introduce the light-cone expression of Aα like

A±≡Aτ±Aσ . (11)

With these notations, the Lagrangian of the action can
be written as;

L=
1

4
Str(A−d(J+))=

1

4
Str(A+d̃(J−)), (12)

where J± is a deformed current defined as

J−=
1

1+ηRg◦d̃
A−, J+=

1

1−ηRg◦d
A+. (13)

To find the equation of motion, we define a variation
of g ∈G as δg = gε with an infinitesimal parameter ε .
Then the following relations are derived:

δA±=∂±ε+[A±,ε], (14)

δ(Rg◦d)(X)=(Rg◦d)(δX)+[(Rg◦d)(X),ε]−Rg([d(X),ε].

(15)
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By use of Eqs. (14), (15) and (10), after some calcula-
tion, we get the equation of motion

E≡∂+d̃(J−)+∂−d(J+)+[J+,d̃(J−)]+[J−,d(J+)]=0. (16)

By definition of the undeformed current A±, the zero-
curvature condition is

Z≡∂+A−−∂−A++[A+,A−]=0, (17)

which can be rewritten in terms of the deformed current
J± as

Z ≡ ∂+J−−∂−J++[J+,J−]+ηRg(E)

+η2CYBEg(d(J+),d̃(J−))=0, (18)

where

CYBEg(X,Y ) ≡ [Rg(X),Rg(Y )]−Rg([Rg(X),Y ]

+[X,Rg(Y )]). (19)

Note that CYBEg(X,Y ) vanishes if the R-operator satis-
fies the CYBE in Eq.(4). The relations in Eq.(18) mean
that J± also satisfies the flatness condition with the equa-
tions of motion E=0.

With the help of the projection operators Pi (i =
0,1,2,...,4m−1), it is convenient to write the equations
of motion (16) and the flatness condition (17) as

C(0)=∂+J (0)
− −∂−J (0)

+ +[J (0)
+ ,J (0)

− ]+

4m−1
∑

i=1

[J (i)
+ ,J (4m−i)

− ]=0,

(20)

C(r) = ∂+J (r)
− −∂−J (r)

+ +

r
∑

i=0

[J (i)
+ ,J (r−i)

− ]

+

4m−1
∑

i=r+1

[J (i)
+ ,J (4m+r−i)

− ]=0, (21)

C(2m)=∂−J (2m)
+ −

2m
∑

i=1

[J (i)
+ ,J (2m−i)

− ]=0, (22)

C(4m−r)=

2m
∑

i=2m−r+1

[J (i)
+ ,J (4m−i−r)

− ]=0,r=1,2,...2m−1,

(23)

D(r) = ∂+J (4m−r)
− −∂−J (4m−r)

+ +

4m−r
∑

i=0

[J (i)
+ ,J (4m−i−r)

− ]

+

4m−1
∑

i=4m−r+1

[J (i)
+ ,J (8m−i−r)

− ]=0,r=1,2,...2m−1,

(24)

D(2m) = ∂+J (2m)
− +[J (0)

+ ,J (2m)
− ]

+
4m−1
∑

[
i=2m+1

J (i)
+ ,J (6m−i)

− ]=0,r=1,2,...2m−1,

(25)

D(4m−r)=

2m+r
∑

[
i=2m+1

J (i)
+ ,J (4m+r−i)

− ]=0,r=1,2,...2m−1. (26)

A Lax pair for the deformed action is given by

L+=J (0)
+ +

2m−1
∑

i=1

λiJ (i)
+ +λ2mJ (2m)

+ +
2m−1
∑

i=1

λ−iJ (4m−i)
+ , (27)

L−=J (0)
− +

2m−1
∑

i=1

λiJ (i)
− +λ−2mJ (2m)

− +

2m−1
∑

i=1

λ−iJ (4m−i)
− , (28)

where λ is the spectral parameter. After some calcula-
tion, one can obtain the curvature of L in terms of C(i)

and D(i) as follows:

∂+L−−∂−L++[L+,L−]

= C(0)+
2m−1
∑

r=1

λr(C(r)−D(4m−r))−λ2mC(2m)

+
2m−1
∑

r=1

λ(4m−r)C(4m−r)+
2m−1
∑

r=1

λ−r(D(r)−C(4m−r))

+λ−2mD(2m)+

2m−1
∑

r=1

λ−(4m−r)D(4m−r). (29)

Therefore by Eqs. (20)-(26), the current L is flat. The
equation of motion E =0 and the zero curvature condi-
tion Z=0 are equivalent to the flatness condition of the
Lax pair L±(λ)

∂+L−−∂−L++[L+,L−]=0. (30)

Thus the models defined in Eq. (1) are classically inte-
grable.

3 Conclusion

In this paper, we have studied the Yang-Baxter de-
formations of supercoset sigma models with Z4m grad-
ing by adopting a prescription invented by Deldue, Ma-
gro and Vicedo. The deformations are specified by the
skew-symmetric classical r-matrix satisfying the classi-
cal Yang-Baxter equations. The deformed action has
been constructed and the Lax pair has also been pre-
sented. The existence of the flat currents is an indication
of the integrability for the model. The integrability of the
model is interesting and deserves further study. From the
calculation, we find that our results are algebraic and do
not rely on a specific choice of the supercoset. When m=
1 and the supercoset is PSU(2,2|4)/[SO(4,1)×SO(5)],
our results reduce to those of the type IIB Green-Schwarz
superstring on AdS5×S5 background recently given by
Kawaguchi, Matsumoto and Yoshida in Ref. [24].
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