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Abstract:
dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new
With
the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type
spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized

The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the

symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations.

Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework
of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate
independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion
in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global
Poincaré symmetry P(1,5)= SO(1,5)x P"*® as well as the charge spin gauge symmetry SU(2). The theory leads to
the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced
to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the
massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are
obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield
as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part
provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for

the mass generation of Dirac fermions is demonstrated.

Keywords: gravitational gauge field theory, maximal symmetry of massless Dirac fermion, extra dimensions, mass

generation
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1 Introduction

After building the theory of general relativity [2], Ein-
stein predicted the existence of gravitational waves [3].
The direct observation of gravitational waves at LIGO [4]
and the discovery of the Higgs boson at the LHC [5, 6]
motivate us to further explore more fundamental issues,
such as the structure of matter, the dynamics of space-
time, the origin of the universe and the mass generation
of quantum fields. These are the most challenging prob-
lems in the basic sciences and all concern a deep under-
standing of the nature of gravity.

The gravitational force is currently characterized by
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the theory of general relativity (GR), which is applied
successfully to describe the macroscopic world. GR was
formulated by Einstein based on the postulate: the laws
of physics must be of such a nature that they apply to
systems of reference in any kind of motion. More explic-
itly, the physical laws of nature are to be expressed by
equations which hold good for all systems of coordinates,
1 8nG he®
R,.—=9.R=—Z-T,,, GZM—}%,

2 ct

(/LZO, 1,273) (1)

where G is Newton’s gravitational constant and c the
speed of light in vacuum, and i and Mp the Planck con-
stant and Planck mass, respectively. The left-hand side
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shows the geometric property of spacetime with R, the
Ricci tensor and R=g¢""R,,, the curvature tensor, which
is determined by the metric tensor g,,, and the right-
hand side reflects the property of matter with 7}, the
energy-momentum tensor of matter.

The establishment of GR and its experimental tests
have led to a breakthrough in the understanding of the
structure of spacetime and the correlation between the
geometric property and matter distribution. It has been
shown that the gravitational force is characterized as
the dynamic Riemannian geometry of curved space-time.
Namely, the physical laws are invariant under the gen-
eral linear transformation of local GL(4,R) symmetry,
which indicates that space and time can no longer be
well defined in such a way that the differences of the spa-
tial coordinates or time coordinate can be directly mea-
sured by the standard ways proposed in special relativ-
ity. Furthermore, energy-momentum conservation can-
not be well defined, as the GL(4,R) group contains no
symmetry of the translational group P":3. Manifestly, it
is in contrast to other three basic forces, the electromag-
netic, weak and strong forces [7—15], which are all de-
scribed by gauge field interactions within the framework
of quantum field theory (QFT). QFT has been estab-
lished based on the globally flat Minkowski spacetime of
special relativity and possesses a global symmetry of in-
homogeneous Lorentz groups in four-dimensional space-
time, which contains both the Lorentz group SO(1,3)
and translational group P!, i.e., Poincaré group P(1,3)
= SO(1,3)x P13,

Such an odd dichotomy causes difficulties for the
quantization of gravitational force and the unification
of gravitational force with the other three basic forces.
This should not be surprising, as GR was formulated
by Einstein in 1915 as a direct extension to special rel-
ativity. At that time, quantum mechanics was not yet
established and the equation of motion of the electron
was unclear, not to mention that the weak and strong
forces as well as the basic building blocks of nature and
the framework of QFT were all unknown. Quantum me-
chanics was originally established in the mid-1920s as
a non-relativistic quantum mechanics and obtained by
quantizing the equations of classical mechanics by re-
placing dynamical variables with operators. Its mathe-
matical formulation is applied in the context of Galilean
relativity.

A relativistic formulation was a natural extension of
non-relativistic quantum mechanics. The key progress
made by Dirac was the relativistic quantum Dirac equa-
tion [16],

(E—ca-p—pBmc*)yp=0; or (E+ca-p+pmc?)=0(2)
with a = (a;,as,a3) and § the 4 x4 Hermitian matri-
ces satisfying the conditions a;8=—Ba;, a0 = —ayy

(i#j) and o? = 3> =1. The matrices multiplying 1
shows that it is a field with a complex four-component
entity. The Dirac equation is relativistically invariant.
More explicitly, a Poincaré covariant formulation of the
Dirac equation can be expressed as

(’y“zau—m)d):(), .U’:O7172737

1/)T:(¢177/12ﬂ/)371/14)7 Fyozﬂv 7i:6aia (3)
with the 4-dimensional coordinate derivative 9, =09/0x*
and the 4x4 ~y-matrix ,, which satisfies anticommuta-
tion relations

{yﬂfyu}:nw, N =diag.(1,—1,—-1,-1) (4)

The Dirac equation is a crucial step for the unity of
quantum mechanics and special relativity, which led to
the successful development of relativistic quantum me-
chanics and QFT. The Dirac equation reveals an in-
teresting correlation between the dimensions of space-
time and the degrees of freedom or quantum numbers of
the basic building blocks, such as electrons and quarks.
Specifically, the four-dimensional spacetime of coordi-
nates correlates with the four-component entity of the
Dirac spinor. Such a four-component entity field reflects
the spin—% property and negative energy solution of the
Dirac field (z), which provided a pure theoretical pre-
diction of the existence of antiparticles.

Inspired by the relativistic Dirac equation, in this
paper we will investigate the intrinsic properties of a
massless Dirac spinor and show an additional correla-
tion between the chirality spin quantum numbers and ex-
tra dimensions. We shall begin with a demonstration to
show the maximal symmetry for a massless Dirac spinor
and how to derive a generalized Dirac equation in a six-
dimensional spacetime. We then follow the framework of
gravitational quantum field theory proposed in Ref. [1]
with the postulate of gauge invariance and coordinate
independence, which is an alternative to Einstein’s pos-
tulate on general covariance of coordinate transforma-
tion for the theory of general relativity [2], to find a
unified description of quantum mechanics and gravita-
tional interaction for the massless Dirac spinor in the
six-dimensional spacetime.

Our paper is organized as follows. In Section 2, by
considering a massless Dirac spinor, we extend the Dirac
equation in four-dimensional spacetime to an extended
Dirac equation in a six-dimensional spacetime, so that
the Lorentz symmetry group SO(1,3) in the vector rep-
resentation of coordinates and the spinor spin symmetry
group SP(1,3)= SO(1,3) in the spinor representation of
the Dirac field are generalized to the Lorentz symme-
try group SO(1,5) and the spinor spin symmetry group
SP(1,5), respectively. Under the ordinary parity and
time-reversal operations, the fifth and sixth dimensions
transform as spatial and time-like dimensions, respec-
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tively. An intrinsic W-parity is introduced to charac-
terize the two extra dimensions. With the properties
of charge-conjugation and W-parity, we demonstrate in
Section 3 the existence of a maximal internal gauge sym-
metry SU(2) for the massless Dirac spinor. An action
with the maximal symmetry is built in the globally flat
six-dimensional Minkowski spacetime. We then derive a
generalized relativistic quantum equation for the mass-
less Dirac field and the gauge field as well as the sin-
glet scalar field introduced to maintain a conformal scal-
ing symmetry. Doubly electrically charged bosons are
predicted in the theory. In Section 4, when taking the
spinor spin group symmetry SP(1,5) and the global con-
formal scaling symmetry of the Dirac field as internal
gauge symmetries, we are led to a biframe spacetime
structure T, X G associated with its dual spacetime
Ty x Gy, over the Minkowski spacetime M,s. A bico-
variant vector gravifield Y2 (z) (a dual gravifield X ()
defined on Ty, <Gy, (a dual biframe spacetime T, xG%,)
is introduced to characterize the gravitational interac-
tion. Based on the nature of globally and locally flat
vector spacetimes, it allows for the canonical identifi-
cation of vectors in the tangent Minkowski spacetime
Ty, at points with vectors in the Minkowski spacetime
M, itself, and also the canonical identification of vec-
tors at a point with its dual vectors at the same point.
The total spacetime is viewed as a gravifield fiber bun-
dle E with the identified locally flat gravifield spacetime
G =Gy = Gy, as the fiber and the identified globally
flat vacuum spacetime V =Ty, = T5, = M, as the base
spacetime. With the principle of gauge invariance and
coordinate independence proposed recently in Ref. [1] for
a quantum field theory of gravity, we arrive at a gravita-
tional gauge field theory for a massless Dirac spinor with
maximal symmetry in the locally flat gravifield space-
time G. In Section 5, we present an alternative for-
malism by projecting the action into the globally flat
Minkowski spacetime V', which enables us to derive equa-
tions of motion for all fields and conservation laws for all
symmetries. The equation of motion for the gauge-type
gravifield is in general connected with a nonconserved
current. When turning to a hidden gauge formalism, the
dynamics of the gravifield is found to be characterized
by a total energy-momentum tensor. The conservation
of total energy-momentum tensor leads to an interesting
relation between the field strengths and the spacetime
gauge field. The symmetric part of the equation of the
gravifield tensor gives a generalized Einstein equation of
gravity in the six-dimensional spacetime. Our conclu-
sions and remarks are given in Section 6.

2 Chirality spin & W-parity of massless
dirac spinor and extra dimensions with
maximal Lorentz & spin symmetry

To show the explicit symmetries of a theory, it is
useful to write down a corresponding action for such a
theory. The action to yield the Dirac equation (3) can
simply be written as

st— [ated (Seriptepite) -mita)te) @

with 9(x) = ¥'(2)7° as antispinor field. The action
is invariant under the global Poincaré group P(1,3) =
SO(1,3)x P13, The global Lorentz group transformation
is given by

Y(@) =1 (") =S (L)Y (z),
L"eS0(1,3) (6)

’
a2t —ax =L ",
nre —
Lngnuﬂ_nuaa

with the group element
S(L)=cw ™" PeSP(13), £= 1l ]
S(L)y"S~HL)=Lv", (7)

where 3#¥ are the generators of the spin group SP(1,3)
in the spinor representation. From the isomorphism
property of the group, the spin group SP(1,3) is iso-
morphic to the Lorentz group SO(1,3), i.e., SP(1,3) =
S0O(1,3). For the translational group P?, it is invariant
under the parallel translation of coordinates

ot — =gt tat (8)

with a* the constant vector.

It indicates that the external rotational invariance
of spacetime coordinates in the vector representation is
coherent to the internal spin invariance of the Dirac
field in the spinor representation. Namely, the exter-
nal symmetry SO(1,3) of the four-dimensional space-
time coordinates must coincide with the internal sym-
metry SP(1,3) of the four-component entity Dirac field.
As a consequence, it results in the conservation of to-
tal angular momentum. Specifically, the internal spin
symmetry SP(1,3) incorporates a boost spin symme-
try SU*(2) and a helicity spin symmetry SU(2), i.e.,
SP(1,3)250(1,3)=2SU*(2)xSU(2).

The mass of a Dirac spinor is supposed to originate
from spontaneous symmetry breaking. Let us consider
a massless Dirac spinor m =0. As a consequence, the
above action generates two new symmetries.

One is the global conformal scaling symmetry.
Namely, the action is invariant under the global confor-
mal scaling transformation for the coordinates and Dirac
field,

/ —
-z t= "k,

P(@) =y (@) =X y(),  (9)
with A the constant scaling factor.
The other is the so-called chiral symmetry. It can be

shown that the action is invariant under the global chiral
transformation

(@)= () =e" () (10)
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with

Vs Vu=—Vu Vs %—170717273——4, €uvapy" VY77 (11)

It characterizes an intrinsic property of the Dirac spinor,
which may be called a chirality spin.

Inspired by the derivation of the Dirac equation, it
is natural to postulate that such a chirality spin invari-
ance of massless Dirac spinors in the spinor representa-
tion reflects a rotational invariance of extra spacetime
dimensions. It is not difficult to check that once the
Dirac spinor becomes massless m=0, the action Eq. (5)
in four-dimensional spacetime can be extended to an ac-
tion in a six-dimensional spacetime,

i / d%% (D@ T i0,0(3) +H..), a=(1,5.6),(12)
where (%) remains a four-component entity Dirac
spinor but as a field of six-dimensional spacetime coor-
dinates #={x"}. We have used the following notations,

[F=(y#, 1%, 1), [P=iy®, [°= 1,
(13)
with I; denoting the 4x4 unit matrix. The equation of
motion for such a massless Dirac spinor reads
Fﬂlaﬂw(f)207 nﬂﬁaﬂaﬁw(‘%)zoa (14)

with the constant metric matrix

Iﬁ:(zu7x57x6)7

’]7"2[/:’[’Iﬂf/:diag,(l’—1,—17—1,_17_1). (15)

The signature of 71, is —4, which indicates that the
additional two dimensions are spatial ones. This can
explicitly be checked from the invariance of chiral trans-
formation of the Dirac spinor. The coordinates of the
fifth and sixth dimensions transform correspondingly as
a rotation, i.e.,

(@)= () =" P(x),
(x5> <xg> cosa  sina (:1: )
— —
Tg xg —sina cosa | \Ts
It can be shown that the action, Eq. (12), becomes
invariant under the Lorentz group SO(1,5)

o —af=Lha” (@)= () =S(L)y(#),
LALS mpp=m06, LEESO(1,5), (17)

where S(L) is the spin group element in the spinor rep-
resentation

S(L)=em™"2cSP(1,5), S(L)YI*S " (L)=LAT"”
Eﬂﬁ:(zuu,2u5,2u67256)7 Zul/:i[,_yu7,yu]7

1 1
EM5:_E5H:_§7M75, SHE6 — _y6u 52',YM7

1
256:_265:_575, (18)

where the fifteen 4 x4 matrices Y#” are the generators
of spin group SP(1,5) in the spinor representation. The
transformation under the internal spin group SP(1,5)
has to coincide with that under the external Lorentz
group SO(1,5) in order to preserve maximal symmetry.

From group isomorphism, SP(1,5)250(1,5)=SU*(4),
the spin group SP(1,5) provides a maximal unitary sym-
metry for the four-component entity complex Dirac field.
To further reveal intrinsic properties of the above action,
we shall demonstrate how the extra two dimensions
transform under ordinary parity-inversion (P), time-
reversal (7) and charge-conjugation (C). To make the
action invariant and nontrivial under the discrete sym-
metries P, 7 and C in the six-dimensional spacetime,
the Dirac spinor as a field of six-dimensional spacetime
coordinates should transform as follows:

PY(2)P t=Pip(2°,—2*,—2°,2%), k=1,2,3,

PIMAP=T%, p=q°, (19)
for parity-inversion,

TY(@)T '=Ty(—2° 2" —2%), k=1,2,3,5,

T'TPT=I"" T=iy'y?, (20)

for time-reversal, and
Cy(z)Ct=0yp" (z",—2°,—2°), n=0,1,2,3,
CrMC==I"", CTIFC=I"T, k=5,6, C=in*y",
(21)

for charge conjugation. The Dirac field transforms under
CPT as

CPT(2)(CPT) '=CPTY" (—at,2° 2°%), n=0,1,2,3,
(CPT)"'T"CPT=—I", (CPT) ‘I*CPT=I",
k=56, (22)

which shows that the extra two-dimensional coordinates
have a different CPT transformation property from the
ordinary four-dimensional spacetime coordinates.
Unlike the ordinary four-dimensional spacetime co-

ordinates, the signs of the extra two-dimensional coor-
dinates flip under charge-conjugation C. This is because
the pseudoscalar and scalar currents of Dirac spinor are
invariant under ordinary charge-conjugation C in four-
dimensional spacetime. If the extra dimensions do not
undergo a flip in sign under charge-conjugation, the ac-
tion will not be invariant because of the following iden-
tities:

CO(@)ir i046()C ! =105 (@)1 ()

Cip(2)i061(2)C™" =i0610(2) ¥ (), (23)
which have opposite signs compared to the terms im-
posed by the hermiticity of the action. The same reason

applies to the transformation properties of the extra di-
mensions under P and 7.
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To reflect the intrinsic property of the extra two di-
mensions, let us introduce an intrinsic W-parity. It is
well-known that a massless Dirac spinor can be decom-
posed into two Weyl spinors in four-dimensional space-
time,

Y=tutvn, V=5 (1w, da= gLy, (24)

Here 9 g are the so-called left-handed and right-handed
Weyl spinors with a property

Vsr=—Yr, VsVYr=+Vg. (25)

They are regarded as two independent Weyl spinors for
the massless Dirac spinor in four-dimensional spacetime.
However, in the six-dimensional spacetime, the two types
of Weyl spinor are correlated via the spin symmetry
SP(1,5). It is not difficult to check that the action has an
intrinsic discrete symmetry under a W-parity operation
W7

W@ )W =We(z*,—z*), k=5,6,
WTsW=—T* W T*W=I* k=56,
W=I%=iy". (26)

Under a combined W-parity and charge-conjugation op-
eration C=WC, we have

Cy(@)C=Cy" (),
C'TAC=I"T, C=WC=—~°7y*°, (27
which shows that only under the combined operation C

are all six-dimensional coordinates unchanged. Such a
combined operator C has the following feature:

(°(2)) =Cu"(2)C" == (%), (28)
which indicates that the W-parity charge-conjugation
characterizes a discrete Z, property.

It is useful to introduce a joint operator O=WCPT =
CPT. Under O operation, we have

Oy ()0~ =0yT (~1),

O 'rre=r*,. @=WCPT=CPT=+", (29)
which demonstrates that the joint operation @ becomes
more essential than the ordinary joint operation CPT for

the massless Dirac spinor as a field of six-dimensional
spacetime coordinates.

3  Massless Dirac spinor as Majorana-
or Weyl-Type spinor in 6D spacetime
and charge spin gauge symmetry

3.1 Massless Dirac spinor as Majorana-type
spinor in 6D spacetime

In terms of the Dirac field ¢°(2) defined via the com-
bined W-parity charge-conjugation C, i.e.,

Y (#)=Cy(2)C 1 =CyPT(2), (30)
the action for the massless Dirac spinor in the six-
dimensional spacetime can be rewritten as follows

6d __ 6 1,7 . Qs . TE( AN\ T G(A
St = [0 (H@ 0@+ @)1 i0,07(2)
= /dﬁx%@(i‘)[”liaﬂ@(i‘). (31)

Here, ¥(Z) is an eight-component entity spinor field de-
fined as

¥(2) ) 7 (32)

v@)=(1
Pe(2)
which is a Majorana-type spinor in the six-dimensional
spacetime,

e (2)=Co(2)C ' =CU7 (&)= (), (33)
with ¢ given explicitly by
C=—ior,aC. (34)

Here o, is the antisymmetry Pauli matrix. The 8x8 ma-
trix C' valued in the spinor representation defines a new
charge-conjugation in the six-dimensional spacetime.

It is seen that the W-parity charge-conjugated Dirac
field ¥°(%) enables us to express the complex four-
component entity Dirac field ¢(#) as an eight-component
entity Majorana-type spinor field ¥ (&) and obtain a
self hermitian action. Considering ¥ (&) and ¥°(%) as
a charge spin doublet, we can show that the action given
in Eq. (31) possesses an internal charge spin symmetry
SU(2) that characterizes the coherence between (Z)
and ¢°(£). Namely, the action is invariant under the
symmetry group SU(2) transformation

U (2)—W'(3)=e*"/20(2), (i=1,2,3) (35)
with 7;/2 the generators of SU(2).

3.2 Charge spin gauge symmetry and doubly
electron-charged bosons

By gauging the charge spin symmetry SU(2) and
introducing the corresponding gauge field A,(Z) =
geA;,(2)7:/2, we obtain an action with the internal charge
spin gauge symmetry SU(2) for the massless Dirac
spinor. The action is explicitly given as follows

1 _ _
g6d / d%{ S @@ D, (3)
1
2g2

3PP @A) | (30

*(2) TrFs (2) ™ (2)

with g. and Ay the coupling constants. D, and Fj,(Z)
are the covariant derivative and field strength, respec-
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tively, in the six-dimensional spacetime:
ZDﬂzlaﬁ+Aﬂ(i')7
Fo(2)=i[D D] =0, A5 (2) =0, Ay () —1[ A5 (2) As (2)]
(37)
When such a Dirac spinor is regarded as a mass-
less charged particle, the third component gauge field
Ai7'3 /2 that is associated with the symmetry of subgroup
U(1)eSU(2) will characterize an electromagnetic inter-
action. The gauge bosons in the coset SU(2)/U(1) are
doubly electrically charged bosons.
A singlet scalar field ¢(Z) is introduced to preserve

the global conformal scaling symmetry of the action un-
der the transformations
PP PN W(R) -V () =N (),
A= AL () =AAu(2), (&)= () =Ap(2).(38)
From the above action, Eq. (36), we arrive at an equa-
tion of motion

D, W(z)=0, (39)

for the massless Dirac spinor in the six-dimensional
spacetime. In terms of the quadratic form of the co-
variant derivation, we have

nﬂﬁDﬂDpW(i‘):zﬂﬁFﬂDW(j)7
0" =diag(1,~1,—1,—1,—1,—1). (40)

For a comparison with the four-dimensional theory, it is
useful to rewrite the above equation as follows:

1
DHD“LP(JE)—§U“"FWW(§:)
=— (V"1 Fus—i7" Flo+7° Fss) ¥ (2) =D Do ¥ (),
(41)

where the right-hand side shows the effect arising from
extra dimensions. We have used the following definitions

1
Dazaa—igcAza§
042576, F56:D5A6—D6A5.

(42)

1
D,=0,—tg.A

@
u§Ti7

F,.=D,A,—D,A,,

Ti Of:5,6

The equation of motion for the scalar field reads
0,0" 0 (2)—2X 0" (&) =—F ., F"' 420 () "D, ¥ (%).
(43)

For the gauge field, we obtain the following equation of
motion

DﬁFﬂf’i(:%)—I—F‘wi(i)&;lngoz(i):% gC!l:/(fc)Fﬂ%Ti!I/(fc).
(44)

So far we have shown that a complex four-component
entity massless Dirac spinor in four dimensional space-
time can be realized as an eight-component entity mass-

less Majorana-type spinor in six-dimensional spacetime.
The action is explicitly constructed to have the inter-
nal charge spin gauge symmetry SU(2) and the maximal
global internal spin symmetry SP(1,5) that transforms
coherently with the maximal global external Lorentz
symmetry SO(1,5).

In general, the complex Dirac field can be decom-
posed into real- and imaginary-type spinor fields

1/)(57):1/)&(55)*'1/)&@)7
AN 1 ~ - A\ — T (AN * (5,
(45)

which satisfy the conditions
CYL (@)=ter(2),  CPL(2)=—4—(2). (46)

The Majorana-type field in the 6D spacetime can be
rewritten as

(Y11,
r@)= (W(@) V2 <i75 i%) 7(@),

=5 6) "

The charge conjugation for ¥, () is defined as
e (2)=C (2)C ' =CTT (2) =W, (), C=03xC.(48)

In terms of ¥,(Z), the action for the spinor field can be
expressed as

1 _ N ~
Syt = /dGI§@2(i)W1(i)F“iDﬂW1(i)7 (49)

with
I =(y*1°,T°),

ZDQZZ8Q+ALTZ/27 7'1:(3'1><I47 Ti:O'iX’}/s (Z:273)
(50)

F5:i01 X75,F6:O'1 ><I4,

In other alternative representations, we have

6d
Sw

/ d%%ﬁ(@)@(@)[’%bﬂ%(@),

- chf(‘%)

'Z = 1
) (m(fc) o
with

FSZ'L'O'QX’}/S,FGZO'QXI4, CZIQXO7
Ti=0: x5 (1=1,3).(52)

Fﬂ:(ry#staFG)v
ZD;}:Z8Q+A;TZ/2, 7'2:0'2><I4,

and

5o — / dex%<p2(g:~)@<f>r%ﬁﬂw3<f>, %(i‘):(
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with
TP=(y* 1% I°%), [ =ioyx~®, [%=03x1I;, C=0,xC,
lbﬂzlaﬁ+A;Tz/2, T320'3><I4, Ti=0; X5 (221,2) (54)

Different spinor structures reflect relevant properties
of extra dimensions and representations of internal sym-
metry.

3.3 Majorana-Weyl property of massless Dirac
spinor

To reflect explicitly the properties of chirality spin
and W-parity, it is useful to show that a complex four-
component entity massless Dirac spinor in four dimen-
sional spacetime can be realized as an eight-component
entity massless Weyl spinor in six-dimensional spacetime
as follows

S6i_ / d%% (b (@) 0y (3)+He),  (55)

with

Fﬂ:(7M7F5aF6)a F5:7:0'1®'}/5, F6:i02®’}/5. (56)

1_(&) is an eight-component entity massless Weyl-type
spinor defined as

p= (V@) B)=—1_(2), yr=0
0 @)= (D40 A @)= =0-(8), v (657

with ¢y (&) and ¢r(&) the left-handed and right-handed
Weyl spinors defined in Eq. (24). It is clear that
the action Eq. (55) is invariant under the Lorentz
symmetry group SO(1,5) and spin symmetry group
SP(1,5)=50(1,5) with generators and constant metric
matrix

7
4
nﬂ,;:%{Fﬂ,Fl;}, nus=diag.(1,—-1,—1,—-1,—-1,—1). (58)

Ypo=~1a.I5],

It is easy to show that both fifth and sixth dimensions
are spatial under operations P and 7. We can define
the charge conjugation for such a Weyl-type spinor in
the six-dimensional spacetime. Explicitly, the charge-
conjugated Weyl spinor ¢ (&) is defined as

o @)=t )0 =Cui )=
with the property for the charge-conjugation operator
CafﬂCt{l:—FﬂTa Co=020C, C=iv20,

(v (#))"=Cov (2)Cq ' =—v_ ().

The action Eq. (55) can be rewritten as follows:

(60)

Sed — / Ao g (5 (B)TFidp_ () +0 (2) T Pid, (2))

Lo
= /d%?[l,(:v)f’“zﬁﬂlp,, (61)

where we have taken ¢_(Z) and ¢° (&) as a charge spin
doublet to define the following sixteen-component entity
spinor field

(62)

v ()= (w @)) |

P2 (2)
We can check that the action Eq. (61) is equivalent to
the action Eq. (31) by noticing the following identity

ey (VR(E)
P (2)= ( PO
It is not difficult to show that W_ (%) satisfies a Majorana-
type condition
v (2)=Cel(2)Cs " =V_ (),
CSZO'Q®C(;:O'2®O'2®C.

(63)

(64)

The action Eq. (61) possesses the charge spin sym-
metry SU(2) between Weyl-type spinor ¢_(Z) and its
charge-conjugation °(&). Again taking SU(2) as a
gauge symmetry, we can obtain, analogous to the action
Eq. (36), the following gauge invariant action

S / d%{%@z(:@)w (&)"iD,¥_ ()

@) FL ()P (3)

3P0 (D) A (D) . (69
Here ¥_(z) is regarded as a Majorana-Weyl-type spinor
in the spinor representation of eight dimensions.

The extra dimensions correlate with the chirality spin
of the Dirac spinor. In general, a massless Dirac spinor is
characterized by the intrinsic quantum numbers of boost
spin, helicity spin, chirality spin and charge spin.

4 Gravifield fiber bundle structure of
spacetime and gravitational gauge
field theory in 6D spacetime

The above action for the massless Dirac spinor with
maximal symmetry is built based on a globally flat
Minkowski spacetime , which is an affine spacetime de-
noted as M, for a convenience. It possesses in general a
Poincaré or non-homogeneous Lorentz symmetry P(1,5)
= S0(1,5)x P**. Both internal spin symmetry SP(1,5)
of the massless Dirac spinor and external Lorentz sym-
metry SO(1,5) of the coordinates are global symmetries.
They have to coherently incorporate each other to pre-
serve the Lorentz invariance of the action in the six-
dimensional spacetime. In this section, we shall pro-
pose that the spinor spin symmetry SP(1,5), analogous
to other internal symmetries of spinors, is gauged as
a local symmetry, and the external Lorentz symmetry
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SO(1,5) remains a global symmetry. Thus the spinor
spin symmetry SP(1,5) as an internal symmetry is dis-
tinguished from the external Lorentz symmetry SO(1,5).
To build an action with both the local spin gauge symme-
try SP(1,5) and the global Lorentz symmetry SO(1,5),
we shall apply the postulate proposed in Ref. [1] to con-
struct an action within the framework of gravitational
quantum field theory.

4.1 Gravifield fiber bundle structure of space-
time

As demonstrated in Ref. [1], it is essential to intro-
duce a bicovariant vector field and a spin gauge field to
preserve both the local spin gauge symmetry SP(1,5)
and the global Lorentz symmetry SO(1,5). Explicitly,
the kinematic term for the Dirac spinor field is extended
to be

P, 152 @) (040, A @) (66)

with Y2 (&) the bicovariant vector field, and

A (8) =, AL (3) 5 550, (67
the spin gauge field. Here the Greek alphabet (/i =
0,1,2,3,5,6) and the Latin alphabet (&,5,20,1,2,3,5,6)
are adopted to distinguish the vector indices defined in
the vector representations of Lorentz group SO(1,5) and
spin group SP(1,5), respectively.

The derivative vector operator 9, = 9/0z" at the
point & of M, defines a tangent basis {9, }={9/dx"} for
the tangent Minkowski spacetime T}, over the globally
flat Minkowski spacetime M 4. Accordingly, we introduce
a field vector Y,(&) at point & of M4 respective to the
derivative vector operator ;. Such a field vector ¥, (%) is
explicitly defined via the bi-covariant vector field X% (&)
as follows:

Xa(2)=X7 (2)0s (68)
which forms a field basis {x4(Z)} for the locally flat non-
coordinate spacetime over the globally flat Minkowski
spacetime M 4. We shall call such a locally flat noncoor-
dinate spacetime a gravifield spacetime denoted as G ;.
Here y%(2) is the so-called gravifield and {X4(Z)} pro-
vides a gravifield basis.

The displacement vector dx* at point & of M 4 defines
a dual tangent basis {dz*} for a dual tangent Minkowski
spacetime T'y; over the globally flat Minkowski spacetime

M 4. The tangent basis and dual tangent basis satisfy the
dual condition

or "
Analogously, we shall introduce a dual vector x*(%)
at point & of M, respective to the displacement vector

(dz",0/0z") (69)

dz*. For that, let us first define a dual bicovariant vector
field x () via the following orthonormal conditions

X5 (@)X (8)=X4 (&) Xp0 (20" =0,

X5 (2)X5 (2) =Xaa (@)X5 (20" =0, (70)
which can be regarded as the inverse of the gravifield
X4 (#). Thus the dual bicovariant vector x(Z) is dual
to the gravifield, which exists once the determinant of
X5 (&) is nonzero, det x5 (&) #£0.

The dual vector x?(&) is defined via the gauge-type

gravifield x () associated with the displacement vector
da*

X" (&)=x;(z)da" (71)
which satisfies the dual condition

(X" X)) =X (@)XE () {(da?, 05 ) =x 5 ()R] ()l =n;.
(72)

The dual gravifield basis {x?} forms a dual gravifield
spacetime G7, over the globally flat Minkowski space-
time M 4.

The gravifield Y2 (2) defined on the gravifield space-
time G and valued on the tangent Minkowski space-
time T, transforms as a bicovariant vector field under
both the local spin gauge transformation SP(1,5) and
global Lorentz transformation SO(1,5). Such a gravi-
field basis does not commute and satisfies the following
non-commutation relation

[X&u)%ﬁ]:f;i))%&
Xﬁo: ﬂXS—aﬁX}iv (73)
which shows that the locally flat gravifield spacetime G5,
is associated with a non-commutative geometry. Such a
non-commutative geometry is characterized by a gravi-
tational field strength Xgﬁ defined from the gauge-type
gravifield x (). We write such a gauge-type gravifield
as follows
Fal@)=xE @) 5T (74)
which is defined in the dual tangent Minkowski spacetime
T, and valued on the dual gravifield spacetime G%,.

Geometrically, we arrive at a biframe spacetime T,x
G associated with its dual spacetime T3, xG;, over the
spacetime M,. Based on the nature of globally and lo-
cally flat vector spacetimes, it allows for the canonical
identification of vectors in tangent Minkowski spacetime
Ty at points with vectors (points) in Minkowski space-
time itself M4, and also for the canonical identification
of vectors at a point with its dual vectors at the same
point.

Physically, the globally flat Minkowski spacetime is
deemed a vacuum spacetime V. Thus the canonical iden-
tification of vector spacetimes enables us to simplify the
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spacetime structure as

TMgT]T{gMA = V,
G]ng;{ =G. (75)

Therefore, the total spacetime is viewed as a gravifield
fiber bundle E with the gravifield spacetime G as the
fiber and the vacuum spacetime V as the base space-
time. The correlation between the total spacetime E
and the product spacetime V XG is defined using a con-
tinuous surjective map 7, which projects the bundle E
to the base spacetime V| i.e., m,: E—V. Formally, we
express the gravifield fiber bundle structure of spacetime
as (E,V,mn,,G) with the trivial case

E~VxG. (76)

4.2 Gravitational gauge field theory for massless
Dirac spinor in 6D spacetime

With the above analysis, we are in a position to build
a gravitational gauge field theory for a massless Dirac
spinor based on the framework of gravitational quantum
field theory proposed in Ref. [1]. Our main postulates
are that: (i) the maximal internal symmetry of the grav-
ifield spacetime G and the Dirac spinor field is a gauge
symmetry that characterizes the basic interaction and
dynamics of all fields, and the maximal external symme-
try of vacuum spacetime V is a global symmetry that
describes the inertial motion and kinematics of all fields;
and (ii) the action is built based on the principles of
gauge-invariance and coordinate-independence.

In terms of the gravifield basis {x®} and {X4}, it en-
ables us to define a non-coordinate exterior differential
operator in the gravifield spacetime

dy=x"Ya. (77)

Thus all gauge fields and field strengths can be expressed
as the one-form and two-form gravifield spacetime G by
using the gravifield basis vector x¢ and exterior differen-
tial operator. Explicitly, we have

A=—iA. X", F=d, .A-i-A/\A—— XA,
F=—if.x*,  G=d F+A/\F+W/\F—lgabx “Ax,
A=—iA; ", F=d, A+A/\A—— XA AY,
W=—iW,x*,  W=d W——Wabx Ax, (78)

where the gauge fields and field strengths are all sided
on the locally flat gravifield spacetime G. They are pro-
jected through the gravifield Y2 to become the corre-
sponding gauge fields and field strengths defined in the
globally flat vacuum spacetime V| i.e.,

Aa=R0(2)Ap(2),  Fop=xi (@)X (2)Fps(2), (79)

with A= (A,F,AW) and F = (F,G,F,W). The field
strength of the gauge-type gravifield G, (&) has the fol-
lowing explicit form

guu(f) = VuFo—VioF,

) 1
= [Vaxs (2)=Voxi ()] 5 Fa—ga ()54
Gro(2) = (9a+guW, )xy+gsA"be
—(05+9uWo)Xf—g- AL X b (80)

with the covariant derivative defined as

ZVﬂ:Zaﬂ+Aﬂ+Wﬂ:ZVﬂ+Wﬂ, ZVﬂzlag'i‘Aﬂ (81)

Here the gauge field W, = ¢,,W, with gauge coupling
constant g, is introduced to extend the global confor-
mal scaling symmetry of the massless Dirac spinor to a
local conformal scaling gauge symmetry, while allowing
the coordinates of Minkowski spacetime to remain, keep-
ing the global conformal scaling symmetry. Namely, the
Dirac spinor field, scalar field and gravifield transform
under the local conformal scaling gauge transformation
as follows:

2 (2), (82)

and the conformal scaling gauge field transforms as an
Abelian gauge field,

Wi (#) W, () =W, ()49, Ing(@).  (83)

Thus the invariant field strength is given by
Wﬂﬁzaﬂwﬁ_aﬁwﬁm (84)

which governs a basic force of conformal scaling gauge
interaction. Such a conformal scaling gauge field was
first proposed by Weyl [17] for the purpose of the elec-
tromagnetic field, which is known to result from an U(1)
gauge symmetry.

It is useful to express the covariant derivative as one-
form in the gravifield spacetime G

D=x*D,=x"(Ra—iAa—iAs),
Dd:XaDﬂ:Xa(aﬂ_Z a—iAL). (85)

The Hodge star “x” in the six-dimensional gravifield
spacetime G is defined as

1 aa’, bb' é ip N f
= syiz; Caveded N 1" Farpr XX AN (86)
With the exterior differential operator d, and the
gravifield basis vectors x¢ and ys, it enables us to build
a gauge-invariant and coordinate-independent action in
the gravifield spacetime G. The general form of the ac-
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tion is found to be

1, - 1
564 = /{§g02 [zW,F/\*DW,—g—ETrF/\*F

— —2W/\*W——T'f‘.7:/\>k.7:]
29 392

1
—l—ﬁgp‘* [aw TrGA*G—2apTr FA+(F AF)]

1 1
—ggpzd(p/\*dwﬁ—ﬁx\sgfﬂ"(F/\F)/\*(F/\F)}, (87)

with ag and ay the constant parameters. The following
definitions and relations have been used

1 A 1. S s 4 s 2

FEnghxts o =g € XA A A
PN 1 Py 7

(FAF)=ng g 52 Sarw X AX

/ / 1

A b

*(FAR)=50ma g 5

d‘PE(dx_ZW)‘Pa

— X e‘ié%éfxé/\xd/\xé/\xf,
L. a ba~é 1 n € f
*dip=o3 (Xa=Wa) €l X AX A AN, (88)

with eabedef (1012356 —1 e“bc‘ief*—eabcdef) the totally an-
tisymmetric Levi- C1V1ta tensor which has the following
general properties

bi...bn | bn ar...an _— __ |
Eal.A.ane —n. Tl[al nan]7 61741 ane - n'7
at...apbpy1--bn 1. bry1 bn
€a14.4akak+14.4an€ n=—k! (n k) n[ak+1 77%]7
1
by---b
(161}]\4256111 ane’t nMalbl"'Manbna (89)

with M an nxn matrix M=(M,;).

The action given in Eq. (87) provides a gravitational
gauge field theory for the massless Dirac spinor with the
maximal gauge symmetry group

Gs=SU*(4)xSU(2)x SG(1). (90)

Here SG(1) denotes the conformal scaling gauge symme-
try. The Dirac spinor field and gauge field belong to the
spinor representation and vector representation of the
spin gauge group SP(1,5)= SU*(4), respectively, in the
six-dimensional gravifield spacetime G.

5 Dynamics of fields and spacetime in
gravitational gauge field theory

The action Eq. (87) is obtained following the princi-
ple of gauge-invariance and coordinate-independence in
the locally flat gravifield spacetime G, which is distin-
guished from the general theory of relativity which was
built based on the principle of general covariance of co-
ordinate with a local symmetry group GL(D, R) in a
curved Riemannian spacetime.

To see explicitly the difference between the gravita-
tional gauge field theory and the general theory of rela-

tivity, it is useful to take a formalism by projecting the
action Eq. (87) from the locally flat gravifield spacetime
G to the gravifield fiber bundle with the globally flat
vacuum spacetime V' as a base spacetime. It can be re-
alized by simply changing the gravifield basis {x®} and
{Xa} into the corresponding coordinate basis {dz#} and
{0,}. The explicit formalism is found to be

S84 = /d%x{gﬂ%ﬁf,}mg@[/
poy plovta

1 NNy .
_Z¢X‘Ly‘ )21/1/ [Fll, ;l,/-l-W W D /+.7:abf W) ]

1 ~ap ~o0’ ~a a
+1¢2x’“‘ X7 G Gurra— P apg XEXEFL

L ao
+§X“ dﬂ¢d0¢_)\s¢3}u (91)
with the definitions
U=WTCs,  P(E) =X (@)% (@)™,
¢E(p2/27 dﬁ¢:(au_2gwwu)¢u (92)

where the symmetric tensor field x**(z) couples to all
fields. We have also made a redefinition by rescaling the
Majorana-Weyl type spinor field ¥_(#) Eqgs.(62)—(64) to
be

V()= (2)/p(2 (2)/v/26(2).

5.1 Generalized equations of motion in a gravi-
tational relativistic quantum theory

(93)

From the above action, we are able to extend the
Dirac equation in four-dimensional relativistic quantum
theory to a generalized equation in the six-dimensional
gravitational relativistic quantum theory. Explicitly, a
generalized equation of motion for the massless Dirac
spinor with maximal symmetry is simply given by

Ieli(Da+V,)W_=0, (94)
with the spin gauge—invariant vector field defined as
) 1 ; o
Vi(®) = sxav(xy) = (3 Inx+g.,Ws)— §X§Vﬁx2,
(95)

which preserves the conformal scaling gauge invariance
of the equation of motion.
Its quadratic form is found to be

X (VA V) (Do 4V )0
7Eabng(bu[fﬂﬁ‘i‘F;w'i-Z.Vﬂﬁ—gcl,f(f (Dy+V,) |-

(96)

where we have introduced the definitions
(VatVo)(Do+Vo)=(Dp+V,) (Do+Vs)+ F(’Lu)(DA—i-Vﬁ),
G =Vixe—Voxg, Vixe=(0u+g.Wa)Xi+g. A% X0,
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1 1 5 R
Vﬂ,} :8ﬂV9—69Vﬂ = §Wﬂ* - §Vﬂ[, 5 Vﬂgfaﬂpgﬁ—agl—’;ﬂ 5
(97)
with
A 1, X S s
F&ﬁ) = §(F5ﬁ+F5ﬂ)a FSQEngﬁXo - (98)

Here the tensor field I :y(ir) defines a kind of spacetime
gauge field with a hidden gauge symmetry. The gauge-
type gravifield behaves as a Goldstone-like boson field
which transmutes the local spin gauge symmetry SP(1,5)
to the global Lorentz symmetry SO(1,5).

The motion of the Dirac spinor is governed by various
field strengths .7-'31’:3, Fi,, G, and V;;. Here V;;, appears
as a special field strength and its effect is distinguished
from other field strengths due to an imaginary factor.

The equations of motion for the spin and scaling
gauge fields as well as the charge spin gauge field are
found to be

cap oo’ ab \_ rpab
Vol OXX" X Fai ) =T,
Do (OXX™ X" W) =J*,

Dy (XX X7 Fl ) =J", (99)

with the currents given by

Jﬂal; —

1 - g N
—g XU_RESTE =N LW
!

1 = (1
+§gsx![/>2§{1"c§2“b}![/

—apge 7o (X 7 92X )

1 ~ b Ao’ a 7
oo XS R X Gl

T = =20, XX" ddsd—Guwow O XX X7 X2 Groras
. R
JH = chW,Fa)ZgETZW,, (100)

where we have used the following notations
@bl _ _a b b a. lapbl _ . agnb bra
Xaror =Xp Xor —Xpr Xors Xo gﬂ’f/—Xf/ a0t~ XoYprpr -

(101)

It can be demonstrated that the above currents are all

conserved currents which satisfy the conservation laws
VaJ =0, 0,J"=0, D,J"=0, (102)

5.2 Dynamics of gravifield and spacetime with

totally conserved energy-momentum tensor

The equation of motion for the gauge-type gravifield
x§ is found to be

VoG =JL, (103)

with the definitions for the bicovariant tensor currents
and covariant derivative as follows:

G = aw > XX 7 Gurvras
VoG = (0,-g,Ws)GE +9.ALGE .

N R 1 O N
JI = SXREL+SXRERT T

+XRE X d iy b—20m9. X0 KERE Filo kY
XXX X G o+ F et F s

o

+prWﬂ/p/—aW¢g§pggW£]- (104)

The bicovariant vector current J/ is not a conserved
current, while it is correlated to a totally conserved
energy-momentum tensor 7,” due to the translational in-
variance of spacetime coordinates in the action, Eq. (91),

XeJE=T), 9T/ =0, (105)
where the totally conserved energy-momentum tensor is

found to be

" " 1 .- .
TS = XL XRET-T Dl +XX dyr iy 6

~2059, X0 X FigkL
_XDACW )A(ﬁ&¢[Fé/pFé&+]:glbﬁ-7:p&ad
+Wg/,3Wﬁ&—aw¢gglﬁgo&a]a
which possesses a hidden gauge symmetry.
The equation of motion for the gravifield, Eq. (103),

can be expressed in connection with the totally conserved
energy-momentum tensor as follows

9,61 —GE=T},
with the definitions for the spacetime tensors
gp/ilfzan¢2x>2ﬂﬂ’)2f/ﬁ’xggﬂ/ﬁ/a:_g§ﬂ7 ggzl—vgﬁggﬁ
(108)

(106)

(107)

Here, G pf‘ ” and G pf‘ are regarded as the gravifield tensor
and gravifield tensor current with a hidden gauge symme-
try. The spacetime gauge field I'y is defined in Eq. (98).

Equation (107) provides an equation of motion for
the Goldstone-like gravifield with a hidden gauge sym-
metry, which is an alternative to Einstein’s equation of
general relativity. Note that the gauge-invariant energy-
momentum tensor 7, given in Eq. (106) is a totally con-
served energy-momentum tensor. It contains contribu-
tions from all fields including the gravitational effect. In
general, T, = T,'n,, is not symmetric, 7;; # 7,5, and
the equation of motion, Eq. (107), has both symmetric
and antisymmetric components. The symmetric compo-
nents of the equation of gravifield in Eq. (107) lead to a
generalized Einstein equation of general relativity in the
six-dimensional spacetime.

103106-11



Chinese Physics C  Vol. 41, No. 10 (2017) 103106

In light of the energy-momentum conservation
0a T} =0u(J¥ x2)=0, we obtain the following conserved
current

0,G7=0, (109)

which is considered to be an alternative conservation law
for the gravifield tensor current. From Egs. (107 )-(109),
we arrive at the following equation,

—R;'“,pg"” I, 1)=0, (110)
where R6 deﬁnes a field strength for the spacetime
gauge ﬁeld s

Wp_a F" =0 L+ 55 Iy =T, s, (111)

Equation (110) indicates that the vector current made
by two field strengths R7,. and G2 is identical to the
vector current made through the spacetime gauge field
I'7; and the totally conserved energy-momentum tensor
Tu”-

All equations of motion are conformal scaling gauge
invariant, which is attributed to the introduction of the
scalar field. It is easy to read off the equation of motion
for the scalar field

dp (X?Zﬂﬁdf/ ¢) =J

with the scalar current

(112)

1 S Auu 7 i ab
J = —ZXXW [F o g/f/"’Wﬂﬁwﬂ’ﬁ/"'fggfﬂwaé]

1 ~ap’ ~00 pa
+_X¢[O‘WXMLX gﬂpgﬂ/ﬁ’d

—4aEgSX;X“f“b 6] (113)

6 Geometrical symmetry breaking
mechanism for mass generation of
Dirac spinor

It has been shown in the previous sections that a
massless Dirac spinor generates both chiral symmetry
and conformal scaling symmetry, which allows us to ex-
tend the usaual spinor spin symmetry SP(1,3)=250(1,3)
and Lorentz symmetry SO(1,3) in the four-dimensional
Minkowski spacetime to obtain an enlarged spinor
spin gauge symmetry SP(1,5)250(1,5)2SU*(4) and
global Lorentz symmetry SO(1,5) in a six-dimensional
Minkowski spacetime. In other words, to yield a massive
Dirac spinor, either chiral symmetry or conformal scaling
symmetry has to break down.

It is clear that when the spinor spin symmetry
SP(1,5)=50(1,5) is broken down to SP(1,4)~S0(1,4),
the chiral symmetry is spoiled and the Dirac spinor is
expected to become massive. As a demonstration, let us
consider the following background structure of spacetime
by choosing an appropriate expectation value of the bulk

gravifield,

X (®) = (@)X, (@),

(i (@) =(E(2)ng. C(2)mg), - €(2)#C(2), (114)
with g=(u,5),a=(a,5),zs=2. Here £(z)#((z) provides
a necessary condition for the symmetry breaking, i.e.,
SP(1,5)=50(1,5) is broken down to SP(1,4)2~S0(1,4).
The equation of motion of the Dirac spinor in such a
background structure is found to be

§ ()00 (2)+¢ 7 (2)i0. (%)
'(2)i0-(Ing(2))¢h(£)=0.

To solve the above equation, let us consider a type
of ground state solution and ignore the Kaluza-Klein
modes. Namely, the Dirac field can be factorized into
the following form

Y(@)=f(2)P(@), f(z)=p(2)e"), a”=(a" "), (116)
with the Dirac field 1(Z) defined in a five-dimensional

+g§7 (115)

spacetime. Suppose that (&) satisfies the following
equation

[7i0,6(F) =m(7) (117)
with m the mass of the Dirac spinor. Substituting

Egs. (116)-(117) into Eq. (115), we obtain two equations,

9.0(z)=m& "' (2)¢(2),

Solving the above equations, we arrive at the solutions:

gyt [ 4, )= ).(19)

In terms of such background solutions, the action for
the massless Dirac spinor in the six dimensional space-
time can be reduced, by integrating over the sixth di-
mension, to an action with a massive Dirac spinor in a
five dimensional spacetime. In order to make the result-
ing theory finite for an infinitely large region of the sixth
dimension, i.e., z=(—00,00), it requires that

/:X’ dz& ' (2)¢(z)=finite.

azlnp(z):—gazlnﬂz). (118)

(120)

A simple function satisfying the above condition can be
taken as

1 < 1
¢(2) = —e**“zs(z), / wdzﬁe’”“?:lc,zcw
= Go—i-m/ dz

NG
- 90+§mlc(1+erf(2/lc))7

o * 2/l2

(121)

with erf(z/l.) the error function, where [, plays a role as
a characteristic length scale of the sixth dimension. Note
that the bulk gravitational field in the sixth dimension
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is only considered as a background field. One should
in general take into account the back reaction effect by
solving the gravitational equation.

7 Conclusions and remarks

We have shown that a massless Dirac spinor gener-
ates new symmetries under the transformations of chi-
rality spin and charge spin as well as conformal scaling
operations. Inspired by the coherent relation between
the dimensions of spacetime and the intrinsic quantum
numbers of Dirac spinors, we have demonstrated with
the introduction of intrinsic W-parity that the massless
Dirac spinor can be treated as a Majorana-type or Weyl-
type spinor in a six-dimensional spacetime that reflects
the intrinsic quantum numbers of chirality spin. A gener-
alized Dirac equation with maximal symmetry has been
derived in the six-dimensional spacetime.

Based on the framework of gravitational quantum
field theory with the postulate of gauge invariance and
coordinate independence [1], we have built a gravita-
tional gauge field theory in the six-dimensional spacetime
by gauging the maximal symmetry of the Dirac field.
The gauge-type gravifield is introduced as a bicovari-
ant vector field defined in the six-dimensional biframe
spacetime. Such a biframe spacetime is shown to be
a gravifield fiber bundle E. The locally flat gravifield
spacetime G is regarded as a fiber and the globally
flat Minkowski spacetime V as a base spacetime. Such
a gravitational gauge field theory is governed by the
spinor spin gauge symmetry group SP(1,5)=25U*(4) and
the charge spin gauge symmetry group SU(2) in the
six-dimensional Minkowski spacetime characterized by
the global Poincaré group P(1,5)= SO(1,5)x P*5. The
global and local conformal scaling symmetries of the the-
ory demand the introduction of scalar and conformal
scaling gauge fields.

We have deduced a gravitational relativistic quan-
tum equation for the massless Dirac spinor in the six-
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