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Abstract: After summarizing the experimental results and present status of the d∗(2380) observed at WASA@COSY,

two “extreme” models for explaining its structure, a compact hexaquark dominated model and a loose ∆∆′
−D12π

model, are briefly discussed, especially the former. By comparing their results with the corresponding data, the

differences of the two models are addressed. As a remedy for the latter model, a mixing model and its result are also

quoted for a comparison. It is shown that the compact hexaquark dominated structure might be more promising.

However, the mixing model is also a possible structure, and more accurate Γd∗→NNπ data are needed for confirmation.
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1 Introduction

In the last ten years, exotic hadronic states have
attracted much attention among physicists. Many ex-
otic new resonances, the so-called XYZ resonances, like
X(3872), Zc(3900), Y (4260), Zb(10610), Pc(4380), etc.,
have been observed. Most of their masses are very
close to the relevant thresholds of two mesons (or one
baryon and one meson), and their widths are very nar-
row compared to the ordinary mesons (or baryons), so
usually one can neither regard them as conventional
qq̄ (or qqq) systems, nor pin down their exact struc-
tures from the interpretations of the hadronic molecular
states, tetraquark (or pentaquark) states, or the cusp
and triangle-singularity effects [1–5].

Besides those exotic states in the meson-like and
baryon-like sectors, the dibaryon systems, like the H par-
ticles, d∗, and d′ have been known for many years as in-
teresting multi-quark (six-quark) systems with a baryon
number of 2 (see for example Ref. [6] for a review). In
2009, the CELSIUS/WASA Collaboration [7] reported
that the data on the ABC effect in the p+n→ dπ0

π
0

reaction cannot be simply explained by either the in-
termediate Roper excitation contribution or by the t-
channel ∆∆ process. An s−channel resonance, lately

called d∗, has to be imposed. In order to confirm the ex-
istence of such a resonance, the WASA@COSY Collab-
oration [8, 9] checked all the possible double pion fusion
reaction channels, including 3-body and 4-body ππ chan-
nels, like d∗→dπ0

π
0, dπ+

π
−, pnπ

+
π

−, nnπ
+
π

0, ppπ0
π

−,
etc. [9, 10], and found the trail of the resonance, with a
mass of m=2370 MeV, width of 70 MeV, and quantum
numbers of I(JP )=0(3+), in all the channels. They fur-
ther measured the np analyzing power Ay, incorporated
the data into the SAID analysis, and produced a pole of
(2380±10)−i(40±5) MeV in the 3D3−3G3 wave [11].
Then, the report of the discovery of d∗(2380), whose
quantum numbers, mass, and width are I(JP ) = 0(3+),
M≈2370 MeV, and Γ≈70 MeV (see also their recent pa-
per [10], the averaged mass and width areM≈2375 MeV
and Γ ≈ 75 MeV, respectively), was released [12]. The
most important characteristics of this state are that its
mass is about 80 MeV below the ∆∆ threshold and about
70 MeV above the ∆πN threshold, so that the thresh-
old (or cusp) effect may not be as significant as for the
XYZ particles [1–5]. Moreover, its width is only about
70 MeV, which is much smaller than the width of 2 ∆s
or even a single ∆, and is completely different from a
conventional hadron. Therefore, Ref. [13] used Harvey’s
relation, which describes the relation between the physi-
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cal states and the symmetry states on the basis of group
theory, to argue that this state might have a large hid-
den color component. This was, in fact, proposed and
calculated by us in 1999 [14]. This implies that this state
might have a compact structure. However, others believe
that this state might be a ∆Nπ three body molecular-
like state [15, 16]. It means that the observed state might
have a relatively large size. These two assumed struc-
tures are quite different. Discriminating the structure of
d∗(2380) has become one of the important problems in
the study of d∗(2380). From the latter structure, if the
size of the system is relatively large, the structure of a
pion with a weakly bound D12 would not be compact.
Consequently, the pion might be relatively easy to re-
lease, and the single pion decay cross section might have
a sizeable value. Therefore, the single pion decay process
d∗(2380)→NNπ might be a criterion for the different
structures of d∗. After carefully analyzing the data for
such a decay channel, the WASA@COSY Collaboration
reported an upper limit of 9% for the branching ratio
of d∗(2380)→NNπ [17]. Because the present data only
give an upper limit, more accurate data would be ap-
preciated. Of course, finding d∗(2380) in other types of
physical processes is also necessary and would be a cross
check for the existence of this state.

This d∗(2380) state was studied for several decades
even before WASA’s observation [14, 18–27] (refer also
to the review in Ref. [6]). After the experimental ob-
servation of d∗(2380), there have been many calculations
with various approaches, for instance, the chiral SU(2)
quark model [27, 28], chiral SU(3) quark model [29, 30],
three body hadronic molecular-like model [15, 16, 31–
35], QCD sum rules [36], etc. [37, 38]. Of these, only
two structural models can simultaneously provide a mass
and a width of d∗(2380) which are consistent with the ob-
served data. However, the structures in these two models
are quite different. One is based on the quark-gluon de-
grees of freedom and the other on the framework of the
hadronic degrees of freedom. The structure of d∗ in these
two approaches corresponds to a compact structure and
a hadronic molecular-like structure, respectively. A typi-
cal calculation for the former is based on the chiral SU(3)
constituent quark model with a coupled-channel trial
function of ∆∆−CC in the framework of the Resonating
Group Method (RGM), where C denotes a color octet
cluster [29, 30]. A typical study for the latter approach
is done by performing a three-body Faddeev equation
for a ∆Nπ system [15, 16]. In this work, we will intro-
duce how these two calculations are carried out, what
results they can give, and whether the obtained results
can explain the data. In addition, it should be noted
that a compromised mixing model, where a core with a
large fraction of a compact structure is surrounded by an
extended structure of D12π, has already been proposed

recently [39].
The paper is organized as follows. In Section 2,

the calculation for a compact structure of d∗(2380) by
employing our chiral SU(3) constituent quark model is
briefly discussed. The study for a pure ∆Nπ structure
of d∗(2380) and the mixing model are introduced in Sec-
tion 3. A comparisons of the results in both structural
models with the data and a brief conclusion are given in
Section 4.

2 A compact hexaquark dominated
structure model

In the quark-gluon degrees of freedom, the funda-
mental interaction is the interaction between quarks. To
study the inner structure of d∗(2380) at this level, we em-
ploy the chiral SU(3) constituent quark model. In this
model, the quark-quark interaction includes three parts:
the one-gluon-exchange interaction describing the short-
range perturbative effect of QCD, the chiral field inter-
action representing the medium- and long-range nonper-
turbative QCD effect, and a confining potential govern-
ing the long-range nonperturbative effect of QCD [40].
In the constituent quark model, because the quarks get
their constituent masses through spontaneous symmetry
breaking of the vacuum, Goldstone bosons appear. The
Goldstone bosons obtain their physical masses through
the apparent chiral symmetry breaking due to the non-
zero masses of the current quarks. The interactions
caused by the chiral fields, or Goldstone bosons, must
therefore be considered in the strong interaction between
the constituent quarks. Even more, in the extended chi-
ral SU(3) constituent quark model, the potentials caused
by the vector meson exchange are also taken into ac-
count to better describe the short-range nonperturbative
QCD effect [40]. In this approach, the model parame-
ters are determined by the mass difference between N
and ∆, the stability condition of nucleon, the measured
coupling constant gNNπ, the coupling constants GNNρ

and fNNρ from well-established strong interaction mod-
els, etc. [40]. The properties of ground state baryons, the
properties of two-baryon systems (like the root-mean-
square (RMS) radius, binding energy, and S− and D−
wave admixture in the wave function of deuteron, and
even the mass of 2225∼2234 MeV for the H particle [41]),
the N-N phase shifts, and the hyperon-nucleon interac-
tions, etc, can therefore be well described, and all the
model parameters are fixed [40, 41]. In particular, in
the latter approach, the effect of the vector meson ex-
change almost substitutes for the effect of the one gluon
exchange, and there is no double counting problem be-
tween the one-gluon-exchange and meson-exchange po-
tentials. The success of the model implies that it has a
very good chance of making meaningful predictions for
other systems, like d∗(2380).

101001-2



Chinese Physics C Vol. 41, No. 10 (2017) 101001

Since d∗ was observed in the n+p reaction, the baryon
number of the system is B=2, i.e. this is a six-quark sys-
tem. Then, the six-quark system can be solved in the two
cluster approximation in the framework of the Resonant-
ing Group Method (RGM). In this calculation, we as-
sume that d∗(2380) has two components. One is the ∆∆
component, due to its quantum numbers I(JP )=0(3+),
and the other is a “hidden-color” component of “CC”.
Therefore, the trial wave function of the system can be
written as

Ψ6q = A
[

φ∆(~ξ1,~ξ2)φ∆(~ξ4,~ξ5)η∆∆(~r)

+φC(~ξ1,~ξ2)φC(~ξ4,~ξ5)ηCC(~r)
]

S=3,I=0,C=(00)
, (1)

where A = 1−9P36 is the anti-symmetrizer in the or-
bital (o), spin (s), isospin (f), and color (c) spaces due to
the Pauli exclusion principle, φ∆,C are the internal wave
functions of the 3-quark clusters, with ξi(i= 1,2 (4,5))
being the internal Jacobi coordinates, and η∆∆,CC stand
for the relative wave functions between the two clusters.
Based on the fixed model parameters, which can be found

in Refs. [29, 30], the bound state problem of the six-quark
system with I(JP )=0(3+) can be solved and the relative
wave functions can be obtained.

Due to the non-orthogonality of the basis wave func-
tion, the two components in Eq. (1) are not orthogonal
to each other. By making a projection and integrating
out the internal Jacobi coordinates of ξ1,2,3,4

χ∆∆(~r) = <φ∆(~ξ1,~ξ2)φ∆(~ξ4,~ξ5)|Ψ6q>

χCC(~r) = <φC(~ξ1,~ξ2)φC(~ξ4,~ξ5)|Ψ6q>, (2)

the two channel wave functions in the hadronic level are
expressed in the following equation as

Ψd∗ = Ψd∗;∆∆+Ψd∗;CC

= |∆∆>χ∆∆+|CC>χCC , (3)

where the two channel wave functions, Ψd∗;∆∆ and
Ψd∗;CC , are orthogonal to each other and include all the
effects of anti-symmetrization.

The obtained mass of d∗(2380) and the fractions of
the S- and D-waves in the d∗ wave function, as well as
the deuteron properties, are listed in Table 1.

Table 1. The mass (the binding energy (BE) with respect to the threshold of the ∆∆) of d∗(2380) and the fractions
of the S- and D-waves in the d∗(2380) wave function, as well as the deuteron (d) properties, in the chiral SU(3)
constituent quark model and its extended version with f/g=0.

model systems md∗ (BE)/MeV S-wave D-wave

d 1876 (2.09) 93.68% 6.32%

SU(3)

quark model

d∗(2380) in coupled-channel
2417 (47.27)

∆∆ CC ∆∆ CC

of ∆∆+CC 33.11% 66.25% 0.62% 0.02%

d∗(2380) in single channel
2435 (28.96) 97.18% 2.82%

of ∆∆

d 1876 (2.24) 94.66% 5.34%

extended SU(3)

quark model

d∗(2380) in coupled-channel
2380 (83.66)

∆∆ CC ∆∆ CC

of ∆∆+CC 31.22% 68.33% 0.45% 0.00%

d∗(2380) in single channel
2402 (62.28) 98.01% 1.99%

of ∆∆

The extracted channel wave functions for the ∆∆ and
CC channels of the d∗ state in the coupled channel case
and the wave function in the single ∆∆ case in momen-
tum space are plotted in Fig. 1. It is shown from Table 1
that the obtained mass of d∗(2380) in the coupled chan-
nel case is in a region of about 2.38∼2.42 GeV, which is
consistent with the observed data, and the inclusion of
the CC channel will suppress the mass of d∗ by about
20 MeV. It is also found that the S−wave is dominant in
both the single and coupled channel cases. An important
characteristic of the wave function is that the fraction of
the CC component in the coupled channel case is about
2 times larger than that of the ∆∆ component.

Moreover, from the wave functions in Fig. 1, the

root-mean-square radii (RMS) of the d∗(2380) system
for both the single channel structure and the coupled
∆∆−CC structure are 1.1 fm and 0.72 fm, respectively.
The d∗(2380) wave function in the single-channel case is
broader than the one in the coupled-channel case. Es-
pecially, the wave function of the CC component is very
compact. It is likely a single Gaussian-type wave func-
tion with the size parameter bCC =0.45 fm.

Now, the decay width of the d∗ state can be calcu-
lated by using the obtained channel wave function, which
is a function of the relative momentum between the two
∆s. In the leading order approximation, it is found that
in the coupled channel case, only the ∆∆ component
contributes, not the CC component. Since the fractions
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Fig. 1. (color online) Wave functions of d∗(2380)
and its components in momentum space and in
the framework of the extended chiral SU(3) con-
stituent quark model. The pink dashed-dotted
curve denotes the relative wave function between
∆ and ∆ in the single (denoted by “(S)”) ∆∆
channel only and the black solid and red dashed
curves represent the wave functions of the ∆∆ and
CC components in the coupled ∆∆+CC channel
(denoted by “(C)”), respectively [29, 30].

of the ∆∆ and CC components are about 31.22% and
68.33%, respectively, a smaller decay width could be
expected. In time-order perturbation theory, the dia-
grammatic sketches of Feynman diagrams for the 3-body
double-pion decay of d∗(2380)→ππd are drawn in Fig. 2.

The decay width of this process in the non-relativistic
approximation, for example for dπ0

π
0, can be formally

written as

Γd∗→dπ
0
π
0 =

1

2!

∫

d3k1d
3k2d

3pdδ
3(~k1+~k2+~pd)(2π)

×δ
(

ωk1
+ωk2

+ωpd
−Md∗

)

∣

∣

∣
Mdπ

0
π
0

ij

∣

∣

∣

2

, (4)

where k1,2 and pd are the three-momenta of the two out-
going pions and the deuteron, respectively, ωk1,2

and ωpd

represent the energies of the two pions and deuteron,

respectively, and
∣

∣

∣
Mdπ

0
π
0

if

∣

∣

∣

2

stands for the squared tran-

sition matrix element with the sum over the final states
and average over the initial states. According to the
Feynman rule, it is easy to work out the transition ma-
trix element as follows:

Mdπ
0
π
0

if =
1√
3

∑

F1F2k1,µk2,νI
0
SI

0
IC

jmj

1ν,1µC
1md
3md∗ ,jmj

×
∫

d3q
[ χ∗

d(~q− 1
2
~k12)

E∆(q)−EN (q−k1)−ω1

+
χ∗

d(~q+
1
2
~k12)

E∆(q)−EN (q−k2)−ω2

+
χ∗

d(~q+
1
2
~k12)

E∆(−q)−EN(−q−k1)−ω1

+
χ∗

d(~q− 1
2
~k12)

E∆(−q)−EN(−q−k2)−ω2

]

χd∗(~q), (5)

where i and f stand for the initial d∗ state with quan-
tum numbers ((SmS) = (3md∗)) and the final deuteron
state with ((SmS)=(1md)), respectively, and I0

S(I) is the

spin (isospin) factor [42], F1,2 = F (k2
1,2) = 4G

(2π)3/2√ω1,2
,

~k12 = ~k1 −~k2, ω1,2 =
√

m2
π
+~k2

1,2. χd(~q) and χd∗(~q)

are, respectively, the relative wave functions of the fi-
nal deuteron (between the two nucleons) and the initial
d∗ (between the two ∆s) where ~q= 1

2
(~p1+~p2+~p3−~p4−~p5−~p6)

with ~pi being the momentum of the i-th quark. By us-
ing the coupling constant of ∆-π-N obtained through the
Γ∆→Nπ data fitting, the partial width for the d∗ →dππ

decay can be reached [42]. The obtained partial widths

d∗ d(pd)

∆(q)

∆(−q)

N

N

(b)
π(k1)

π(k2)

d∗ d(pd)

π(k1)

π(k2)
(a)

∆(q)

∆(−q)

N

N

N

d∗ d(pd)

∆(q)

∆(−q)

d∗ d(pd)

π(k2)

π(k1)

∆(q)

∆(−q)

N
d∗ d(pd)

π(k1)

π(k2)
(c)

∆(q)

∆(−q)

N

N

(d)

Fig. 2. (color online) Illustration of d∗(2380)→dππ decay.
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in the d∗→dπ0
π

0 and d∗→dπ+
π

− processes in the cou-
pled channel case are 9.2 MeV and 16.8 MeV, respec-
tively, which are shown in Table 2. The ratio of the
partial width for the charged pion process to that for
the neutral pion processes is about 1.83. These partial
widths agree with the observed data of 10.2 MeV and
16.7 MeV quite well.

The 4-body double pion decay of d∗(2380)→NNππ

can also be calculated in a similar way. In time-order
perturbation theory, the diagrammatic sketches of Feyn-
man diagrams for the d∗→NNππ decays are plotted in
Fig. 3.

Table 2. Theoretical calculations (in units of MeV)
for the double-pion decays of d∗(2380) in the
coupled-channel csae.

mode our theor./MeV expt./MeV

d∗→dπ
+

π
− 16.8 16.7

d∗→dπ
0
π
0 9.2 10.2

d∗→pnπ
+

π
− 20.6 21.8

d∗→pnπ
0
π
0 9.6 8.7

d∗→ppπ
0
π
− 3.5 4.4

d∗→nnπ
0
π
+ 3.5 4.4

d∗→pn 8.7 8.7

total 71.9 74.9

d∗

∆(q)

∆(−q)

N(p1)

N(p2)

(b)
π(k1)

π(k2)

N(p2)

d∗

∆(q)

∆(−q)

d∗

π(k2)

π(k1)

∆(q)

∆(−q)

N(p1)
d∗

π(k1)

π(k2)
(c)

∆(q)

∆(−q)

N(p1)

N(p2)

(d)

d∗

π(k1)

π(k2)
(a)

∆(q)

∆(−q)

N(p1)

N(p2)

Fig. 3. (color online) Illustration of d∗(2380)→pnππ decay.

The decay widths of those processes in the non-
relativistic approximation, for example for the pnπ

0
π

0

channel, can be written as [43]

Γd∗→pnπ
0
π
0 =

1

2!2!

∫

d3k1d
3k2d

3p1d
3p2δ

3(~k1+~k2+~p1+~p2)

×(2π)δ
(

ωk1
+ωk2

+ωp1
+ωp2

−Md∗

)

×
∣

∣

∣
Mpnπ

0
π
0

ij

∣

∣

∣

2

, (6)

where p1,2 and ωp1,2
are the three-momenta and energy of

the two outgoing nucleons, respectively, and
∣

∣

∣
Mpnπ

0
π
0

ij

∣

∣

∣

2

is the squared transition matrix element with the sum
over the final states and average over the initial states.
The final state interaction (FSI) between the two out-
going nucleons must be taken into account for the four-
body decay processes. The FSI can be formally written
as

Mpnπ
0
π
0

ij =Mpnπ
0
π
0(bare)

if ×I, (7)

where Mpnπ
0
π
0(bare)

ij stands for the transition matrix ele-

ment without FSI, and I denotes the enhancement factor
caused by FSI. In the low energy region, the S-wave ap-
proximation can be taken, then I can be expressed by
the Jost function. Detailed discussions for FSI between
the proton and neutron can be found in Refs. [44–48].

The transition matrix element Mpnπ
0
π
0(bare)

if can also be
calculated by using the relevant Feynman rule in non-
relativistic time-order perturbation theory. For example,
the explicit expression for Fig. 3(a) can be written as

Ma(k1,k2;p1)

=

∫

d3p2d
3q

[

HSfH
]

Ψd∗(q)δ3(~p1+~k1−~q)δ(~p2+~k2+~q)

=

∫

d3p2δ
3(~p1+~p2+~k1+~k2)

[

HSfH
]

ψd∗(−~p2−~k2), (8)

where Sf is the propagator of the intermediate state,
and H is the effective Hamiltonian for the pseudo-scalar
interaction among quark, pion, and quark in the non-
relativistic approximation. Ψd∗ represents the d∗ wave
function in momentum space which can be obtained by
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Fourier transforming the d∗ wave functions in coordi-
nate space [43]. The resultant partial widths for the de-
cay processes d∗→pnπ

0
π

0, d∗→pnπ
+
π

−, d∗→ppπ0
π

−,
and d∗ → nnπ

0
π

+ are 9.6 MeV, 20.6 MeV, 3.5 MeV,
and 3.5 MeV, respectively, which are also tabulated in
Tab. 2. Clearly, these values are roughly consistent with
the observed values of 8.7 MeV, 21.8 MeV, 4.4 MeV, and
4.4 MeV, respectively. The ratio of the partial width
for the pnπ

+
π

− (charged pion) process to that for the
pnπ

0
π

0 (neutral pion) processes is about 2.15.
By estimating the partial width for d∗→pn in terms

of branching ratio data, we finally end up with the to-

tal width of the observed d∗(2380) state. In our coupled
∆∆+CC channel case, the total width of d∗ is 71.9 MeV
(see Table 2). Comparing this value with the observed
value of 74.9 MeV, the total width from the current
structural model, where a hexaquark state dominates,
can explain the data very well.

As mentioned in the first section, because the single
pion decay process d∗(2380)→NNπ becomes one of the
structure discriminators, it is necessary to study this de-
cay process in the same framework. The diagrammatic
Feynman diagrams in time-order perturbation theory for
the d∗→NNπ decays are sketched in Fig. 4.

N(p′2)

d∗
π(kE)

π(k)

(b)

∆(q)

∆(−q)

N(p1)

N(p2) N(p′2)

d∗

π(kE)

π(k)
(c)

∆(q)

∆(−q)

N(p1)

N(p2)N(p′2)

d∗
π(kE)

π(k)
(a)

∆(q)

∆(−q)

N(p1)

N(p2)

N(p2)

d∗

π(kE)

(d)

∆(q)

∆(−q)

N(p2)

N(p1)

N(p′2)

d∗

π(kE)

π(k)

(d)

∆(q)

∆(−q)

N(p2)

N(p1)

N(p′2)

d∗

π(kE)

π(k)

(e)

∆(q)

∆(−q)

N(p2)

N(p1)

N(p′2)

d∗
π(kE)

π(k)

(f)

∆(q)

∆(−q)

N(p2)

N(p1)

Fig. 4. (color online) Illustration of d∗(2380)→pnπ decay, where the outgoing pion is emitted from the second ∆
resonance.

In the leading order approximation, in our double-
pion decay calculation mentioned above, two outgoing
pions are emitted directly from two ∆ clusters in the
∆∆ component of d∗(2380). However, in the single-pion
decay calculation, one pion is emitted from one of the ∆
clusters in the ∆∆ component of d∗, and another is emit-
ted from another ∆ cluster, and is then absorbed by the
system. Of course, apart from the diagrams in Fig. 4,
there are also some Feynman diagrams where the out-
going pion is emitted from the second ∆ cluster, which
should be considered in the calculation as well.

The partial decay width of such a process is usually
written as [49]

Γd∗→NNπ=
1

2!

∫

d3p1d
3p2(2π)δ(∆E)

∣

∣

∣
M(~p1,~p2)

∣

∣

∣

2

, (9)

where
∣

∣

∣
M(~p1,~p2)

∣

∣

∣

2

stands for the squared transition ma-

trix element with a sum over the polarizations of the
final three body states and an average over the initial
state d∗, and δ(∆E) denotes the energy conservation
with ∆E = Md∗ −ωπ(k)−EN (p1)−EN(−p1−k), where
ωπ(k) and EN represent the energies of the pion and nu-
cleon, respectively. In terms of the Feynman rule, the
involved matrix element can be obtained. For instance,
the matrix element for Fig. 4(a) reads

M(a)
d∗→NNπ

=

∫

d3q
Ψd∗(q)

2ωkE

√
2ωk(2π)6

δ3
(

pN′

2
+pN′

1
+k−p∆1

−p∆2

)

×M̃π(kE)N(p′

2
)→N(p2)DafM̃∆1→π(kE)N(p1)DaiM̃∆2→π(k)N(p′

2
), (10)
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where Ψd∗ represents the d∗ wave function in mo-
mentum space, M̃π(kE)N(p′

2
)→N(p2), M̃∆1→π(kE)N(p1),

M̃∆2→π(k)N(p′

2
) denote the transitions of π(kE)N(p′2)→

N(p2), ∆1 →π(kE)N(p1), and ∆2 →π(k)N(p′2), respec-
tively, and Dai(af) is a non-relativistic energy propagator
with the form

Daf =
1

Md∗−ω(~k)−ω(~kE)−EN (~p1)−EN (~p
′

2 )

Dai =
1

Md∗−ω(~k)−E∆1
(~q)−EN (~p

′

2 )
. (11)

As for the effect of FSI between the two outgoing nu-
cleons, it should be noted that for such a system, due to
the conservation of P and J , either the orbital angular
momentum between the outgoing pion and nucleon is at
least equal to 3, or the orbital angular momentum be-
tween the two outgoing nucleons is at least equal to 2.
Then, in both cases, the effect of FSI will be suppressed
by the higher partial wave. Therefore, in this calculation,
we assume the enhancement factor from FSI is close to
1. By considering other Feynman diagrams where the
outgoing pion is emitted from the second ∆ cluster, the
decay width of the d∗→NNπ is obtained and shown in
Table 3. From this table, the branching ratio of about
1% for this channel is quite small.

Table 3. The calculated single pion decay (in units
of MeV) of d∗(2380) in the extended chiral SU(3)
constituent quark model.

case width/MeV

coupled-channel (∆∆+CC) 0.670

single-channel (∆∆) 2.276

3 Brief introduction of a ∆Nπ

molecular-like structure model

For comparison, we briefly introduce another struc-
tural model based on baryon-baryon and baryon-pion in-
teractions in the hadronic degrees of freedom [15, 16].
We first introduce a “pure” ∆Nπ molecular-like struc-
ture, where N stands for a nucleon. The general idea of
that structure is that by solving a ∆′Nπ three-body Fad-
deev equation, where ∆′ denotes a stable ∆(1232) and
the N∆′ interaction is dominated by the D12 dibaryon,
the ∆∆′ structure could couple to a D12π structure with
the assistance of a pion.

In Refs. [15, 16], one needs the interactions between
N and ∆′, between N and π, and between ∆′ and π.
In order to get the N -∆′ interaction, they again em-
ployed the Faddeev equation to solve the NNπ three-
body problem. In the calculation, the Nπ interaction,
which is dominated by the P33 channel, is taken to be a
rank-one separable potential, and the NN interaction is

described by a rank-two separable potential. The numer-
ical result showed a D12 resonance with a S-matrix pole
of 2147−i60 MeV in the N−∆′ channel, and consequently
a separable potential for the N−∆′ interaction was ob-
tained. As for the ∆′−π interaction, it was neglected
due to the lack of a known ∆ resonance to dominate it.
Solving the ∆∆′−D12π channel ∆Nπ three-body Faddeev
equation, a S-matrix pole of (2363±20)−i(33±8) MeV
for D03 or d∗ was obtained [15]. These values are also
consistent with the reported data.

However, the obtained partial width for the d∗ →
NNπ decay in a model-dependent way showed a value
of about 11.5 MeV (or branching ratio of 15.4%). This
value is much larger than the recently reported upper
limit of 9% [17]. Then, for this molecular-like model,
a complementary mixing model, where a compact core
is surrounded by an extended D12π structure, was pro-
posed [39]. In that paper, the decay width of the
d∗→NNππ was written as

ΓNNππ =αΓ<+(1−α)Γ> (12)

with Γ< =44 MeV and Γ> =100 MeV being the widths
for a compact structure and a D12π structure, respec-
tively, and α=5/7, so a value of Γd∗→NNπ=6.2 MeV can
be reached.

4 Comparison with data and concluding
remarks

We compare the data with the model results in the
following three aspects.

(1) Mass: From Table 1, we find that in the cases
with and without the CC component, our obtained
masses for the six-quark state with I(JP ) = 0(3+) are
2402 ∼ 2435 MeV and 2380 ∼ 2417 MeV, respectively.
This means that no matter whether a CC component is
included, all the obtained masses of the state are gener-
ally consistent with the observed value of 2380 MeV. In-
clusion of the CC channel will lower the mass by about
20 MeV. Especially, the agreement between the mass
obtained in the coupled ∆∆+CC channel calculation
in the extended SU(3) constituent quark model and the
observed value, and the large CC component of about
68∼66%, implies that the observed state prefers a com-
pact hexaquark dominated structure.

On the other hand, the mass from the ∆Nπ-D12π

molecular-like model is about 2363±20 MeV. This value
also explains the observed value. So as far as the
mass concerned, both the compact hexaquark dominated
structure and the ∆Nπ-D12π molecular-like structure
can be the candidates for the possible structure.

(2) Total width and partial widths for the dou-

ble pion decays: By looking at Table 2, the total
width of d∗(2380) with a compact structure is about
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71.9 MeV, which agrees with the averaged observed value
of 75 MeV. Superficially, this is because all the partial
widths for double-pion decays, which are dynamically
calculated directly from the Feynman diagrams, are con-
sistent with the observed values, except that the partial
width for d∗ → pn is extracted by using the branching
ratio data. By its nature, this should be a consequence
of its compact hexaquark dominated structure.

On the other hand, the total width with a “pure”
∆Nπ-D12π molecular-like structure is about 65±17 MeV,
which also agrees with the data. The partial widths for
various decay channels, which are extracted by compar-
ing with the relevant data and using the isospin breaking
factor of 1.83 from our calculation [42], can also fit to the
data. Thus, from the viewpoint of the decay width, the
data allow the existences of both structures.

(3) Partial width for the single pion decays:

The results in Table 3 were also dynamically calculated
from various Feynman diagrams, although some approx-
imations were made in the calculation. The obtained
partial widths of the decay process d∗→NNπ with and
without the CC component are about 0.67 MeV and
2.28 MeV, respectively. The corresponding branching
ratios are about 0.9% and 3.2%, which do not contra-
dict the experimental upper limit of 9% reported re-
cently [17].

On other hand, if a “pure” ∆Nπ-D12π molecular-
like structure is considered, the partial width is about
15.4 MeV, which is much larger than the observed up-
per limit of about 9%. Clearly, at least this “pure”
molecular-like structure is not the exact structure for the
observed d∗(2380). To overcome this defect, a compen-
satory mixing model is proposed [39]. Apparently, the
idea of the two “extreme” structures mixing is mean-
ingful. By taking Γ< = 44 MeV and Γ> = 100 MeV,
estimating ΓNNππ =60 MeV, and solving Eq. 12, a value
of α=5/7 and a partial width of 6.2 MeV (correspond-
ing branching ratio is 8.3%) for the d∗ → NNπ decay
are obtained. By this phenomenological mixing treat-
ment, this new branching ratio is below the upper limit
reported by the experimental measurement. So the mix-
ing structure can also be a more reasonable structural
candidate for d∗(2380). However, the physical picture of

the mixing model looks like a compact structure in the
center as a core and a much larger sized molecular-like
structure surrounding the compact structure. Since the
mixing parameter α has a large value of 5/7, it implies
that d∗(2380) is a compact structure dominated state.
Moreover, the value of α is sensitive to the input value
of Γ<. Consequently, the partial width for d∗→NNπ will
also change if Γ< varies. The final α value is still waiting
for the accurate measurement of the NNπ channel.

In summary, we believe that the compact hexaquark
dominated structure is a good candidate for the structure
of d∗(2380), because not only the mass but also the total
width and all the partial widths for various double-pion
decay channels are consistent with the observed data.
Especially, the partial width for the decisive decay chan-
nel d∗ →NNπ does not contradict the observed upper
limit. The constituent quark model used is predictive,
and no additional free parameters are employed. The
important thing here is that our proposed structure is
more a dominant structure than a complete structure in
d∗(2380). Other minor structures with the same quan-
tum numbers can, of course, be mixed in. However, this
would be another complicated calculation. The mixing
model, where a compact system of size 0.5∼1 fm (∆∆)
mixes with a loose system of size typically 1.5 ∼ 2 fm
(D12π), can also be a possible structure. To identify
this structure, a more accurate Γd∗→NNπ measurement
is needed to fix the phenomenological parameter α. Nev-
ertheless, the existence of such a d∗(2380) state should
be further checked in other types of experiments, for
instance, the γ+d process, the Υ decay process, charge
distribution function measurement, etc. More accurate
measurements of the partial decay widths of various de-
cay channels, especially the single pion decay channel,
should be carried out in future. Although our proposed
compact hexaquark dominated structure is promising,
up to now, the structure of d∗(2380) is still an open
question. Any experimental effort and theoretical calcu-
lations by any models are welcome.

We would like to thank Heinz Clement, Qiang Zhao,

and Qi-Fang Lü for their useful and constructive discus-

sions.
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