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Branching fractions of B(c) decays involving J/ψ and X(3872) *
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Abstract: We study two-body B(c) → Mc(π,K) and semileptonic Bc → Mcl
−ν̄l decays with Mc = (J/ψ,X0

c),

where X0
c ≡ X0(3872) is regarded as the tetraquark state cc̄uū(dd̄). With the decay constant fX0

c
= (234±52) MeV

determined from the data, we predict that B(B−
→X0

cπ
−) = (11.5±5.7)×10−6, B(B̄0

→X0
cK̄

0) = (2.1±1.0)×10−4, and

B(B̄0
s →X0

cK̄
0)= (11.4±5.6)×10−6. With the form factors in QCD models, we calculate that B(B−

c →X0
cπ

−,X0
cK

−)=

(6.0±2.6)×10−5 and (4.7±2.0)×10−6, and B(B−

c → J/ψµ−ν̄µ,X
0
cµ

−ν̄µ) = (2.3±0.6)×10−2 and (1.35±0.18)×10−3,

respectively, and extract the ratio of the fragmentation fractions to be fc/fu = (6.4±1.9)×10−3.
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1 Introduction

Through the b → cc̄d(s) transition at quark level,
B decays are able to produce cc̄ bound states like J/ψ;
particularly, the hidden charm tetraquarks to consist of
cc̄qq̄′, such as X0(3872), Y(4140), and Z+

c (4430), known
as the XYZ states [1]. For example, we have [2, 3]

B(B− → J/ψK−)=(1.026±0.031)×10−3 ,

B(B− →X0
cK

−)=(2.3±0.9)×10−4 , (1)

where X0
c ≡X0(3872) is composed of cc̄uū(dd̄), measured

to have the quantum numbers JPC = 1++. On the other
hand, the B−

c decays from the b→ cūd(s) transition can
also be a relevant production mechanism for the cc̄ and
cc̄qq̄′ bound states. However, the current measurements
have been done only for the ratios, given by [4, 5]

Rc/u ≡
fcB(B−

c → J/ψπ−)

fuB(B− → J/ψK−)
= (0.68±0.12)% ,

RK/π≡
B(B−

c → J/ψK−)

B(B−

c → J/ψπ−)
= 0.069±0.020 ,

Rπ/µν̄µ
≡ B(B−

c → J/ψπ−)

B(B−

c → J/ψµ−ν̄µ)
= (4.69±0.54)% , (2)

where fc,u are the fragmentation fractions defined by
fi ≡ B(b → Bi). In addition, none of the XYZ states
have been observed in the Bc decays yet.

From Figs. 1(a) and 1(d), the B→McM decays pro-
ceed by the B→M transition, which is followed by the re-
coiled Mc = (J/ψ,X0

c) with JPC = (1−−,++), respectively,
presented as the matrix elements of 〈Mc|c̄γµ(1−γ5)c|0〉.
Unlike J/ψ, which is a genuine cc̄ bound state, while the
matrix element for the tetraquark production is in fact
not computable, X0

c is often taken as a charmonium state
in the QCD models [6–8]. In this study, we will extract
〈X0

c |c̄γµ(1− γ5)c|0〉 from the data of B(B− → X0
cK

−) in
Eq. (1) to examine the decays of B− →X0

c(π
−,K−), B̄0 →

X0
c(π

−,K−), and B̄0
s →X0

cK
−, of which the extraction al-

lows X0
c to be the tetraquark state. On the other hand,

to calculate the B−

c → (J/ψ,X0
c)M decays in Figs. 1(b)

and 1(e) and the semileptonic B−

c → (J/ψ,X0
c)lν̄l decays

in Figs. 1(c) and 1(f), we use the Bc → Mc transition
matrix elements from the QCD calculations.

2 Formalism

In terms of the effective Hamiltonians at quark level
for the b → cc̄q, b → cūq, and b → clν̄l transitions in
Fig. 1, the amplitudes of the B−

c →McM, B→McM, and
B−

c →Mcl
−ν̄l decays can be factorized as [9, 10]

A(B−

c →McM)

= i
GF√

2
VcbV

∗

uqa1fM〈Mc|c̄/q(1−γ5)b|B−

c 〉 ,
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Fig. 1. Diagrams for the B and Bc decays with formation of the cc̄ pair, where (a), (b) and (c) correspond to
the B → X0

cM, B−

c → X0
cM, and B−

c → X0
c lν̄l decays, while (d), (e) and (f) the B → J/ψM, B−

c → J/ψM, and
B−

c → J/ψlν̄l decays, respectively.

A(B→McM)

=
GF√

2
VcbV

∗

cqa2mMcfMc〈M|q̄/ε(1−γ5)b|B〉 ,

A(B−

c →Mcl
−ν̄l)

=
GFVcb√

2
〈Mc|c̄γµ(1−γ5)b|B−

c 〉̄lγµ(1−γ5)νl, (3)

respectively, where /q = qµγµ, /ε = εµ∗γµ, q = d(s) for
M =π−(K−), Mc = (J/ψ,X0

c), l = (e−,µ−,τ−), GF is the
Fermi constant, and Vij are the CKM matrix elements.
In the factorization approach, a1(2) ≡ ceff

1(2) + ceff
2(1)/Nc is

composed of the effective Wilson coefficients in Ref. [9],
with (ceff

1 , ceff
2 ) = (1.168,−0.365), where Nc is the color

number. In Eq. (3), the decay constant, four-momentum
vector, and four polarization (fM(c)

,qµ,εµ∗) are defined
by

〈M|q̄γµγ5u|0〉=−ifMqµ ,

〈J/ψ|c̄γµc|0〉=mJ/ψfJ/ψε∗

µ ,

〈X0
c |c̄γµγ5c|0〉=mX0

c
fX0

c
ε∗

µ , (4)

while the matrix elements of the B → (M,J/ψ,X0
c) tran-

sitions can be parametrized as [8]

〈M|q̄γµb|B〉=
[

(pB +pM)µ− m2
B−m2

M

t
qµ

]

FBM
1 (t)

+
m2

B−m2
M

t
qµFBM

0 (t) ,

〈J/ψ|c̄γµb|B−

c 〉= εµναβε∗νpα
Bc

pβ
J/ψ

2V (t)

mBc +mJ/ψ

,

〈J/ψ|c̄γµγ5b|B−

c 〉= i

[

ε∗

µ−
ε∗ ·q

t
qµ

]

(mBc +mJ/ψ)A1(t)

+i
ε∗ ·q

t
qµ(2mJ/ψ)A0(t)

−i

[

(pBc +pJ/ψ)µ−
m2

Bc
−m2

J/ψ

t
qµ

]

(ε∗ ·q) A2(t)

mB +mJ/ψ

,

〈X0
c |c̄γµγ5b|B−

c 〉=−εµναβε∗νpα
Bc

pβ

X0
c

2iA(t)

mBc −mX0
c

,

〈X0
c |c̄γµb|B−

c 〉=−
[

ε∗

µ−
ε∗ ·q

t
qµ

]

(mBc −mX0
c
)V1(t)

−ε∗ ·q
t

qµ(2mX0
c
)V0(t)

+

[

(pBc +pX0
c
)µ−

m2
Bc

−m2
X0

c

t
qµ

]

(ε∗ ·q) V2(t)

mB−mX0
c

, (5)

respectively, where q = pB − pM(c)
, t ≡ q2, and (F1,2,

A(i),V(i)) with i = 0,1,2 are the form factors.

3 Numerical results and discussions

In our numerical analysis, we use the Wolfenstein pa-
rameterization for the CKM matrix elements in Eq. (3),
given by Vcb = Aλ2, Vud = Vcs = 1− λ2/2, and Vus =
−Vcd = λ, with [2]

(λ, A, ρ, η) = (0.225, 0.814, 0.120±0.022, 0.362±0.013).

(6)

In the generalized version of the factorization [9], though
Nc = 3, it is allowed to float from 2 to ∞, which
empirically estimates the uncertainty from the non-
factorizable effects, such that one has a1 = 1.05+0.12

−0.06 [11]
in B−

c → McM. Since a2 in B → McM is sensitive to
non-factorizable effects, it relies on the extraction from
B− → J/ψK− to give a2 = 0.268±0.004 [12]. The decay
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constants and form factors adopted from Refs. [2, 13]
and [8, 14] are as follows:

(fπ,fK,fJ/ψ) = (130.4±0.2,156.2±0.7,418±9) MeV,

(FBπ
1 (0),F BK

1 (0),F BsK
1 (0)) = (0.29,0.36,0.31) , (7)

where the form factors correspond to the reduced matrix
elements derived from Eqs. (3) and (5), given by

〈M|q̄/εb|B〉=ε ·(pB +pM)FBM
1 . (8)

The momentum dependence for F BM
1 (q2) from Ref. [14]

is taken as

FBM
1 (t) =

FBM
1 (0)

(

1− t

M 2
V

)(

1− σ11t

M 2
V

+
σ12t

2

M 4
V

) , (9)

with σ11 = (0.48,0.43,0.63), σ12 = (0,0,0.33) and MV =
(5.32,5.42,5.32) GeV for B → π, B → K and B̄0

s → K,
respectively. With B(B− → X0

cK
−)/B(B− → J/ψK−) =

0.22±0.09 from Eq. (1), we obtain fX0
c
= (234±52) MeV,

which is lower than fX0
c
= (335,329+111

− 95 ) MeV [7, 8] from
perturbative and light-front QCD models, respectively.
The momentum dependences for the Bc →Mc transition
form factors are given by [15]

f(t) = f(0)exp(σ1t/m2
Bc

+σ2t
2/m4

Bc
) , (10)

where the values of f(0) = (V(i)(0),A(i)(0)) and σ1,2 in
Table 1 are from Refs. [8] and [15], respectively. Our re-
sults for the branching ratios of B−

c → J/ψ(π−,K−, l−ν̄l)
are shown in Table 2.

Table 1. The Bc → (J/ψ,X0
c) form factors at

t = 0 and σ1,2 for the momentum dependences
in Eq. (10).

Bc → (J/ψ,X0
c) f(0) [8] σ1 σ2 [15]

(V,A) (0.87±0.02,0.36±0.04) 2.46 0.56

(A0,V0) (0.57±0.02,0.18±0.03) 2.39 0.50

(A1,V1) (0.55±0.03,1.15±0.07) 1.73 0.33

(A2,V2) (0.51±0.04,0.13±0.02) 2.22 0.45

From Table 2, we see that our numerical values of
B(B−

c → J/ψπ−) and B(B−

c → J/ψK−) are about a
factor 2 smaller than those in Ref. [8], where the cal-
culations were done only by the leading-order contri-
butions in the 1/mBc expansion1). We also note that,
by carefully computing the non-factorizable effects, it is
given that B(B−

c → J/ψπ−) = (29.1+1.5+4.0
−4.2−2.7)× 10−4 and

B(B−

c → J/ψK−) = (22+1+3
−3−2)×10−5 [16], which are around

2 times as large as our results. From the table, we get
that B(B−

c → J/ψπ−)/B(B−

c → J/ψK−) = 0.078±0.027,
which agrees with RK/π in Eq. (2), demonstrating the va-
lidity of the factorization approach. By taking B(B−

c →
J/ψπ−) as the theoretical input in Eq. (2), we find that

fc/fu = (6.4±1.9)×10−3 , (11)

which can be useful to determine the experimental data,
such as those in Eq. (2).

Table 2. The branching ratios of the Bc →

J/ψ(M, lν̄l) decays, where the first (second) er-
rors of our results are from the form factors (a1).

decay modes our results QCD models

B−

c → J/ψπ− (10.9±0.8+2.6
−1.2)×10−4 (20+8+0+0

−7−1−0)×10−4 [8]

B−

c → J/ψK− (8.8±0.6+2.1
−1.0)×10−5 (16+6+0+0

−6−1−0)×10−5 [8]

B−

c → J/ψe−ν̄e (1.94±0.20)×10−2 (1.49+0.01+0.15+0.23
−0.03−0.14−0.23 )

×10−2 [15]

B−

c → J/ψµ−ν̄µ (1.94±0.20)×10−2 (1.49+0.01+0.15+0.23
−0.03−0.14−0.23 )

×10−2 [15]

B−

c → J/ψτ−ν̄τ (4.47±0.48)×10−3 (3.70+0.02+0.42+0.56
−0.05−0.38−0.56 )

×10−3 [15]

For the B → X0
c(π,K) decays, the results are given

in Table 3. While fX0
c

= (234 ± 52) MeV leads to
B(B− → X0

cK
−) = (2.3+1.1

−0.9 ± 0.1)× 10−4 in accordance
with the data, we predict that B(B− → X0

cπ
−) =

(11.5± 5.7)× 10−6, B(B̄0 → X0
cK̄

0) = (2.1± 1.0)× 10−4,

Table 3. The branching ratios for the B(c) → X0
c M and Bc → X0

c lν̄l decays. For our results, the first errors come
from (fX0

c
, f(0)), and the second ones from (a1,a2).

decay modes our results QCD models

B− →X0
cπ

− (11.5+5.7
−4.5±0.3)×10−6 —–

B− →X0
cK

− (2.3+1.1
−0.9 ±0.1)×10−4 (7.88+4.87

−3.76)×10−4 [7]

B̄0
→X0

cπ
0 (5.3+2.6

−2.1 ±0.2)×10−6 —–

B̄0 →X0
cK̄

0 (2.1+1.0
−0.8 ±0.1)×10−4 —–

B̄0
s →X0

cK̄
0 (11.4+5.6

−4.5±0.3)×10−6 —–

B−

c →X0
cπ

− (6.0+2.2+1.4
−1.8−0.7)×10−5 (1.7+0.7+0.1+0.4

−0.6−0.2−0.4)×10−4 [8]

B−

c →X0
cK

− (4.7+1.7+1.1
−1.4−0.5)×10−6 (1.3+0.5+0.1+0.3

−0.5−0.2−0.3)×10−5 [8]

B−

c →X0
ce−ν̄e (1.35±0.18)×10−3 (6.7+0.9+0.0+0.1+0.5+2.3+0.7

−0.5−0.0−0.0−0.5−2.6−0.7 )×10−3 [19]

B−

c →X0
cµ

−ν̄µ (1.35±0.18)×10−3 —–

B−

c →X0
cτ

−ν̄τ (6.5±0.9)×10−5 (3.2+0.5+0.0+0.0+0.2+1.1+0.4
−0.2−0.2−0.0−0.2−1.3−0.3 )×10−4 [19]

1) We thank the authors in Ref. [8] for the useful communication.
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and B(B̄0
s → X0

cK̄
0) = (11.4 ± 5.6) × 10−6, which are

accessible to the experiments at the LHCb. Besides,
our results of B(B̄0

s → X0
cK̄

0) ' B(B− → X0
cπ

−) and
B(B̄0 → X0

cπ
0) ' B(B− → X0

cπ
−)/2 in Table 3 are also

supported by the SU(3) and isospin symmetries, respec-
tively. With the form factors adopted from Ref. [8], we
calculate that B(B−

c → X0
cπ

−) = (6.0± 2.6)× 10−5 and
B(B−

c →X0
cK

−) = (4.7±2.0)×10−6, which are 2–3 times
smaller than the results from the same reference. The
differences are again reconciled after keeping the next-
leading order contributions in the 1/mBc expansion.

For the semileptonic B−

c → Mcl
−ν̄l decays, B(B−

c →
J/ψeν̄e) = B(B−

c → J/ψµν̄µ) = (1.94± 0.20)× 10−2 is
due to the both negligible electron and muon masses,
of which the numerical value is close to those from
Refs. [15, 17] but 2 − 3 times smaller than those in
Ref. [18], which calls for future experimental examina-
tion. Note that by taking B(B−

c → J/ψπ−) as the theo-
retical input in Eq. (2), we derive that

B(B−

c → J/ψµ−ν̄µ) = (2.3±0.6)×10−2 , (12)

which agrees with the above theoretical prediction. For
the τ mode, which suppresses the phase space due to

the heavy mτ, we obtain B(B−

c → J/ψτ−ν̄τ) = (4.47±
0.48)× 10−3. The ratio of B(B−

c → X0
ce

−ν̄e)/B(B−

c →
X0

cτ
−ν̄τ)' 1/20 is close to that in Ref. [19], but B(B−

c →
X0

ce
−ν̄e) = (1.35± 0.18)× 10−3 is apparently 4-5 times

smaller than that in Ref. [19], though with uncertainties
the two results overlap with each other. With the spec-
tra of B−

c → (J/ψ,X0
c)l

−ν̄l in Fig. 2, our results can be
compared to the recent studies on the semileptonic Bc

cases in Refs. [20, 21] for the XYZ states.

4 Conclusions

In sum, we have studied the B(c) → Mc(π,K) and
Bc →Mcl

−ν̄l decays with Mc = J/ψ and X0
c ≡X0(3872).

We have presented that B(B− → X0
cπ

−,X0
cK

−) =
(11.5± 5.7)× 10−6 and (2.3± 1.1)× 10−4, and B(B−

c →
X0

cπ
−,X0

cK
−) = (6.0±2.6)×10−5 and (4.7±2.0)×10−6.

With B(B−

c → J/ψπ−) = (10.9±2.6)×10−4 as the theo-
retical input, the extractions from the data have shown
that fc/fu = (6.4±1.9)×10−3 and B(B−

c → J/ψµ−ν̄µ) =
(2.3± 0.6)× 10−2. We have estimated B(B−

c → X0
c l

−ν̄l)
with l = (e−,µ−,τ−) to be (1.35± 0.18)× 10−3, (1.35±
0.18)×10−3, and (6.5±0.9)×10−5, respectively.

Fig. 2. (color online) The spectra of the semileptonic (a) B−

c → J/ψl−ν̄l and (b) B−

c → X0
c l

−ν̄l decays, where the
solid and dotted lines correspond to l = (e,µ) and l= τ, respectively.
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