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Abstract: In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network

(ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and

γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron

and γ events were discriminated using two methods of artificial neural network including the ENN and a typical

Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ

discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM)

in n/γ discrimination. The FOM increases from 0.907 ± 0.034 to 0.953 ± 0.037 by using the new method of the

ENN. The proposed n/γ discrimination method based on ENN provides a new choice of pulse shape discrimination

in neutron detection.
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1 Introduction

The technique of neutron detection is important in
basic physics research, especially in the direct detection
of dark matter. Since the pulse shape of nuclear recoil
signals induced by WIMPs (Weakly Interactive Massive
Particles), which is supposed to be the most promis-
ing candidate for dark matter are the same as the pulse
shape of signals induced by neutrons, understanding the
neutron background in the environment is significant for
dark matter research [1–4]. Furthermore, neutron back-
ground is always accompanied by γ radiation [5], thus,
n/γ discrimination plays a key role in neutron detec-
tion. Because of its excellent discrimination capabilities
and fast time response abilities, liquid scintillator (LS) is
widely used for fast neutron detection. The key feature of
LS for fast neutron detection in the presence of γ rays is
that it shows slow components depending on the specific
energy loss density of the ionizing particle. The pulse
shape of signal induced by neutrons always has a high
proportion of slow component while γ signals show the
opposite effect. The difference of pulse shape of these two

kinds of signals can be used to discriminate neutron and
γ signals. Up to now, there have been many n/γ discrimi-
nation methods, such as the Charge Comparison Method
(CCM) [6–7] and the Rise Time Method [8–9], which are
based on analog electronic technology and complicated
circuit configurations. Although these methods have ex-
cellent online data analysis properties, their stability is
not as good as expected. Recently, with the development
of high speed ADCs, digital signal processors (DSP) and
field-programmable gate arrays (FPGA), it is possible to
record pulse shape of signals generated in LS completely.
These new technologies prompt the study of new meth-
ods of n/γ discrimination such as fuzzy c-means algo-
rithm [10], wavelet transform [11], power spectrum gradi-
ent analysis [12] and support vector machine (SVM) [13].
As a major method of non-linear science and compu-
tational intelligence science, neural networks have been
widely applied in pattern recognition, artificial intelli-
gence and biological information. In 1998, Zhong et al.
[14] first applied artificial neural networks to n/γ dis-
crimination firstly. Then Esposito et al [15] and Liu et
al [16] further developed the application of neural net-
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works in this field. However, in these studies the neural
network structures were all based on traditional back
propagation neural networks (BPNN), which limits the
use of dynamic information of data in neural networks.
According to the previous research, the feedback Elman
neural network (ENN) [17] has an excellent ability to
process dynamic time-varying signals. Thus in this work
an ENN is proposed to perform n/γ discrimination com-
bining with the randomness and time-varying character-
istics of nuclear signals.

2 ENN

The ENN is a dynamic regression neural network. It
can map dynamic characteristics through storing the in-
ternal status, thus, it is able to adapt to signals with
time-varying characteristics. Generally the ENN is com-
posed of 4 layers: input layer, hidden layer, output layer
and a specific context layer which is an additional layer
for the traditional BPNN. The structure of an ENN is
shown in Fig. 1. The input layer acts as signal transmis-
sion. The output layer plays the role of linear weighting.
The hidden layer is a typical nonlinear activation func-
tion. The transfer function can be a linear or nonlinear
function. The output value of training of the hidden layer
is stored in the context layer through recursive connec-
tion. In the next training, the stored value in the con-
text layer will work as feedback and be input into the
hidden layer to affect the training process. The feedback
process provides the network dynamic memory property.
The feedback process is expressed as follows:

y(k) = g(w3x(k)), (1)

x(k) = f(w1xc(k)+w2(u(k−1))), (2)

xc(k) = x(k−1), (3)

where y is the output layer node vector, x is the hid-
den layer node vector, u is the input layer vector, xc is
the feedback vector, w1 is the connection weight of the
context layer and the hidden layer, w2 is the connection
weight of the input layer and the hidden layer, w3 is the
connection weights of the hidden layer and the output
layer, g() is the transfer function of the output neuron
and f() is the transfer function of the hidden layer neu-
ron. The classification performance after this machine
learning method can be evaluated using the following
equation.

E(w) =

n∑

k=1

[yk(w)−y
−

k(w)]2, (4)

where yk(w) is the result calculated by the neural
network and yk̄(w) is the training data set. The
idea of this algorithm here is as following. In order

to get high correct recognition ratios, the Levenberg-
Marquardt method [18] is applied in the training pro-
cess, and the value of weight coefficients in each layer
can be adjusted according to the value of E(w). Every
adjusting process can be divided into two stages: a forth
propagation and a back propagation stage. The process
does not stop until the value of the evaluation function is
smaller than a specific value, and the rest weight values
between different layers is the neural network which is
what we need. In this study, MATLAB neural network
toolbox is used as the research platform [19].

Fig. 1. The structure of the ENN.

3 Experiment

3.1 Experiment setup

The experimental setup is similar to that which has
been presented in detail in Yu et al. [13]. A quartz glass
vessel with dimensions of 30 cm in diameter and 40 cm
in length is filled with EJ-335 LS loaded with 0.5 per-
cent gadolinium (Gd) by weight [20]. Two 20 cm Hama-
matsu R5912-02 photomultiplier tubes (PMT) [21] are
mounted on each side of the cylindrical vessel. In order
to enhance the light collection efficiency, Plexiglas light
guides are set to fit the surface shapes of the cylindri-
cal vessel and PMTs, and the interfaces of these parts
are coupled by silicone grease. In the experiment, ran-
dom triggers are applied to measure the dead time of the
detector. The signals from PMT1, PMT2 and random
signals generated by a TEKTRONIX AFG3000C func-
tion signal generator are all separately sent to a CAEN
N625 fan-in fan-out (FIFO) module which divides each
signal into two circuits. One part of these three signals
are sent to a CAEN V1721 fast analog to digital conver-
sion (FADC) module with 8 bit resolution working at 500
M sample/s, and the other part of these three signals are
sent to a CAEN N842 discriminator which can discrim-
inate the signals according to the maximum amplitude.
The output signals of the N842 are transferred into a
CAEN N405 logical module to generate a level signal.
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The level signal and the output signal of the random
trigger after discrimination are input into logic OR to
get another level signal to trigger the V1721 FADC. The
data of the V1721 are collected by a computer via the
CAEN A2818 photoelectric conversion module. The de-
tector is placed in a lead chamber with 5 cm thickness to
shield the environment γ background. The experimental
setup is shown in Fig. 2.

Fig. 2. Electronics and data acquisition system di-
agram of the LS fast neutron detector.

The entire set-up is exposed to an 241Am–9Be neutron
source. The continuous neutron spectrum of a conven-
tional 241Am−9Be source, giving rise to an average energy
of 4.5 MeV with a range of 0–10 MeV, is employed. The
source is set in the middle of one side and 130 cm to the
center of the detector.

Incident neutrons will be slowed down by colliding
with nuclei in the LS, and transfer their energies to these
recoiled nuclei. Due to the energy loss, the primary neu-
trons will be turned into thermal neutrons, while the
recoiled nuclei excite or ionize atoms in the LS, and gen-
erate light pulses. The remaining thermal neutrons will
be captured by the Gd nucleus in their trajectory termi-
nus and generate excited nuclei, which eventually emit
several γ rays on the time-scale of nanoseconds with a
total energy of approximately 8 MeV. These γ rays could
induce a light pulse via ionization of electrons generated
by the photoelectric effect, Compton scatting, and pair
production process. The overall process is schematically
shown in Fig. 3.

Fig. 3. (color online) Neutron slowing and capture
process in LS.

3.2 Data acquisition

In this study, identified neutron and γ ray signals
were chosen from the scatter plot by CCM to constitute
a reliable training and test data set. Two important
parameters, Qpart and Qtotal, were used to describe a sig-
nal in CCM. Qtotal is the integral of the pulses spanning
from 20 bins before the signal peak to 80 bins after the
peak. Because the difference of the pulse shape caused
by neutrons and γs is mainly concentrated in the falling
edge, the falling edge of the signal was chosen to calcu-
late Qpart, and its value was obtained through integrating
the falling edge from 15 bins to 80 bins after the peak.
The discrimination factor is defined as Dis = Qpart/Qtotal.
Here, the PMT1 signals were selected to perform n/γ dis-
crimination. According to the scatter plot of CCM, we
can learn that neutron and γ events with energy greater
than 0.8 MeV can be separated with high confidence.
But due to the noise and fluctuations in the pulse gen-
eration, it is difficult to distinguish neutron and γ ray
events around the vicinity of the gap between the two
bands in which the events with energy exceed 0.8 MeV.
In order to get a reliable training and test data set, we
only select those of the neutron and γevents with energy
exceeding 0.8 MeV from the bands marked with red and
blue respectively in Fig. 4.

Fig. 4. (color online) The scatter plot of the
Charge Comparison Method (CCM). The x-axis
is the discrimination factor Dis, and the y-axis is
the energy.

These selected signals were normalized to eliminate
the impacts of the difference of the pulse amplitude. The
normalization process is shown in Eq. (5):

x′ =
x−xmin

xmax−xmin

, (5)

where x is the pulse amplitude of each bin of a signal,
xmax is the maximum pulse amplitude, xmin is the min-
imum pulse amplitude, x′ is the normalized pulse am-
plitude. Figure 5 shows the average signals of neutrons
and γ rays generated in LS. Since the falling edges of
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neutron and γ pulse are significantly different, we chose
the 80 bins after the peak which can sufficiently describe
the falling edge of pulses.

Fig. 5. (color online) The pulse time spectrum of
average neutron and γ signals in EJ-335. The x-
axis is time in ns, the y-axis is the amplitude of
the signal.

Then the 80 normalized falling pulse time spectra
were fitted with a double exponential function expressed
with Eq. (6) [22] by CERN ROOT software [23]

f(x) = exp(p0+p1t)+exp(p2+p3t), (6)

where p0,p1,p2,p3 are four free parameters of the dou-
ble exponential function and t is the time scale of a
pulse. The average value of the four parameters were ob-
tained from the selected identified 200 neutrons and 200
γ events, respectively. Then the neutron and γ training
data we selected were fitted with neutron and γ fitted
functions respectively. We use chi squared (χ2) as de-
fined in Eq. (7) to evaluate the difference between the
measured pulse and the fitted neutron or γ function, and
select relatively smooth neutron and γ pulses as training
data.

χ2 =
∑

i

(Fi−fi)
2

fi

, (7)

where Fi is the i-th bin value of the neutron or γ pulse
shape from the detector, and fi is the i-th value of neu-
tron or γ fitted function. The chi squares value range is
0–0.82 for γ events and 0–1.25 for neutron events. In this
study, we selected the training pulses with the χ2 value
less than 0.12, since most of the neutron and γ pulses
are relatively smooth in this region.

4 Results and discussion

506 neutron events and 648 γ ray events, after being
fitted with Eq. (6), were selected as training samples
for the neural network. The training data set is shown
in Fig. 6, and the test data is from the red and blue
band shown in Fig. 4. We chose the 80 bins after the

peak of pulses to construct an 1154×80 matrix as the
neural network training data set. After some tests, the
hidden layer unit was set to 20. The node number of the
output layer was set to 1. The ENN is thus an 80×20
×20× 1 multi-layer network. Following the forth prop-
agation and the back propagation, the weights of ENN
are adjusted in the training process. If the output value
of E(w) is less than 0.01 the training will be ended. Here
we set the output of the ENN to be 0 or 1 according to
the input event of a neutron event or a γ-ray event, re-
spectively. After the training process is finished, the test
pulse data are sent to the ENN to classify into neutron
or γ events. If the output of the ENN is greater than
0.5, the event is a γ-ray event, otherwise, it is a neutron
event.

Fig. 6. (color online) The neutron and γ training
data after being fitted by double exponential func-
tion.

To evaluate the discrimination ability of the ENN,
the discrimination error ratio (DER) is defined as the
ratio of the number of events incorrectly discriminated
by the ENN to the total number of events of the test
data set. The DER of neutrons and γ rays is calculated
by the following equations:

DERγ =
Nγ−Nγ ENN

Nγ

×100%, (8)

DERn =
Nn−Nn ENN

Nn

×100%, (9)

where Nγ and Nn are the test numbers of γ rays and neu-
trons, respectively, and Nγ ENN and Nn ENN mean the
numbers of γ ray and neutron events which have been
correctly classified.

Table 1. Discrimination results of ENN.

particle γ neutron

train number 648 506

verification number 647 505

test number 3440 1165

test result 3435 1154

DER test(%) 0.15 0.94
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In Table 1, since the values of the DER test are re-
ally small, it is reasonable to believe that the ENN is
excellent at discriminating n/γ events.

Figure 7 shows the ENN n/γ discrimination result
mapped into a scatter plot, in which neutron and γ

events with energy above 0.8 MeV can be separated ex-
actly. Figure 8 is the corresponding distribution his-
togram of Fig. 7.

Fig. 7. (color online) The discrimination scatter
plot of ENN.

Fig. 8. Distribution histogram corresponding to Fig. 7.

Another way to quantitatively estimate the n/γ dis-
crimination performance of the above two methods is the
Figure of Merit (FOM) [24]. A larger value of FOM indi-
cates better performance of the n/γ discrimination. The
FOM is defined as Eq. (10):

FOM=
S

FWHMn +FWHMγ

, (10)

where S is the interval of the peaks of the neutron and
γ-ray events, FWHMγ is the full-width-half-maximum

(FWHM) of the distribution of the events classified as
γ-rays and FWHMn is the FWHM of the distribution of
the neutron events. If the spectra are consistent with
Gaussian distributions, the FOM can be written as Eq.
(11) [25]:

FOM=
|µn−µγ|

2.35 ·(δn+δγ)
, (11)

where µn and µγ are the mean values of the neutron
and γ distributions, respectively, and δn and δγ are the
corresponding standard deviations of the distributions.

The fitting method is also used to choose neutron
and γ pulse data in the study of FOM. A total of 1838
neutron and γ events with energy above 0.8 MeV were
selected to evaluate the FOM value of ENN and BPNN,
with χ2 values of neutron and γ fitted functions all less
than 0.135. The comparison between FOMs of the ENN
and BPNN is reported in Table 2. The results indicate
that the ENN has better n/γ discrimination ability.

Table 2. Comparison of the FOM Value of ENN
and BPNN.

method FOM

ENN 0.953±0.037

BPNN 0.907±0.034

5 Conclusion

A new n/γ digital discrimination method based on
an ENN was presented. To satisfy the requirements of
machine learning for the method, the CCM and fitting
method were utilized to acquire the training data set
and the test data set from signals above 0.8 MeV of an
EJ-335 LS detector. The discrimination performance of
the ENN was evaluated through comparison with BPNN
method. Both networks were properly trained and tested
with the above training and test data set. The results
indicate that the ENN method performed better than
the BPNN method. Compared to the BPNN, which had
a FOM of 0.907 ± 0.034, the FOM of the ENN was 0.953
± 0.037, which indicates the ENN has the capability of
effective n/γ discrimination. Since it stores the internal
status and mapping dynamic characteristics in a recogni-
tion model, the classification ability of the ENN is more
stable and robust. In conclusion, the ENN discrimina-
tion method provides a new choice of n/γ pulse shape
discrimination which uses pattern recognition.
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