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Abstract: This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the

Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive

all-sky survey and pointed observations in the 1–250 keV range. The novelty of the MSME method is to use wavelet

decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on

the application and modification of this method to restore diffuse sources detected by HXMT scanning observations.

An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the

problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source

Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution

task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation

and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey,

HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab.
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1 Introduction

In the hard X-ray band, photons with energies from
tens of keV to a few hundred keV can neither be focused
nor can their arrival direction be determined from Comp-
ton scattering or e± pair production [1]. Thus imaging in
the hard X-ray band is mainly achieved by various mod-
ulation techniques, such as the coded-mask technique
and collimator, leading to coded-mask aperture tele-
scopes and collimated telescopes. Because the observed
data of these modulation instruments records just the
correlation between the sky image and an array derived
from the instrument properties, one must reconstruct
the sky image from the observed data with numerical
methods. There exist many mature analysis methods
and a lot have been investigated in-depth in hard X-ray
astronomy. They can be divided into four types: lin-
ear methods, statistical methods, iterative methods, and
wavelet-based methods [2]. Cross correlation [3] proves
to be the simplest and most convenient linear method
for detecting point sources. But as it makes no deconvo-
lution of the observed data, it might not be suitable for

diffuse source restoration. The statistical methods (such
as the maximum entropy method [4] and maximum like-
lihood method [5]) provide a statistical solution to the
deconvolution problem. But as all the information of
the source and observation has been degenerated into
one statistic, they output restored images with limited
resolution and sensitivity [6], especially for point source
detection. To overcome this problem, the Direct De-
modulation method [6, 7] has been proposed, which is a
good representation of the iterative methods. By solving
the observation equation and implementing physical con-
straints on each iterative output, this method offers much
higher resolution images and is flexible enough to re-
store images with both point sources and diffuse sources.
Wavelet-based methods are a kind of method combining
wavelet and traditional methods. For instance, the mul-
tiscale maximum entropy (MSME) method, proposed in
1996 [8], is based on the maximum entropy method. It
uses wavelets to decompose an image into different fre-
quency bands and applies multiresolution support and
different smoothness constraints to each band to control
noise amplification, leading to a better restoration for
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high and low spatial frequency structures at the same
time.

The Hard X-ray Modulation Telescope (HXMT) is
a collimated scan X-ray satellite [1] with three slat-
collimated detectors on board: the High Energy X-
ray telescope (HE), the Medium Energy X-ray tele-
scope (ME) and the Low Energy X-ray telescope (LE).
It will perform scanning observations (i.e. an all-sky
hard X-ray survey, deep imaging observations of selected
sky regions) and pointed observation in the 1–250 keV
range [9]. Many simulations have confirmed its high
sensitivity and angular resolution for point source de-
tection in scanning observation mode [1, 6, 9–11], but
few studies have been done for diffuse sources. How-
ever, diffuse source detection is of great importance in
astronomy. Many sources of interest must be considered
as diffuse in order to properly derive their morpholo-
gies and intensity, such as remnants, diffuse interstellar
emission from various high-energy processes and the cos-
mic X-ray background. Comparing the key features of
the telescope (i.e. large effective area and field of view
of degree order) with other contemporary satellites, we
find that HXMT does have an advantage in detecting
diffuse sources and large scale structures spanning sev-
eral to tens of degrees, which are difficult to obtain by
imaging telescopes because of their small rigidity fac-
tor and ineffectiveness above high energy, and difficult
to obtain by coded aperture telescopes because of their
complicated image distortions [1]. (Indeed, studies have
revealed the sensitivity of any coded aperture telescope
degrades almost linearly with the source extent [12].)
Thus, HXMT is hoped to fulfill the gap and bring forth
abundant knowledge of diffuse emission in the hard X-
ray band. But before realizing the goal, we need powerful
tools to extract diffuse sources from data. As the MSME
method is very suitable for simultaneously restoring high
and low spatial frequency structures in an image, we will
investigate it in this paper.

In Section 2, we will give a brief introduction of
this method, and some modifications which have been
made to fit for HXMT data. An improved method
based on the MSME method has been proposed to give
better restoration. Simulations and results are pre-
sented and compared in Section 3. The main discussions
and conclusions about this work are given in the last
section.

2 Image restoration methods

The relation between the observational data I(x,y)
and the intensity distribution O(x,y) of a sky region can
be described by the following observation equation:

I(x,y) = (O∗P )(x,y)+N(x,y), (1)

where P (x,y) is the Point Spread Function (PSF) of the
telescope, and N(x,y) is additive noise introduced dur-
ing the observation. The image restoration problem is to
determine O(x,y) from known I(x,y) and P (x,y).

2.1 Multiscale maximum entropy method

2.1.1 Definition of multiscale maximum entropy met-
hod

The maximum entropy method (MEM) provides a
statistical solution to the problem by minimizing the tar-
get function [13]

J(O) =
∑

pixels

(I−P ∗O)2

2σI
2

−αS(O) =
χ2

2
−αS(O), (2)

where α is a parameter that fixes the relative weight
between chi-squared and the entropy S(O). But as
the entropy is global quantity calculated on the whole
image O, it is difficult to find a perfect value of α

when the observed image has simultaneously high and
low spatial frequency structures. Therefore, Pantin and
Starck [8] have proposed the multiscale maximum en-
tropy (MSME) method. The novelty of the method is to
use wavelet transforms to decompose an image into dif-
ferent frequency bands and use a multiresolution support
to separate signal and noise, thus solving the problem of
MEM to choose α. The mathematical realization is be-
low by defining the entropy as

S(O) =
1

σI

∑

scalesj

∑

pixels

A(j,x,y)σj (wj(x,y)−mj

−|wj(x,y)| ln
|wj(x,y)|

mj

), (3)

where σI is the standard deviation of the noise in the
image I , and σj the noise standard deviation at scale
j. wj are wavelet coefficients, while mj represents the
value of wavelet coefficients in the absence of any input
signal [8]. The A function of the scale j and the pixels
(x,y) is A(j,x,y) = 1−M(j,x,y), with the multiresolu-
tion support M(j,x,y) defined as:

M(j,x,y) =

{

1 , if wj(x,y) > kσj

0 , if wj(x,y) < kσj

. (4)

It is introduced to distinguish signal and noise. The pa-
rameter k fixes the threshold level and k = 3 is generally
adopted in astrophysics [8]. Thus A(j,x,y) can be seen
as a parameter determining the degree of regularization:
strong regularization is implemented when A is near 1
while regularization is weak when A is around 0.

The minimization of Eq. (2) can be implemented us-
ing the steepest descent method, which gives the iterative
scheme:
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On+1 = On−γ∇(J(On)), (5)

where γ is the step size while ∇(J(On)) is the gradient
of J(On).

2.1.2 Modification of multiscale maximum entropy
method

Since the data in our simulation case is a little dif-
ferent from that required by MSME, two preparations
have to be done when introducing the MSME method
for HXMT data analysis.

The first is the noise type of the data. The noise in
our simulation is Poisson type, while the default noise in
MSME is Gaussian. So we have to transform our data to
the Gaussian case before restoration. The second is that
we have to restore the sky image from 15 detected im-
ages, while the MSME is originally designed to restore it
from one detected image. Therefore, modification should
be made to use all the observed data to figure out the
sky image. We solve this problem by modifying Eq. (5)
as

On+1 = On−
1

N

N
∑

i=1

γi∇(Ji(O
n)) (6)

i.e. using the average gradient of the 15 detectors as the
final gradient. N is the number of detectors.

The steps for MSME are as follows:
1) transform the observed data to the Gaussian case

using Anscombe transform [8].
2) use modified MSME method to restore the data,

with each iterative result applying background con-
straint, and the iteration stopping when it meets the
stopping criterion.

3) transform the result to Poisson case using inverse-
Anscombe formula.

Applying the background constraint to each iterative
result is a technique learned from the Direct Demodula-
tion method, in which the background constraint plays
an important role in suppressing noise and controlling
the iterative process to produce a satisfactory reconstruc-
tion, especially for cases with poor statistics. The back-
ground constraint is enforced as:

O(x,y) =

{

O(x,y) , if O(x,y) > B

B , if O(x,y) < B
(7)

where B is the estimated background and can be derived
from the observed data (which has been transformed to
the Gaussian case) by an iterative algorithm similar to
that done for estimating the σI [14]. The algorithm uses
multiresolution support to find a set of pixels Q in the
image which are due only to the noise, and calculates the
standard deviation from them as σI . As a pixel belong-
ing to the set Q is defined as pixel with M(j,x,y) = 0 for

all j (i.e. no significant coefficient at all scales), we can
equivalently say that it belongs to the background. More
specifically, the high frequency parts of these pixels relate
to noise, while the low frequency part represents infor-
mation on the background. Therefore the background
B could be estimated as the mean of the low frequency
parts of these pixels. The algorithm is below:

1) estimate the standard deviation of the noise in I

(which has been transformed to the Gaussian case) to
get σ

(0)
I

2) decompose I with à trous algorithm:

I(x,y) = cp(x,y)+

p
∑

j=1

wj(x,y) (8)

where wj are wavelet coefficients corresponding to the
high frequency parts of I , while cp is the low frequency
part where noise is negligible.

3) n = 0
4) compute the multiresolution support M from wj

and σ
(n)
I

5) select all the pixels that satisfy M(j,x,y) = 0 for
all j to form the set Q

6) calculate the standard deviation σ
(n+1)
I of I(x,y)−

cp(x,y) for all the pixels in Q.

7) n = n+1

8) repeat step (4–7) until
|σ

(n)
I

−σ
(n−1)
I

|

σ
(n)
I

< ε

9) compute the mean of cp(x,y) ∈ Q as the back-
ground B

2.2 Ensemble multiscale maximum entropy

method

An important aspect of image restoration processing
is that of the treatment of additive noise introduced by
the observation. Usually most data analysis methods are
designed to remove noise, however, there are cases when
noise is added to help suppress noise and obtain better
restoration results.

MSME belongs to the former class. The novelty
of it is to use wavelet decomposition and multiresolu-
tion support to control noise amplification. But as the
à trous wavelet may not be the exact base for all fre-
quency structures, the MSME may encounter the mode-
mixing problem, i.e. noise and signal cannot be sep-
arated completely from each other at any single scale.
Thus, if there exists a residual component of noise in
the signal, it would not be regularized due to its being
above the regularization threshold. Moreover, the preci-
sion of the estimated σI and then that of the regulariza-
tion threshold and the estimated background would be
affected. To overcome this problem, we seek inspiration
from the latter kind of methods. We introduce a noise
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assisted data analysis technique to the MSME method
just like that done for the Empirical Mode Decompo-
sition (EMD) method [15], which is an adaptive time-
frequency data analysis method also facing the mode-
mixing problem. We name the improved method the en-
semble multiscale maximum entropy (EMSME) because
it consists of restoring an ensemble of white noise-added
images by MSME and treats the ensemble mean as the
final true result.

The steps for EMSME method are as follows:
1) estimate the noise level of the original observed

data.
Since the background noise in our observed data is

due to Poisson fluctuation of the background, the esti-
mation of the noise level is equivalent to estimating the
background of the original observed data. The back-
ground estimation is similar to that in the MSME but
with the mean calculated on the original observed data
(i.e. Poisson type).

2) generate white noise with the same distribution as
the estimated noise.

In our simulation we do it just by Poisson sampling
from the estimated background.

3) add the white noise to the original observed data
to form new data.

4) restore the new data using the modified MSME
method.

5) repeat step (2–4) many times, and treat the mean
of all restored images as the final result.

We expect the EMSME method to use the full ad-
vantage of the statistical characteristics of white noise.
It perturbs the observed data and alleviates the coupling
between signal and original noise, thus solving the mode-
mixing to some extent, and cancels itself out in the space
ensemble mean after serving its purpose.

2.3 Evaluation criteria for image restoration

quality

The quality of a restored image can be evaluated
through visual inspection and quantitative criteria [16].

A classical criterion is given by the correlation coeffi-
cient between the original image O(x,y) and the restored
one Õ(x,y), which is defined as:

Cor =

N
∑

x=1

N
∑

y=1

O(x,y)Õ(x,y)

N
∑

x=1

N
∑

y=1

O2(x,y)

N
∑

x=1

N
∑

y=1

Õ2(x,y)

. (9)

Another way to compare two images is to determine
the Signal-to Noise Ratio (SNR).

SNRdB = 10lg

N
∑

x=1

N
∑

y=1

O2(x,y)

N
∑

x=1

N
∑

y=1

(O(x,y)−Õ(x,y))2
. (10)

3 Simulation and results

3.1 Configuration of simulation

3.1.1 Building the input model

We choose Centaurus A (Cen A for short) as our sim-
ulated object. As the nearest radio galaxy to us, its prox-
imity (D=3.8±0.1 Mpc [17]) makes it an attractive target
for comprehensive physical studies. The most prominent
features of Cen A are its two large radio lobes, which ex-
tend for ∼600 kpc (∼ 10◦) in the north-south direction
and are ∼250 kpc (∼ 4◦) wide [18]. Their γ-ray glow
emission has been detected by the Fermi Gamma-ray
Space Telescope [19], providing insights into radiating
high-energy particles in the lobes. However, the results
on X-ray detection are mixed. Handcastle [20] argued
that X-ray emission fills the field of view of modern soft
X-ray imaging instruments, making its detection difficult
(if at all possible). On the other hand, the wide field of
view instruments like INTEGRAL and Swift have lim-
ited sensitivity to extended emission. With improved
sensitivity, HXMT also has a large field-of-view and will
thus offer an opportunity to study highly extended X-ray
sources. We believe that Cen A would be an important
target for HXMT, so have chosen it for this work.

Fig. 1. (color online) Input image centered at the
core of Cen A. The coordinate R.A. is short for
right ascension, while Dec. stands for declination.

Since the lobes of Cen A have not been detected in the
X-ray band, we extrapolated the measured Fermi/LAT
gamma-ray spectrum [19], assuming it follows a power
law, to the 50–250 keV band. A wavelet-Lucy method
has been introduced to make the morphology smoother.
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Here, we focus on the lobes of Cen A, so we excluded an
inner core region of radius 1◦. A fast adjacent inpainting
algorithm was used to interpolate the value of the core
region from the outer region. Figure 1 shows the final
input model. The maximum differential flux is 2.5×10−4

cts/s/cm2, corresponding to 2.5 mCrab. (A 1-mCrab
source causes a total count rate of 10−4 cts/s/cm2 for
HE at energy band of 50–250 keV.)

3.1.2 Setting the observation conditions

We investigate the performance of the High Energy
X-ray telescope (HE), which is the main payload onboard
HXMT. Moreover, we take into account only the 15 de-
tectors with narrow field of view (1◦ × 5◦ at FWHM).
They are divided into three groups with orientation of a
cross angle of 60◦ to one another (Fig. 2). Each detec-
tor has an effective area of 277.8 cm2, and the in-orbit
background counts is 39 cts/s, which is derived from the
latest background study of HXMT [21]. The energy band
is 50–250 keV. The scanning step is 0.2◦, which is feasible
in the observation mode of HXMT, and the observation
time of each scanning point is 3 seconds, which is deter-
mined from the all-sky survey mode.

Fig. 2. (color online) Overlay of PSF of the 15 de-
tectors, with x and y the Cartesian coordinates
set up on the detector plane.

3.1.3 Obtaining the observed data

The observed data of the scanning survey in a ∼
10◦×10◦ region with Cen A in the center is generated by
Monte-Carlo simulations. The scan mode is: the angular
difference between two consecutive pointings is 0.2◦ and
each pointing lasts 3 s (corresponding to exposure time
of 375 s for Cen A). The counts collected by the detec-
tors at each pointing consist of two components: photons
from Cen A and that from the instrument background,
both with the Poisson fluctuation taken into considera-
tion. Figure 3 shows the observed data of the 15 detec-
tors individually.

Fig. 3. (color online) The observed data of the 15
detectors. The color bar for all images is from 80
to 180 cts.

3.2 Simulation results

We have implemented these two methods for the
restoration of (the simulated data of) Cen A. The re-
sults are evaluated through visual impression and some
quantitative criteria.

3.2.1 The iterative stopping criterion

As the restoration algorithm is implemented through
the iterative process, we first have to decide the opti-
mal stopping condition that will output the best restored
result. We investigate three parameters as iterative stop-
ping criteria, i.e. the standard deviation, the skewness,
and the total variance of the residual between two suc-
cessive restored images. Figure 4 shows their changes
with the iterative step. From these curves, we can see
that the skewness reveals a conspicuous feature which
goes down then rises and finally oscillates. We investi-
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gate 4 points of the curve (i.e. the minimum point, zero
crossing point, the maximum point before oscillation,
oscillation point) through their corresponding restored
images (Fig. 5, Fig. 6). Visual impression indicates
that with increasing iterative step, the restored image
becomes smoother due to noise regularization and over-
reconstruction due to over-iteration. Therefore, there
must be a right point in the middle that will output the
best restored image (with enough noise suppression and
without over-reconstruction). Indeed, this conjecture is
proved by the curves of correlation coefficient and SNR,

Fig. 4. (color online) The iterative stopping cri-
teria for MSME method (blue solid line) and
EMSME method (red dashed line). It shows the
standard deviation, the skewness, and the total
variance of the residual between two successive
restored images, respectively, varying with the it-
eration steps.

Fig. 5. (color online) Restored images by MSME
method. Their corresponding iteration steps are
5, 14, 20, 50, respectively.

Fig. 6. (color online) Restored images by EMSME
method. Their corresponding iteration steps are
4, 10, 20, 50, respectively.

Fig. 7. (color online) The curves of correlation co-
efficient (left) and SNR (right) for MSME method
(blue solid line) and EMSME method (red dashed
line).

which reach maximum in the middle (Fig. 7). More accu-
rately, the best iterative stopping step is when the skew-
ness first reach the mean of the subsequent oscillatory
values.

3.2.2 Comparison of the two methods

We compare the restored images of these two meth-
ods obtained at the best stopping step through mor-
phology, distribution of the background noise (Fig. 8)
and some quantitative variables (Table 1). Simulation
results show that the MSME method with background
constraint has a powerful denoising ability, with the re-
stored image reaching a very high quality (the correlation
coefficient is 0.9468 and the SNR is 9.840), thus suitable
for the restoration of diffuse X-ray sources. The EMSME
method could further suppress noise according to visual
impression or the distribution of the background noise,
and improve the correlation coefficient (from 0.9486 to
0.9521) and SNR (from 9.840 to 10.284), thus better for
image restoration. Indeed, the weakening of the back-
ground noise also means the improvement of the detec-
tion sensitivity.
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To further test the properties of EMSME, we mag-
nify the amplitude of the added white noise 1.5 times
and change the number of ensemble members from 200
to 500, respectively. Simulation results indicate that the
quality of restoration has little dependence on the inves-
tigated variables. Thus we suggest the amplitude of the
added white noise to be the same as that in the original
observed data. The number of ensemble members only

needs to be large enough to cancel out the added white
noise in the final ensemble mean.

With the aid of these methods, HXMT could detect
the lobes of Cen A with substantially correct morphol-
ogy and flux. The integral flux of the restored Cen A is
376 mCrab by the MSME method and 369 mCab by the
EMSME method versus the input 363 mCrab.

Fig. 8. (color online) Comparison of the two methods. (a) restored image by MSME method; (b) a larger view of
(a); (c) the distribution of the background noise of (a); (d) restored image by EMSME method with 200 ensemble
members; (e) a larger view of (d); (c) the distribution of the background noise of (d).

Table 1. Comparison between the methods used.

methods integral flux/mCrab correlation coefficient SNR background distribution/mCrab

restored image by MSME method 376 0.9468 9.840 0.155±0.073

restored image by EMSME method 369 0.9521 10.284 0.127±0.050

input image 363 1 ∞

3.2.3 Limited detectivity of Cen A-like sources by
HXMT

To test the limited detectivity of Cen A-like sources
by HXMT, we decrease the flux of the input model by
5 and 10 times. The same simulation is implemented
and the comparison between the input model and the
restored images are presented in Fig. 9 and Fig. 10,

Fig. 9. (color online) Case with the flux of input
model decreased 5 times compared with Fig. 1.
(a) input image; (b) restored image by EMSME
method.

Fig. 10. (color online) Case with the flux of input
model decreased 10 times compared with Fig. 1.
(a) input image; (b) restored image by EMSME
method.

respectively. Figure 9 shows that the flux in the south-
ern lobe has been reconstructed more or less correctly,
while the northern lobe is obviously influenced by the ob-
served noise because it has a larger flux than the southern
lobe. The situation is worse for fainter source restora-
tion. A discrete source could be split into several sources
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(Fig. 10) due to the worse statistics of the observed data.
At a result, based on the maximum differential flux of
the southern lobe in Fig. 9, we roughly give the limited
detectivity of Cen A-like sources by HXMT to be 0.5
mCrab.

4 Conclusion and discussion

In this paper, we introduce a multiscale maximum
entropy method with background constraint for the
restoration of diffuse sources detected by HXMT imaging
observation. This MSME method uses the wavelet trans-
form to decompose an image into different frequency
bands and includes noise modeling in the deconvolution.
Regularized by the background constraint, it has a pow-
erful denoising ability and is suitable for the restoration
of diffuse source with different scale structures. It has
been confirmed by simulation, which shows the restored
image has a high correlation coefficient and Signal-to-
Noise ratio.

In order to overcome the mode-mixing problem in
the MSME, an improved method is proposed, the en-
semble multiscale maximum entropy (EMSME) method,
which defines the final restored result as the mean of
an ensemble of trials, each consisting of reconstructing
the observed data plus a white noise of finite amplitude
using the MSME method. Its principle is simple: the
EMSME method uses the full advantage of the statis-
tical characteristics of white noise, i.e. it perturbs the
observed data and alleviates the coupling between signal

and original noise, thus solving the mode-mixing to some
extent, and cancels itself out in the space ensemble mean
after serving its purpose. Simulation demonstrates that
the EMSME method could further suppress noise and
improve the correlation coefficient and SNR, and is thus
better for image restoration.

Indeed, this noise assisted data analysis technique
could be applied to other restoration methods (such as
the Richardson-Lucy algorithm and Direct Demodula-
tion method) to help improve image restoration.

Based on these two methods, HXMT could reach a
limited detectivity of Cen A-like sources with a maxi-
mum differential flux of 0.5 mCrab in a one-time all-sky
survey. Fainter sources could be detected by increasing
the exposure time and the combined use of all the detec-
tors with different fields of view onboard HXMT, which
will be investigated in the future.

The concept of background constraint is derived from
the Direct Demodulation method and has been improved
in this paper. We determine the background from differ-
ent scale images through an iterative algorithm instead
of the original image, hence it is more comprehensive.
This improvement could be in turn used in the Direct
Demodulation method, although this is beyond the scope
of this paper.

The authors would like to thank Jing Jin for useful
discussions about the observation modes of HXMT and
are grateful to Fei Xie and Juan Zhang for offering the
latest background simulation results of HXMT/HE.
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