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Abstract: Considering the octet baryons in relativistic mean field theory and selecting entropy per baryon S=1,

we calculate and discuss the influence of U bosons on the equation of state, mass-radius, moment of inertia and

gravitational redshift of massive protoneutron stars (PNSs). The effective coupling constant gU of U bosons and

nucleons is selected from 0 to 70 GeV−2. The results indicate that U bosons will stiffen the equation of state (EOS).

The influence of U bosons on the pressure is more obvious at low density than high density, while the influence of

U bosons on the energy density is more obvious at high density than low density. The U bosons play a significant

role in increasing the maximum mass and radius of PNS. When the value of gU changes from 0 to 70 GeV−2, the

maximum mass of a massive PNS increases from 2.11M� to 2.58M�, and the radius of a PNS corresponding to PSR

J0348+0432 increases from 13.71 km to 24.35 km. The U bosons will increase the moment of inertia and decrease

the gravitational redshift of a PNS. For the PNS of the massive PSR J0348+0432, the radius and moment of inertia

vary directly with gU, and the gravitational redshift varies approximately inversely with gU.
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1 Introduction

Massive neutron stars have been observed, such as
PSR J1614-2230, which is measured to have a mass of
1.97±0.04 M� using the Shapiro delay method [1], and
PSR J0348+0432, which has a mass of 2.01±0.04 M�,
measured by a combination of radio timing and precise
spectroscopy of the white dwarf companion by Anto-
niadis et al [2]. Many studies on these massive neutron
stars support the stiff equation of state (EOS) of neutron
star matter [3–8]. For example, Tsuyoshi Miyatsu et al
used the chiral quark-meson coupling model within the
relativistic Hartree-Fock approximation to reconstruct
the EOS for neutron star matter at zero temperature, in-
cluding nuclei in the crust and hyperons in the core, and
obtained a resultant maximum mass of 1.95M�, which
is consistent with PSR J1614-2230 [9]. Xian-Feng Zhao
and Huan-Yu Jia attempted to find a possible model in
relativistic mean field theory (RMFT) to describe the
neutron star of PSR J1614-2230 through adjusting dif-
ferent hyperon coupling parameters [10].

Cold neutron stars are one kind of evolutionary out-
come of a protoneutron star (PNS) which is formed in
the core of a massive star. The properties of the PNS
corresponding to these massive neutron stars are of prac-

tical importance. Ilona Bednarek and Ryszard Manka
considered the complete form of the equation of state
of strangeness-rich PNSs to study the influence of the
strength of hyperon-hyperon interactions on the prop-
erties of the PNS for neutron stars whose mass is below
2M� [11]. The existence of hyperons will soften the EOS
and subsequently decrease the mass of the neutron star.
How hot neutron star matter with many hyperons sup-
ports these massive protoneutron stars is a significant
problem, and there is little work which discusses it.

The possible existence of a neutral weakly coupling
light spin-1 gauge U boson [12], which comes from su-
persymmetric extensions of the Standard Model with an
extra U(1) symmetry, has recently attracted much atten-
tion due to its multifaceted influences in particle physics,
nuclear physics, astrophysics, and cosmology [13]. Such
a neutral weakly coupled U boson can be used as the
interaction propagator of MeV dark matter and can be
used to explain the bright 511 keV γ rays observed from
the galactic bulge [14, 15]. It can also play a role in
deviating from the inverse square law of gravity due to
the Yukawa-type coupling [16–18]. Studying the proper-
ties of the U boson is thus important for understanding
the relevant new physics beyond the Standard Model.
Dong-Rui Zhang et al investigated the effects of the U
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boson on the nuclear matter EOS and neutron star struc-
ture, and showed that the vector U boson can signifi-
cantly stiffen the nuclear matter EOS and, consequently,
drastically enhance the maximum mass of neutron stars
[13]. However, their discussion only focused on zero tem-
perature. There has been little previous work about
whether and how a weakly interacting light U boson stiff-
ens the EOS of hot neutron stars and influences the prop-
erties of massive PNSs. The focus of our work, there-
fore, is to investigate the influence of the U boson on
PNSs.

The paper is organized as follows. In Section 2, we
give the complete form of relativistic mean field theory
(RMFT) at finite entropy including U bosons. In Sec-
tion 3, nucleon and hyperon coupling constants as well
as the value of the coupling constant of the U boson are
given. In Section 4, some calculation results of the U
boson effect on massive PNSs are given. In Section 5, a
summary is presented.

2 Relativistic mean field theory of hot

dense matter and PNS properties

Relativistic mean field theory (RMFT) is an effec-
tive field theory of hadron interaction [19]. The degrees
of freedom relevant to this theory are baryons interact-
ing through the exchange of σ,ω,ρ mesons, of which the
scalar meson σ provides the medium-range attraction,
the vector meson ω provides short-range repulsion, and
the vector-isospin vector meson ρ describes the difference
between neutrons and protons.

We study the properties of hot neutron stars in the
RMFT, so the partition function of the system is the
starting point. From the partition function we can get
various thermodynamic quantities at equilibrium.

For a grand canonical ensemble, the partition func-
tion can be written as:

Z = Tr{exp[−(Ĥ−µN̂)/T ]}, (1)

where Ĥ and N̂ are the Hamiltonian operator and the
particle operator respectively, µ is the chemical potential,
and T is the temperature. From the partition function
we can get the particle population density, the energy
density and pressure:

n=
T

V

∂lnZ

∂µ
, (2)

ε=
T 2

V

∂lnZ

∂T
+µn, (3)

P =
T

V
lnZ, (4)

where V is the volume. Considering the baryons B and
leptons l as fermions, we can get:

lnZB,l =
∑

B,l

2JB,l +1

2π2

∫ ∞

0

ln[1+e−(εB,l(k)−µB,l)/T ]k2dk

+
V

T
〈L〉, (5)

where εB,l(k) =
√

k2 +m2
B,l is the single particle en-

ergy of different momenta k corresponding to different
baryons and leptons, JB,l is the spin quantum number
and µB,l is the chemical potential of baryon and lepton.
L is the Lagrangian density.

The total partition function Ztotal = ZBZl, where ZB

and Zl are the partition function of baryons and the
standard noninteracting partition function of leptons re-
spectively. The additional condition of charge neutrality
equilibrium is listed as following:

∑
B,l

2JB,l +1

2π2
qB,l

∫ ∞

0

k2nB,l(k)dk = 0,

where nB(k) and nl(k) are the Fermi distribution func-
tions of baryons and leptons respectively. They are given
by

ni(k) =
1

1+exp[(εi(k)−µi)/T ]
(i = B,l). (6)

When neutrinos are not trapped, the set of equilibrium
chemical potential relations required by the general con-
dition are

µi = biµn−qiµe, (7)

where bi is the baryon number of particle i and qi is its
charge.

The properties of a neutron star at finite tempera-
ture can be described by the entropy per baryon. The
total entropy per baryon is calculated using S = (SB +
Sl)/(TnB), where SB,l = PB,l + εB,l −

∑
B,l

µini and the
sum are extended over all the baryon and lepton species
[20].

The Lagrangian density of neutron star matter is
given by [21]:
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L=
∑

B

ΨB(iγµ ∂
µ
−mB +gσBσ−gωBγµωµ−

1

2
gρBγµτ ·ρµ)ΨB +

1

2

(
∂µσ ∂

µ
σ−m2

σσ2
)

−
1

4
ωµνω

µν +
1

2
m2

ωωµωµ−
1

4
ρµν ·ρ

µν +
1

2
m2

ρρµ ·ρ
µ−U(σ)+

∑

l=e,µ

Ψ l

(
iγµ ∂

µ
−ml

)
Ψl, (8)

where the sum on B runs over the octet baryons
(n,p,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0), and ΨB is the baryon field
operator. The term U(σ) stands for the scalar σ self-
interaction:

U(σ) =
1

3
g2σ

3 +
1

4
g3σ

4. (9)

The last term of Eq. (8) represents the free lepton La-
grangian. In addition, we add in a Lagrangian Lu for
the influence of the U bosons. According to the conven-
tional view, the Yukawa-type correction [22] to Newto-
nian gravity resides at the matter part rather than the

geometric part. Thus, following the form of the vector
meson, Lu is written as [18, 23]:

Lu =−ΨBguγµuµΨB −
1

4
UµνUµν +

1

2
m2

uuµuµ, (10)

where u is the field of the U boson, gu is the coupling
constant of U bosons and baryons, Uµν is the strength
tensor of the U boson, and mu is the mass of the U boson.

The relativistic mean field theory gives the formula
of energy density and pressure of a neutron star of finite
temperature as follows:

ε0 =
1

3
g2σ

3 +
1

4
g3σ

4 +
1

2
m2

σσ2 +
1

2
m2

ωω2
0 +

1

2
m2

ρρ
2
03

+
∑

B

2JB +1

2π2

∫ ∞

0

√
k2 +(m∗)2(exp[(εB(k)−µB)/T ]+1)−1k2dk

+
∑

l

2Jl +1

2π2

∫ ∞

0

√
k2 +m2

l (exp[(εl(k)−µl)/T ]+1)−1k2dk, (11)

P0 =−
1

3
g2σ

3−
1

4
g3σ

4−
1

2
m2

σσ2 +
1

2
m2

ωω2
0 +

1

2
m2

ρρ
2
03

+
1

3

∑

B

2JB +1

2π2

∫ ∞

0

k2

√
k2 +(m∗)2

(exp[(εB(k)−µB)/T ]+1)
−1

k2dk

+
1

3

∑

l

2Jl +1

2π2

∫ ∞

0

k2

√
k2 +m2

l

(exp[(εl(k)−µl)/T ]+1)−1k2dk, (12)

where, m∗ = mB − gσBσ is the effective mass of the
baryon. In addition, we consider the weakly interacting
light vector U boson at finite temperature RMFT, and
the energy density and pressure can be expressed by the
direct and exchange contribution. For the finite-range
Yukawa interaction, the exchange term contribution can
be neglected and the direct term contribution to the en-
ergy density and pressure can be expressed in a simple
form [23, 24]:

εUB = PUB =
1

2

g2
u

m2
u

n2
B , (13)

where nB is the total number density of baryons. For
simplification, we define the effective coupling constants

of the U boson and baryon as gU =
g2
u

m2
u

, where the U-

boson-nucleon coupling constant gU and the mass mu are

largely uncertain [23, 25]. According to the KLOE ex-
periment, the mass region is restricted from 520 MeV to
980 MeV [26]. From the above forms, the total energy
density may be expressed as ε = ε0 + εUB (ε0 denotes
the energy density without modified gravitational cor-
rection), and the pressure P = P0 +PUB .

Once the equation of state is specified, the mass and
radius of the neutron star can be obtained by solving the
well-known hydrostatic equilibrium equations of Tolman-
Oppenheimer-Volkoff (OV) [27].

dp

dr
=−

(p+ε)(M +4πr3p)

r (r−2M)
, (14)

M =4π

∫ r

0

εr2dr. (15)

In a uniformly slow-rotating and axially symmetric
neutron star, the moment of inertia is given by the fol-
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lowing expression [28]:

I ≡
J

Ω
=

8π

3

∫ R

0

r4e−ν(r) ω̄(r)

Ω

(ε(r)+P (r))√
1−2GM(r)/r

dr, (16)

where J is the angular momentum, Ω is the angular ve-
locity of the star, ν(r) and ω̄(r) are radially dependent
metric functions, and R,M(r),ε(r) and P (r) are the ra-
dius, mass, energy density and pressure of the star re-
spectively. The specific form of ν(r) is determined by
the following expression:

ν(r) =−G

∫ R

r

(M(r)+4πx3P (x))

x2(1−2GM(x)/x)
dx

+
1

2
ln

(
1−

2GM

R

)
. (17)

In particular, the dimensionless relative frequency ω̃(r)≡
ω̄(r)/Ω satisfies the following second-order differential
equation:

d

dr

(
r4j(r)

dω̃(r)

dr

)
+4r3 dj(r)

dr
ω̃(r) = 0, (18)

where

j(r) = e−ν(r)−λ(r) =

{
e−ν(r)

√
1−2GM(r)/r r 6 R,

1 r > R.
(19)

Note that ω̃(r) is subject to the following two boundary
conditions:

ω̃′(0) = 0,

ω̃(R)+
R

3
ω̃′(R) = 1. (20)

With the EOS and the OV equation, Eqs. (16–20) can
be solved.

General relativity gives the gravitational redshift of
the star obeying the relation [29]:

z =

(
1−

2GM

c2R

)−1/2

−1, (21)

where M,R are the mass and radius of the neutron star
respectively.

3 Coupling constants

In order to calculate the EOS of PNS matter and
its properties, we need three kinds of coupling constant.
The first kind is the nucleon coupling constants, which
can be determined from the saturation properties of nu-
clear matter, such as nuclear saturation density, binding
energy per baryon number, effective mass of the nucleon,
nuclear compression modulus and asymmetry energy co-
efficient. These nuclear matter properties are consistent
with constraints from theoretical calculations of neutron
matter, experimental findings and astrophysics observa-
tion of neutron stars [30, 31]. Recently, several different
models [31–33] have been successfully used to describe
massive neutron stars. For this study, we choose the nu-
cleon coupling constants to be the parameter set GL85
listed in Table 1, which has been used to successfully de-
scribe the interaction between nucleons and cold massive
neutron stars [21, 34].

Table 1. GL85 nucleon coupling constants.

m/MeV mσ/MeV mω/MeV mρ/MeV gσ gω gρ

939 500 782 770 7.9955 9.1698 9.7163

g2/fm−1 g3 ρ0/fm−3 (B/A)/MeV K/MeV asym/MeV m∗/m

10.07 29.262 0.145 15.95 285 36.8 0.77

The second kind is the hyperon coupling constants.
For the coupling constants related to hyperons, we define
the ratios:

xσH =
gσH

gσN

, (22)

xωH =
gωH

gωN

, (23)

xρH =
gρH

gρN

, (24)

where N denotes the nucleons (neutron and proton) and
H denotes hyperons (Λ,Σ and Ξ). Hyperon coupling
constants cannot be decided by the saturation proper-
ties of nuclear matter, but can be extrapolated through

the hypernuclear experimental data. The hypernuclear
potential depth in nuclear matter UN

H , which is known in
accordance with available hypernuclear data, serves to
strictly correlate the values of xσH and xωH [35]:

UN
H = xωHV −xσHS, (25)

where S = m−m∗, V = (gω/mω)2ρ0 are the values of the
scalar and vector field strengths for symmetric nuclear
matter at saturation respectively. With UN

H , if we give
the value of xωH , we can get the value of xσH . The exper-
imental data of hypernuclear potential depth of UN

Λ ,UN
Σ

and UN
Ξ are [36–41]:
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UN
Λ =−30 MeV,

UN
Σ =+30 MeV,

UN
Ξ =−15 MeV.

In studying the properties of a neutron star with the
RMFT, considerable uncertainty exists in the value of
xωH [42]. In order to calculate the mass of a massive neu-
tron star, such as 2 M�, we choose xωΛ = xωΣ = xωΞ = 1.
This means that we do not consider the difference be-
tween hyperon and nucleon coupling with ω.

Then the coupling constants xσΛ,xσΣ and xσΞ can be
calculated by Eq. (25):

xσΛ = 0.85, xσΣ = 0.57, xσΞ = 0.78.

The hyperon coupling constants xρΛ,xρΣ and xσΞ are
determined by using SU(6) symmetry [43]:

xρΛ = 0, xρΣ = 2, xσΞ = 1.

Using these coupling constants, we calculate the max-
imum mass of a zero temperature neutron star, and the
resultant maximum mass is as high as 2.10 M�. The cor-
responding radius is 11.8 km, which is consistent with
observation results [1, 2] and other works [44, 45], so
the above coupling constants are suitable for describing
massive cold neutron stars. Sequentially, these coupling
constants can be extrapolated to study PNSs.

The third kind of coupling constant required is that of
the U boson coupling with nucleons. Reference [18] gives
the effective coupling constant gU to be 0–150 GeV−2.
Many works [17, 23, 24] have investigated the influence
of U bosons on cold neutron stars and got some interest-
ing results which are consistent with the massive pulsars.
In this work, studying PNSs, we choose the value range
of gU from 0 to 70 GeV−2.

4 Calculation and results

We focus on the influence of the strength of effective
coupling constants gU on the EOS, mass-radius, moment
of inertia and gravitational redshift of a massive PNS.
Virtually, there are different stages during PNS evolu-
tion. The entropy in the central regions is moderately
high and the value of the entropy per baryon is about 1 or
2 (in units of Boltzmann’s constant), which corresponds
to temperatures in the range T = 20−50 MeV. The first
stage corresponds to an entropy per baryon S=1. The
second stage is called the deleptonization era and corre-
sponds to maximum heat and entropy per baryon S=2
[20]. However, the effects of U bosons on the PNS are
similar for entropy per baryon S=1 or 2. We only give
the results for the entropy per baryon S=1, correspond-
ing to the first stage of the PNS.

4.1 PNS equation of state

The equation of state of PNS matter is shown in
Fig. 1 and Fig. 2. In Fig. 1, we give the influence of
different gU on the energy and pressure as a function of
baryon number density. The pressure and energy density
all increase with baryon number density for different gU

under S = 1, while higher gU will give higher pressure and
higher energy density. Figure 2 shows that the inclusion
of the U boson will stiffen the EOS. This is physically
obvious since the vector form of the U boson provides an
excess repulsion in addition to the vector mesons ω.

Fig. 1. Pressure (panel (a)) and energy density
(panel (b)) as a function of baryon number den-
sity for different gU.

Fig. 2. The EOS of a PNS (S = 1) for different gU.

The influence of the U boson on the EOS can be read
from Fig. 1. In panel (a), at ρ = 0.145 fm−3 (saturation
density), the value of gU changes from 0 to 70 GeV−2,
and the value of lgP increases from 33.84 dyne/cm2 to
34.20 dyne/cm2, an increase of 0.36 dyne/cm2 (1.06%).
At ρ = 0.5 fm−3 (around central density), 0 to 70 GeV−2

of gU gives 35.29 dyne/cm2 to 35.43 dyne/cm2 of lgP ,
an increase of 0.14 dyne/cm2 (0.39%). The effect of gU

on the pressure is more obvious at low density than high
density. In comparison, in panel (b), at ρ = 0.145 fm−3,
as the value of gU changes from 0 to 70 GeV−2, the value
of lgε increases from 14.40 g/cm−3 to 14.41 g/cm−3, an
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increase of 0.01 g/cm−3 (0.06%). At ρ = 0.5 fm−3, 0 to
70 GeV−2 of gU gives 14.98 g/cm−3 to 15.03 g/cm−3 of
lgε, an increment of 0.05 g/cm−3 (0.33%). The effect of
gU on the energy density is more obvious at high density
than low density.

4.2 Mass-radius of PNS

Substituting the above equation of state into the OV
equation, we can solve the PNS masses and radii.

The resultant PNS masses are shown in Fig. 3. In
Fig. 3, the PNS mass as a function of the central den-
sity is given for different effective coupling constants gU.
The maximum PNS masses can be read from Fig. 3. It
is found that the maximum PNS mass increases signif-
icantly with the effective coupling constant. When the
value of gU changes from 0 to 70 GeV−2, the maximum
PNS mass increases from 2.11M� to 2.58M�. In these
calculations we consider the octet baryons; with each
addition of hyperon species, the equation of state is soft-
ened because the Fermi pressure of neutrons and protons
near the top of their Fermi seas is relieved by allowing
them to hyperonize to unoccupied low-momentum states
[21], consequently leading to decreased mass. However,
including the U boson stiffens the EOS and increases the
mass of the neutron star because it provides extra repul-
sion in addition to the vector meson ω. So this equi-
librium result strongly supports the existence of massive
PNSs whose mass is larger than 2M�.

The PNS mass corresponding to PSR J0348+0432 is
marked in Fig. 3. It is shown that the central density
of the PNS of PSR J0348+0432 will change with the ef-
fective coupling constant. The larger gU is, the lower
the central density is. When gU=0, the central density
of PNS of PSR J0348+0432 is 0.62 fm−3, while when
gU=70 GeV−2, the central density becomes 0.21 fm−3.

Fig. 3. The masses of massive PNS for different gU.
The shaded area corresponds to the mass of PSR
J0348+0432.

The mass-radius relation is shown in Fig. 4. In Fig. 4
the PNS mass as a function of the radius is given with

the inclusion of the U boson with different effective cou-
pling constants. The U bosons significantly increase the
radius of the PNS. Here we give the radius of the PNS
corresponding to PSR J0348+0432. When the value of
gU changes from 0 to 70 GeV−2, the radius increases
from 13.71 km to 24.35 km and it is easily seen that
if gU increases to larger than gU=70 GeV−2, the radius
will become bigger than 25 km. V. Dexheimer et al have
pointed out that the PNS radius should not exceed 30
km [46]. This is the reason why we choose gU in the
range 0–70 GeV−2.

Fig. 4. The mass-radius relation of massive PNS
for different gU. The shaded area corresponds to
PSR J0348+0432.

4.3 Moment of inertia and gravitational redshift

of PNS

The moment of inertia and gravitational redshift are
shown in Fig. 5 and Fig. 6. It can be seen that the mo-
ment of inertia increases with gU, but the gravitational
redshift decreases as gU increases. This is due to the
bigger gU giving a larger radius, as known from Fig. 4.

Fig. 5. The relation between moment of inertia and
mass for different gU. The shaded area correspo-
nds to PSR J0348+0432.
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Fig. 6. The relation between gravitational redshift
and mass for different gU. The shaded area cor-
responds to PSR J0348+0432.

Finally, the change of radius, moment of inertia and
gravitational redshift with gU for a massive PNS of PSR
J0348+0432, with mass of 2.01M�, is shown in Fig. 7.
The radius and moment of inertia vary directly with gU,
while the gravitational redshift varies approximately in-
versely with gU.

5 Summary

Based on relativistic mean field theory, considering
the octet baryons and selecting entropy per baryon S = 1,
we have calculated and discussed the influence of U
bosons which are weakly coupled to nucleons on mas-
sive PNS matter. The effective coupling constant gU of U
bosons and nucleons was selected from 0 to 70 GeV−2. It
is found that the strength of effective coupling constant
gU has an obvious influence on the EOS of PNS mat-
ter, mass, radius, moment of inertia and gravitational
redshift of a massive PNS. The results indicate that U
bosons will stiffen the EOS. The influence of U bosons on
the pressure are more obvious at low density than high
density, while the influence of U bosons on energy den-
sity are more obvious at high density than low density.
The gU plays a significant role in increasing the maxi-
mum mass and radius of a PNS. When the value of gU

changes from 0 to 70 GeV−2, the maximum mass of a
massive PNS increases from 2.11M� to 2.58M�, and the
radius of a PNS corresponding to PSR J0348+0432 in-
creases from 13.71 km to 24.35 km. The gU will increase
the moment of inertia and decrease the gravitational red-
shift. For the PNS of the massive PSR J0348+0432, the
radius and moment of inertia vary directly with gU , and
the gravitational redshift varies approximately inversely
with gU.
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Fig. 7. The properties of massive PNS of PSR
J0348+0432 vs different gU. P0 and P1 are the
y-intercept and slope of the linear fitting respec-
tively, R2 is the coefficient of determination, and
χ2 is the sum of squared residuals.

The influence of U bosons on PNSs may be depen-
dent on the interaction model of the nuclear matter. This
should be investigated in our future work.
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