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Melting temperature of heavy quarkonium with a holographic potential

up to sub-leading order *
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Abstract: A calculation of the melting temperatures of heavy quarkonium states with the holographic potential

was introduced in a previous work. In this paper, we consider the holographic potential at sub-leading order, which

permits finite coupling corrections to be taken into account. It is found that this correction lowers the dissociation

temperatures of heavy quarkonium.
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1 Introduction

Heavy quarkonium dissociation is an important sig-
nal of the formation of Quark-Gluon Plasma (QGP)in
heavy ion collisions at RHIC and LHC. However, much
experiment data indicates that the QGP is strongly cou-
pled. Thus, the study of heavy quarkonium and its disso-
ciation requires non-peturbative techniques, such as Lat-
tice QCD and potential models [1]. The lattice simula-
tion of the quark-antiquark potential and the spectral
density of hadronic correlators yield a consistent pic-
ture of quarkonium dissociation as well as the numer-
ical value Td. On the other hand, heavy quarkonium
dissociation can be studied within potential models, for
instance the energy levels and the dissociation tempera-
ture can be carried out with the aid of a non-relativistic
Schrodinger equation with a temperature dependent ef-
fective potential when we neglect the velocity(v � 1)
of the constituent quarks [2–4], and if we consider the
relativistic correction, the two-body Dirac equation can
be employed [5]. The holographic potential addressed in
this paper is one example of a potential model.

Holographic potential at finite temperature at strong
coupling relies on the AdS/CFT duality which can ex-
plore the strongly coupled N = 4 supersymmetric Yang-
Mills (SYM) plasma through the correspondence be-
tween the type IIB superstring theory formulated on
AdS5×S5 and N = 4 SYM in four dimensions [6–10].

In a previous work [11], the melting temperatures

of heavy quarkonium states were studied with the holo-
graphic potential. In this paper we consider the holo-
graphic potential including its sub-leading order and ob-
tain the correction to the melting temperatures.

The paper is organized as follows. In the next sec-
tion, we will present our strategy for computation. The
sub-leading order of the holographic potential and its
corrections to the dissociation temperatures will be dis-
cussed in Section 3 and Section 4. Section 5 concludes
the paper.

2 Setup

Heavy quarkonium, J/ψ or Υ, can be modelled as a
non-relativistic bound state of a heavy quark and its an-
tiparticle, and the wave function of their relative motion
satisfies the Schrödinger equation

[− 1

2µ
∇2 +U(r,T )]ψ=−E(T )ψ, (1)

E(T ) is the binding energy of the bound state and
U(r,T ) is related to the free energy F (r,T ) by

U(r,T ) =−T 2

[

∂

∂T

(

F (r,T )

T

)]

r

, (2)

F (r,T ) can be extracted from the Wilson loop operator
between a static pair of qq̄

e−
1

T
F (r,T ) =

tr〈W †(L+)W (L−)〉
tr〈W †(L+)〉〈W (L−)〉 , (3)
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where L± denotes the Wilson line running in the Eu-

clidean time direction at spatial coordinates

(

0,0,±1

2
r

)

and is closed by the periodicity β=
1

T
and

W (L±) =P e
−i
∮

L±
dxµAµ(x)

(4)

with Aµ the gauge potential and the symbol P enforcing
the path ordering along the loop C. The thermal expec-
tation value < W (C) > can be measured for QCD on
a lattice and the heavy quark potential is defined with
F-ansatz or U-ansatz.

The holographic principle places L± on the boundary
(z→ 0)of the Schwarzschild-AdS5×S5, whose metric can
be written as

ds2 =π2T 2z2(fdt2 +d~x2)+
1

π2T 2z2f
dz2, (5)

where f = 1− 1

z4
, d~x2 = dx2

1 +dx2
2 +dx2

3 with x1 =x2 = 0

and x3 a function of z.
In the case of N = 4 SYM, the AdS/CFT duality

relates the Wilson loop expectation value to the path in-
tegral of the string-sigma action developed in Ref. [12]
of the worldsheet in the AdS5×S5 bulk.

To leading order of the strong coupling, the path inte-
gral is given by its classical limit, which is the minimum
area of the worldsheet

F (r,T ) =− 4π2

Γ 4

(

1

4

)

√
λ

r
min[g0(rT ),0], (6)

with

− 4π2

Γ 4

(

1

4

)

√
λ

r
g0(rT )=

1

πα′

[
∫ z0

0

dz

( √
fz2

0

z2
√

z4
0 −z4

− 1

z2

)

−
∫ zh

z0

dz

z2

]

, (7)

where g0(rT ) is a monotonically decreasing function with
g0(0) = 1, g0(r0T ) = 0 and r0 is the screening length. If
we introduce a dimensionless radial coordinate ρ=πTr,
we have

g0(ρ) = 1− ρ

ρ0

(8)

with ρ0 = 0.7359.
The melting temperatures of heavy quarkonium

states with the leading order potential related to (6) were
discussed in Ref. [11].

3 The holographic potential model

Now we add the sub-leading order term to the holo-
graphic potential and explore its contribution.

As was shown in Ref. [13], the strong coupling ex-
pansion of F (r,T ) at large λ can be written as

F (r,T )=− 4π2

Γ 4

(

1

4

)

√
λ

r
min

[

g0(rT )− 1.3346g1(rT )√
λ

+O

(

1

λ

)

,0

]

(9)

where g1(rT ) is a monotonically decreasing function,
which reaches 0.92 at r0.

Likewise, we use the dimensionless radial coordinate
ρ=πTr, and we find

F (r,T ) =−α
r
φ(ρ)θ(ρ1−ρ), (10)

where α=
4π2

Γ 4

(

1

4

)

√
λ≈ 0.2285

√
λ, ρ1 is determined by

φ(ρ1) = 0.
The analytical small ρ expansion and numerical re-

sults of φ(ρ) both suggest

φ(ρ)= g0(ρ)−
1.3346g1(ρ)√

λ

≈1− ρ

ρ0

− 1.3346g1(ρ)√
λ

. (11)

As the temperature correction to the sub-leading
term of the heavy quark potential is small, or in other
words g1(ρ) decreases monotonically from 1 to 0.92 as
ρ∈ (0,ρ0), we can fit g1(ρ) = 1−0.11ρ. This yields

φ(ρ) = 1− ρ

ρ0

− 1.3346(1−0.11ρ)√
λ

. (12)

To proceed, we define the dissociation temperature
T ′

d as the temperature when the bound energy E(T ′
d) be-

comes zero, and the corresponding Schrödinger equation
reduces to

d2R

dρ2
+

2

ρ

dR

dρ
−
[

l(l+1)

ρ2
+U

]

R= 0 (13)

with U =
mVeff

π2T 2
.

Actually, one should consider the exact holographic
potential, but it has been found in Ref. [5] that the
comparison with the dissociation temperature obtained
from (12) is very close to that from the exact holographic
potential. So we stay with the truncated Coulomb po-
tential for the rest of the paper. Here we consider the
U-ansatz, where we have

U =− η2

ρ1ρ

[

φ(ρ)−ρ
(

dφ

dρ

)]

θ(ρ1−ρ) (14)
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with

η=

√

αρ1m

πT
. (15)

It follows from (12) and (14) that

U =− η2

ρ1ρ

(

1− 1.3346√
λ

)

θ(ρ1−ρ) (16)

On writing

ηx = η

√

1− 1.3346√
λ

, (17)

we have

U =− η2
x

ρ1ρ
θ(ρ1−ρ). (18)

Substituting (18) into (13) one gets

R(r)=
1√
ρ
J2l+1

(

2ηx

√

ρ

ρ1

)

, ρ6 ρ1,

R(r)=const.ρ−l−1, ρ> ρ1 (19)

with Jn(x) the Bessel function. Then the threshold ηx

can be related to the matching condition at ρ= ρ1

d

dρ
(ρl+1R(r))|ρ=ρ

−
1

= 0, (20)

this yields the correspond secular equation for ηx

2l+1−ηx

J2l+2(2ηx)

J2l+1(2ηx)
= 0. (21)

Knowing the values of l, ηx can be calculated from
(21).

Finally, the melting temperature of heavy quarko-
nium with a holographic potential up to sub-leading or-
der can be obtained according to:

T ′
d =

αρ1m

πη2
=
αρ1m

πη2
x

(

1− 1.3346√
λ

)

. (22)

4 Results

Now we discuss our results. At first, we take λ→∞
in (12) and (22), which leads to the leading order case

Td =
αρ0m

πη2
x

, (23)

where Td is the melting temperature of heavy quarko-
nium states with the leading order potential. The nu-
merical results for Td of J/Ψ and Υ are presented in
Table 1, where we have chosen m= 1.65 GeV,4.85 GeV
for c and b quarks.

Table 1. Td in MeV for J/Ψ and Υ under the holo-
graphic potential.

Td(λ =5.5) Td(λ = 6π)

J/Ψ(1s) 143 265

J/Ψ(2s) 27 50

J/Ψ(1p) 31 58

Υ(1s) 421 780

Υ(2s) 80 148

Υ(1p) 92 171

Then we consider sub-leading order correction. For
comparison, here we we show the curve about T ′

d/Td vs
λ in Fig. 1. Note that owing to the λ correction to the
holographic potential, T ′

d is smaller than Td. With the
typical interval 5.5<λ< 6π [14], we find this correction
gives rise to a 47% reduction of Td when λ = 6π, and
it will increase as λ becomes smaller. One may doubt
this result because with small values of λ the corrections
term in (9) and (22) will be very large so that these cor-
rections are meaningless. However, this consideration is
unnecessary since the strong coupling expansion of the
potential relies on the assumption that the λ is large.
Indeed, it appears that this correction will vanish for
λ → ∞ as it must, since the sub-leading order to the
potential vanishes in that limit.

Fig. 1. T ′
d/Td vs λ. Melting temperature with sub-

leading order potential over its counterpart with
potential versus λ.

5 Conclusion

In this paper, we have investigated the melting tem-
peratures studied with the truncated holographic poten-
tial and we consider the holographic potential with its
sub-leading order, which permits to take into account
finite coupling corrections. It is found that this cor-
rection becomes smaller as λ increases. With this cor-
rections, the dissociation temperatures of heavy quarko-
nium are lowered, leaving the corrected values further
below the lattice result. This disagreement can be at-
tributed to several reasons. Firstly, the short screening
length r0 ≈ 0.25 fm at T = 200 MeV of the AdS/CFT
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potential and sharp cutoff nature of the screening. Sec-
ondly, one should take into account the different number
of degrees of freedom in Nc = 3 SYM and 3 flavor QCD;
a similar problem has been explained in the calculation
of the jet quenching parameter beyond AdS/CFT cor-
respondence in Ref. [15], where they have matched the
corresponding entropy density to obtain T 3 ≈ 3T 3

SYM.
Moreover, one should also bear in mind that the parti-
cles of N = 4 SYM are quite different to that of QCD. In
particular it does not include particles in the fundamen-
tal representation, but only in the adjoint representation.

To summarize, the melting temperature studied in
this work relies on the holographic quark potential. How-
ever, in gauge-gravity duality, heavy quark potential at
finite temperature is usually calculated with the pure
AdS background, and the potential also does not con-
tain any confining term in the deconfined phase. This
has led some authors to consider a potential closer to

QCD, for instance heavy quark potential in strongly-
coupled N = 4 SYM in a magnetic field [16] and with
some deformed AdS5 model [17]. Applying these recti-
fied potentials, one can obtain the melting temperature
as well.

However, we should admit that there are some short-
comings in our work. Firstly, our updated results do not
seem to be close to “reality”; this may depend on the
model. Secondly, recently many authors have suggested
that the potential at non-zero temperature is complex
[18, 19]: the real part is neither the free energy nor the
internal energy, and the imaginary potential plays an
important role in setting the dissociation temperature.
This subject is very interesting, and we hope to do some
future work in this regard.

We would like to thank Prof. Hai-cang Ren for useful

discussions.
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