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Abstract: Investigating the CKM matrix in different parameterization schemes, it is noticed that those schemes

can be divided into a few groups where the sine values of the CP phase for each group are approximately equal

i.e. there exist several relations among the CP phases. Using those relations, several approximate equalities among

the elements of CKM matrix are established. The case can also be generalized to the PMNS matrix for the lepton

sector. Assuming them to be exact, there are infinite numbers of solutions and by choosing special values for the free

parameters in those solutions, several textures presented in the literature are obtained. Other authors have derived

several mixing textures by using presumed symmetries; amazingly, some, though not all, of their forms are the same

as those we obtained. This hints at the existence of a hidden symmetry which is broken in the practical world. Nature

makes its own selection of the underlying symmetry and the way to break it, while we just guess what it is.
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1 Introduction

Due to the mismatch between the eigenstates of the
weak interaction and those of mass, the 3× 3 unitary
Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is in-
troduced to mix the three generations of quarks [3–5].
The CKM matrix is determined by three independent
mixing angles and one CP -phase. The CKM matrix can
be parametrized in different schemes and there are nine
schemes proposed in the literature. Generally, the val-
ues of the three angles and the CP phase can be dif-
ferent for various parameterization schemes. By closely
investigating the matrix, it is noticed that there ex-
ist some relations [6] among the CP phases in these
schemes. For convenience let us label the nine schemes
with subscripts a through i. Namely, we may divide the
nine parameterization schemes into a few groups and de-
termine corresponding equalities among those sinδn i.e.
sinδa ≈ sinδd ≈ sinδe, sinδb ≈ sinδc, sinδf ≈ sinδh ≈ sinδi.
Then considering the constraint of the Jarlskog invari-
ant [7–9], the above relations lead to several approximate
equalities among the CKM matrix elements |Ujk| which
are measured in experiments. These equalities are indeed

approximate, but independent of any concrete parame-
terization scheme.

These equalities tempt us to guess that there should
exist underlying symmetries to determine them [6] . Our
discussion on the implications of these equalities is based
on observation and phenomenological. In parallel , an al-
ternative route was also suggested that these equalities
can be deduced by rephasing the invariants of the quark
mixing matrix [10] as long as the mixing angles among
quarks are small. In order to clarify the physical picture,
we further study these equalities.

In analog to the quark sector, the Pontecorvo-Maki-
Nakawaga-Sakata (PMNS) matrix [11, 12] relates the
lepton flavor eigenstates with the mass eigenstates. Thus
it is natural to extend the relations for the CKM matrix
to the PMNS case. Unsurprisingly, we find that all the
equalities also hold for the lepton sector, even though
the accuracy is not as high as for the quark sector. The
explanation based on only rephasing [10] is incomplete

because it cannot explain why these equalities also hold
for neutrino mixing where at least two mixing angles are
large.

Since these equalities are respected by both CKM and
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PMNS matrices, it is tempting to conjecture that there
might be an underlying symmetry which results in sym-
metric forms for both CKM and PMNS matrices, which
is broken in the practical world. Based on group theory,
Lam showed a possibility that the mixing matrices origi-
nate from a higher symmetry [13, 14] which then breaks
differently for quark and lepton sectors. The existence of
quark-lepton complementarity and self-complementarity
[15–26] also hints a higher symmetry. All the progress in
this area inspires a trend of searching for whether such a
high symmetry indeed exists and moreover investigation
of its phenomenological implications is also needed.

Following this idea, we assume that the equalities are
exact to compose equations, and solving these equations,
the solutions might offer hints towards the unknown sym-
metry. To confirm or falsify the scenario, we further in-
vestigate the implications of these resultant matrices. It
is found that these solutions coincide with the symmetri-
cal CKM and PMNS textures. Moreover, some authors
recently obtained some symmetric textures based on pre-
sumed symmetries, and it is found that some, but not
all, of their resultant forms are the same as ours. We
will further discuss the implications of this in the last
section.

The paper is organized as follows. After the intro-

duction we review the equalities in Section 2. In Section
3, we present the solutions which satisfy those equalities
(in fact, a few groups of solutions, each of which contains
a free parameter) and their implications. In Section 4 we
give a summary and discussion.

2 Relations among elements of the CKM

matrices

Mixing among different flavors of quarks via the CKM
matrix has been firmly recognized and the 3×3 mixing
matrix is written as

V =







V11 V12 V13

V21 V22 V23

V31 V32 V33






. (1)

Generally, for a 3×3 unitary matrix there are four in-
dependent parameters, namely three mixing angles and
one CP -phase. There can be various schemes to parame-
terize the matrix, but only nine schemes are independent.
These are clearly listed in Ref. [24], but for readers’ con-
venience, we summarise them in Table 1.

To be more clear, we present the explicit expressions
of two typical parameterization schemes Pa and Pe as

VPa
=







ca1ca3 sa1ca3 sa3

−ca1sa2sa3−sa1ca2e
−iδa −sa1sa2sa3 +ca1ca2e

−iδa sa2ca3

−ca1sa2sa3 +sa1sa2e
−iδa −sa1sa2sa3−ca1sa2e

−iδa ca2ca3






, (2)

and

VPe
=







−se1se2se3 +ce1ce3e
−iδe −ce1se2se3−se1ce2e

−iδe ce2se3

se1ce2 ce1ce2 se2

−se1se2ce3−ce1se3e
−iδe −ce1se2ce3 +se1se3e

iδe ce2ce3






. (3)

Table 1. Nine different parameterization schemes
for the CKM matrix.

scheme Jarlskog invariant CP phase

Pa Ja = sa1sa2sa3ca1ca2c2a3 sinδa δa =
(

69.10+2.02
−3.85

)

◦

Pb Jb = sb1s2
b2sb3cb1cb2cb3 sinδb δb =

(

89.69+2.29
−3.95

)

◦

Pc Jc = s2
c1sc2sc3cc1cc2cc3 sinδc δc =

(

89.29+3.99
−2.33

)

◦

Pd Jd = sd1sd2sd3c2d1cd2cd3 sinδd δd =
(

111.95+3.82
−2.02

)

◦

Pe Je = se1se2se3ce1c2e2ce3 sinδe δe =
(

110.94+3.85
−2.02

)

◦

Pf Jf = sf1sf2sf3cf1cf2c2f3 sinδf δf =
(

22.72+1.25
−1.18

)

◦

Pg Jg = s2
g1sg2sg3cg1cg2cg3 sinδg δg =

(

1.08+0.06
−0.06

)

◦

Ph Jh = sh1sh2sh3ch1c2h2ch3 sinδh δh =
(

157.31+1.18
−1.25

)

◦

Pi Ji = si1si2si3c2i1ci2ci3 sinδi δi =
(

158.32+1.13
−1.20

)

◦

Here saj and caj (sej and cej) denote sin θaj and
cosθaj (sinθej and cosθej) with j = 1,2,3. θnj and δn

are the mixing angles and CP -phase respectively. The

corresponding expressions in other schemes Pn can be
found in Ref. [24].

From the data measured in various experiments, one
can deduce values of the angles θnj and CP phase δn

which are not the same for different parameterizations.
Close observation of the values of δn in different

schemes exhibits several approximate equalities

sinδa≈sinδd≈sinδe, sinδb≈sinδc, sinδf≈sinδh≈sinδi. (4)

Namely, the nine phase factors in the nine schemes are
divided into a few groups and their sine values in each
group are approximately equal. It is noted that there
are nine parameterization schemes in total and Pg is a
special one whose CP phase is very small. Since this
scheme is indeed peculiar, in Eq. (4), the listed rela-
tions do not include δg at all. The scenario with the Pg

scheme was carefully investigated and discussed by the
authors of Ref. [27]. If more complex relations are con-
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sidered, we can involve the small δg together with that
in the other schemes. The Jarlskog invariant is scheme-
independent, so using the above relations in Eq. (4) and
substituting snj and cnj with the ratios of modules of cor-
responding elements, one can deduce several interesting
relations among the CKM elements, which are experi-
mentally measured values and obviously free of parame-
terization schemes:

|V21||V22|
1−|V23|2

− |V11||V12|
|V23|2 + |V33|2

≈ 0

|V11||V12||V21|
1−|V11|2

− |V23||V32||V33|
1−|V33|2

≈ 0

|V21||V23||V33|
1−|V23|2

− |V11||V12||V32|
|V22|2 + |V32|2

≈ 0

|V12||V22|
1−|V32|2

|V11||V21|
|V11|2 + |V21|2

≈ 0

|V12||V32||V33|
|V12|2 + |V22|2

− |V11||V21||V23|
1−|V21|2

≈ 0. (5)

More details about these equalities can be found in
Ref. [6].

3 Implication of the relations

3.1 On these relations

Even though our allegation starts from a phenomeno-
logical observation, it is natural to attribute these equal-
ities to an underlying symmetry. In parallel, it was ar-
gued that they can automatically emerge from a different
ansatz which we briefly outline in the appendix.

These relations are proved to be exact equalities un-
der the limit θa2 → 0 and θa3 → 0, so they are the
consequence of small θa2 and θa3 and the practical ap-
proximation indeed comes from being non-zero. For an
illustration, anyone can check those relations for Pa pa-
rameterization and we present the details in Appendix
A. There, since θa1 = (13.023+0.038

−0.038)
◦, θa2 = (2.360+0.065

−0.038)
◦,

θa3 = (0.201+0.010
−0.008)

◦[24], the picture seems to work almost
perfectly.

Another way to obtain these equalities can be found
by starting from rephasing the invariants of the quark
mixing matrix. In Ref. [10] the authors pointed out that
ViαV ∗

jαVjβV ∗

iβ are invariants whose imaginary component
is the traditional Jarlskog invariant. Since ViαV ∗

jαVjβV ∗

iβ

are invariants in different parameterizations one can use
them to deduce relations among the physical matrix el-
ements. For example by comparing the real parts and
imaginary parts of the invariant V12V

∗

22V23V
∗

13 in the Pa

and Pe parameterizations, sinδa ≈ sinδe can be deduced
with the postulates of small θa2 and θa3. Some details
are presented in Appendix B.

The two ways are similar when the same condition of
θa2 and θa3 being small is taken. If one just discusses the
quark case the two ways seem to be parallel. However
if one tries to extend these relations to the PMNS case,
they need to be reconsidered more carefully because then
the condition of small mixing angles no longer exists.

In fact, assuming those relations to be exact, solving
the equations we obtain several independent solutions
and each of them contains a free parameter to be fixed.

In the next section we will show that for the quark
sector, the two ways correspond to special choices of the
parameters in the solutions, but for the lepton sector
they are different.

3.2 Solutions of these relations

Now we replace the “≈ ” with an equality sign “= ”
in Eq. (5) to compose equations and obtain their solu-
tions. Since these solutions are expected to correspond
to the symmetrical textures for CKM and/or PMNS ma-
trices, the normalization of the unitary matrix

|V11|2 + |V12|2 + |V13|2 = 1, |V11|2 + |V21|2 + |V31|2 = 1, ... (6)

should be retained.
It is noted that even though we establish the equal-

ities from equating the CP phases of different param-
eterizations, in the latter procedures only the ratios of
modules of the matrix elements are employed to build
up equations, thus one cannot gain much information
about the phases of the matrix elements from the nor-
malization relations and Eq. (5). If one hopes to know
the phases of the elements some new constraints must be
further enforced, such as orthogonality between any two
different rows or columns of the matrix. Now, the newly
built equations are free of concrete parameterizations.

Satisfying all the requirements in Eq. (5), one can
achieve several solutions. They are

|V1|=
1√
3







1 1 1

1 1 1

1 1 1






,

|V2|=







sinθ 0 cosθ

0 1 0

cosθ 0 sinθ






,

|V3|=















sinθ
cosθ√

2

cosθ√
2

cosθ√
2

sinθ
cosθ√

2
cosθ√

2

cosθ√
2

sinθ















,

053101-3



Chinese Physics C Vol. 40, No. 5 (2016) 053101

|V4|=

















sinφ sinφ
√

cos2φ

cosφ√
2

cosφ√
2

sinφ

cosφ√
2

cosφ√
2

sinφ

















,

|V5|=

















sinφ
cosφ√

2

cosφ√
2

sinφ
cosφ√

2

cosφ√
2

√
cos2φ sinφ sinφ

















(7)

where θ lies in the range 0◦−90◦, φ stays in the range
0◦−45◦ and |Va|(a = 1−5) represent the mixing matrices
which only contain the moduli of matrix elements. Def-
initely, in such a way, the unitarity of the matrix does
not manifest at all. Later, see below, when we discuss
the practical CKM or PMNS matrices, we need to input
phases by hand. As stated above, as other constraints
involving the orthogonality among the elements are ap-
plied, the phases would be automatically taken in, but
the procedure for obtaining solutions is much more com-
plicated and tedious, so we will leave the task as the goal
of our next work. One may notice that |V1|, |V2| and |V3|
are just real symmetrical matrixes and |V5| is just the
transposed matrix of |V4|.
3.3 Issues related to the CKM matrix

As θ in |V2| and |V3| is set to be 90◦, one immediately
obtains

|V2|= |V3|=











1 0 0

0 1 0

0 0 1











(8)

which is just the the CKM matrix under the limits of
θa2 → 0 and θa3 → 0. At this moment one may be con-
vinced that the way to understand the equalities dis-
cussed in subsection A is indeed practical. Actually, it
has been noticed for a long time that the CKM matrix is
close to being a unit matrix, and in Ref. [28] the authors
suggested to transform a unit matrix to the practical
CKM matrix by introducing a new D quark.

3.4 Issues related to some symmetrical PMNS

patterns

Next, let us explore whether these solutions can be
related to the symmetrical PMNS textures.

If φ = 45◦ in |V4| we get

|V4|=



















1√
2

1√
2

0

1

2

1

2

1√
2

1

2

1

2

1√
2



















(9)

which is nothing more than the modula of the bimaxi-
mal mixing pattern [29–31]. This is not surprising be-
cause the proposed PMNS textures satisfy the equations
exactly due to the existence of a hidden symmetry.

Cabibbo [32] and Wolfenstein [33] proposed a sym-
metrical PMNS matrix as

VCW =
1√
3







1 1 1

1 ω ω2

1 ω2 ω






, (10)

where ω = ei2π/3. It is found that if only the moduli of
the matrix elements are concerned, the |VCW| (i.e. as
one only keeps the moduli of elements) is just our solu-
tion |V1|. In the A4[34, 35] or S4 [36, 37] models, the
charged lepton mass matrix is diagonalized by the uni-
tary VCW and the Majorana mass matrix of neutrinos is
diagonalized by Vν, which is written as

Vν =



















1√
2

0 − 1√
2

0 1 0

1√
2

0
1√
2



















, (11)

where |Vν| is equal to our |V2| by setting θ =
π

4
. As

we introduce phases in |V2| to make it V2, then moving
further one can obtain the tribimaximal texture (VTB)
which is the product VCWVν[38, 39],

VTB =





















√

2

3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2





















. (12)

In Ref. [40] the authors constructed a new mixing
pattern for neutrinos based on the µ—τ interchange
symmetry, the trimaximal mixing in ν2 and the self-
complementarity relation. The mixing matrix is
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VQM =



















√
2+1

3

1√
3

−
√

2−1

3

−
√

2+1

6
∓ i

√
6−

√
3

6

1√
3

√
2−1

6
∓ i

√
6+

√
3

6√
2+1

6
∓ i

√
6−

√
3

6
− 1√

3
−
√

2−1

6
∓ i

√
6+

√
3

6



















. (13)

In analog to the procedure of obtaining the tribimaxi-
mal mixing pattern we can derive VQM from our solutions
V1 and V2, while proper phases are set by hand. Namely,
as one sets

V1=
1√
3







1 1 1

a 1 a∗

−a∗ −1 −a






,V2=

















√
2√
3

0
1√
3

0 1 0

1√
3

0 −
√

2√
3

















,

(14)
the product V1V2 just gives the mixing matrix with

a = −1

2
±

√
3i

2
. All the relations between the solutions

with the proposed PMNS were unexpected before.
In Ref. [41] the authors assumed that neutrinos are

Dirac particles, then they derived lepton mixing matri-
ces from the flavor SU(3). We notice that the solutions
in Eq. (8), Eq.(9) and Eq. (10) can also be produced
from the SU(3) group.

It is noted that |V1| and |V2| are solutions of the equal-
ities but |VTB| and |VQM| are not; they deviate from the
solutions slightly. In Table 2 we calculate and list the
deviations of the corresponding quantities in |VTB| and
|VQM| from the left-hand sides of Eq. (5). There are five
equalities in Eq. (5), and a few of the five are satisfied,
while the others differ slightly.

Table 2. The values of the left-hand sides in
Eq. (5). The labels No. 1 to No. 5 refer to the
first to fifth equations in the equation group (5).

No.1 No.2 No.3 No.4 No.5

|VTB| 0 0 0 0.1 0.0707

|VQM| 0.0020 −0.0023 0.0017 0.0900 0.0630

4 Summary and discussion

Based on the observed relations sinδa ≈ sinδd ≈
sinδe, sinδb ≈ sinδc and sinδf ≈ sinδh ≈ sinδi among
the CP phases in the nine parameterization schemes
which have been widely discussed in the literature, it
is conjectured that they originate from a higher symme-
try which later breaks by some mechanism. Even though
we so far do not know what the symmetry is and what

breaks it, one can be convinced by those equalities of
their existence. Further assuming those relations to
hold exactly, we are able to establish several scheme-
independent equalities [26]. These relations which we
obtained by exploring the CKM matrix also work for the
PMNS matrix. How to understand these relations is one
of the tasks of our work.

This probably corresponds to Lam’s suggestion [13,
14] that a generic potential is invariant under U(1)×
SO(3) and the potential causes a breakdown into three
phases. Phase I has an A4 symmetry which is suitable for
leptonic mixing whereas the other two phases have sym-
metries SO(2) and Z2 ×Z2. The SO(2) phase is ruled
out by phenomenology and the Z2×Z2 is for the quark
mixing. We derive similar results from solving the equal-
ities, i.e. as we showed in subsections III-C and III-D,
|V2|(θ = 90◦) and |V3|(θ = 90◦) correspond to the quark
mixing and |V4|(φ = 45◦) is related to leptonic mixing,
and |V2| |V3| and |V4| are all solutions of Eq. (5). So
far, we have derived the relations and got some sym-
metric textures from phenomenology and have not yet
associated the results with the underlying symmetry, as
discussed above, but we will in our later works.

It is possible to derive similar relations from different
starting points. It has been conjectured that the equali-
ties we derived above can just be the consequences of the
small mixing angles between quarks and are irrelevant to
any symmetry. Even though these equalities can be de-
duced by enforcing certain rephasing invariants on the
quark mixing matrix with the condition of small mixing
angles, the fact that these equalities also hold for the lep-
ton sector, with two large mixing angles, obviously does
not fit the arguments.

We obtain the solutions when the “≈ ” sign is set as
“ = ” for those equalities. There is an infinite number of
solutions and each of them has one free parameter. We
note that the unit matrix is also one of the solutions,
which is just the limit case of the CKM matrix under
the condition θ2 → 0 and θ3 → 0 in any parameteriza-
tion scheme. It implies that these equalities are indeed
non-trivial after all.

We extend the relations to the lepton case, namely
one can immediately relate some of the obtained solu-
tions to the symmetric textures for the PMNS matrices
proposed in the literature, such as the bimaximal and
tri-bimaximal mixing patterns. Concretely, the bimaxi-
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mal texture corresponds to one solution whereas the tri-
bimaximal texture can be related to two solutions.

A more complex mixing texture which was suggested
in Ref. [40] can be constructed from two of our solutions.
The relations seem to weave a net to include many un-
expected phenomena; all these may indicate that these
equalities reflect the existence of a definite symmetry.
These equalities may hold initially at high energy scales,
such as the see-saw or GUT scale, then the symme-

try is distorted or broken by some mechanism, and the
equalities become approximate for the CKM and PMNS
matrices at practical energy scales. Further studies on
these relations should lead to eventually understanding
the symmetry and breaking mechanism.

The authors would like to thank. Prof. Lam for his

illuminating seminar at Nankai University.

Appendix A

Check of the relation under limits

The relations in Eq. (5) can be proved under some limits.
As an example we check the first one in Pa parameterization.
The left side is

lim
a2→0,a3→0

|V21||V22|

1−|V23|
2

= lim
a2→0,a3→0

·
|−ca1sa2sa3−sa1ca2e

−iδa ||−sa1sa2sa3 +ca1ca2e
−iδa |

1−|sa2ca3|2

= sa1ca1 (A1)

and the right side is

lim
a2→0,a3→0

|V11||V12|

|V23|
2 + |V33|

2

= lim
a2→0,a3→0

|ca1ca3||sa1ca3|

|sa2ca3|2 + |ca2ca3|2
= sa1ca1 (A2)

so one obtains
|V21||V22|

1−|V23|
2 =

|V11||V12|

|V23|
2 + |V33|

2 .

Appendix B

Deduction of the relations using the rephasing in-

variants of the quark mixing matrix

In Pa parameterization

V12V
∗

22V23V
∗

13 = ca1ca2c
2
a3sa1sa2sa3e

iδa −c
2
a3s

2
a1s

2
a2s

2
a3. (B1)

In Pe parameterization

V12V
∗

22V23V
∗

13 =−ce1c
2
e2ce3se1se2se3e

−iδe −c
2
e1c

2
e2s

2
e2s

2
e3 (B2)

From Eq. (2) and Eq. (3) one has sa3 = ce2se3,
sa2ca3 = se2, ca2ca3 = ce2ce3 so Eq. (B2) changes into

V12V
∗

22V23V
∗

13 =−se1ce1c
2
a3sa3sa2ca2e

−iδe −c
2
e1s

2
a3s

2
a2c

2
a3

(B3)

Using the invariant V12V
∗

22V23V
∗

13, which is supposed to
be free of parameterization schemes, one can obtain

ca1sa1c
2
a3sa2sa3ca2e

iδa −c
2
a3s

2
a1s

2
a2s

2
a3

=−se1ce1c
2
a3sa3sa2ca2e

−iδe −c
2
e1s

2
a3s

2
a2c

2
a3. (B4)

Dividing it by c
2
a3sa2sa3ca2 gives

ca1sa1e
iδa −

s
2
a1sa2sa3

ca2
=−se1ce1e

−iδe −
c
2
e1sa3sa2

ca2
. (B5)

Considering both the real and imaginary parts to be in-
variant, and supposing small angles θa2 and θa3, one has
tanδa =− tanδe then the result sinδa =sinδe can be deduced.
That is the same as we have by phenomenology, which is di-
rectly related to experimental measurements.
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