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Abstract: The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to

detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion

devices can be reduced by a high heat-load monochromator, the unbalanced heat load on the inner pair of crystals

in a nested HRM can affect its overall performance. Here, a theoretical analysis of the unbalanced heat load using

dynamical diffraction theory and finite element analysis is presented. By utilizing the ray-tracing method, the

performance of different HRM nesting configurations is simulated. It is suggested that the heat balance ratio, energy

resolution, and overall spectral transmission efficiency are the figures of merit for evaluating the performance of nested

HRMs. Although the present study is mainly focused on nested HRMs working at 57Fe nuclear resonant energy at

14.4 keV, it is feasible to extend this to other nested HRMs working at different energies.
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1 Introduction

The High energy-Resolution Monochromator (HRM)
is one of the key optical elements in inelastic X-ray
scattering (IXS) and nuclear resonant scattering (NRS)
beamlines [1]. The monochromization can be achieved
either by the backscattering geometry for IXS or by the
multi-bounced crystal configuration for NRS and IXS [2].
Two aspects of merit are of crucial importance for the
performance of the HRMs. One is the energy resolu-
tion, which is at the level of 10−7–10−8 for most silicon
based HRMs. The other is the integrated transmission
or spectral efficiency. There is always a trade-off between
the energy resolution and the integrated transmission de-
pending on the purpose of the applications [1].

Many HRMs are based on a “nested geometry” using
two channel-cut monolithic crystals [3–6]. As shown in
Fig. 1, the nested HRM consists of two blocks of crystals
which are nested together. The crystals are in (++−−)
configuration [7]. More details about HRMs can be found
in Toellner’s review [1].

Heat load is another critical issue for many
monochromators, especially for those used in third gen-
eration light sources. Due to thermally-induced defor-
mations of the crystal [8], the performance of monochro-

mators will deteriorate unless cryogenic or water cooling
is introduced. To reduce the amount of heat and main-
tain good performance of the HRM, a high heat load
monochromator (HHLM) is always mounted before the
HRM in the IXS or NRS beamline. Nevertheless, the
heat issue of HRM still requires special care, particu-
larly for the high-index crystals which give rise to the
high energy resolution. Toellner [9] reported a brilliant
way to improve the performance of HRMs by cooling the
high-index crystal down to 123 K in a specially designed
cryostat. However, the heat issue for nested HRMs is
not resolved due to the spatial limitations of the nested
HRMs.

Fig. 1. Nested geometry of HRM and correspond-
ing optical path.
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In this work, we provide a comprehensive theoretical
analysis of the heat effects on (++−−) nested HRMs
based on dynamical diffraction theory and finite element
analysis. By comparing the performance of the HRMs,
i.e. the energy resolution, integrated throughput, and
power density ratio of the inner crystal pair, we propose
a criterion for designing HRMs and a feasible approach
to tackling the heat issue in nested HRMs. The rest
of this paper is organized in four parts: firstly, we pro-
vide the theoretical basis for nested HRMs; secondly, we
investigate the thermal effects on the crystals and the
final performance; thirdly, we compare the performance
of several HRMs in detail in order to provide a criterion
for evaluating different designs; and lastly, we propose a
scheme to solve the heat issue in nested HRMs.

2 Models and theoretical methods

2.1 HRMs in nested configurations

To illustrate thermal behavior, we studied concrete
examples of silicon-made nested HRMs in the same con-
figuration while using different crystal planes. In Table
1 we list the crystal lattice index, asymmetric cut an-
gle and ratio, Debye-Waller factor at room temperature,
Bragg angle, and incident and output angles.

Scheme 1 is adopted from Toellner’s design [1]. The
next three schemes are selected to match the acceptance
of asymmetric cut (975) crystal, as well as to reduce the
thermal power by the first crystals reducing the band-
pass.

Table 1. Four schemes of nested HRMs and relevant parameters.

scheme lattice index ΘB/(◦) θin/(◦) θout/(◦) α/(◦) b Din/µrad Dout/µrad Temp. factor 1

1 (440) 26.62 88.13 38.63 −24.75 −0.04 22.2 0.93 0.88

2 (975) 80.41 −61.41 80.59 71 −2.92 1.07 3.11 0.54

3 (975) 80.41 80.59 −61.41 −71 −0.34 3.11 1.07 0.54

4 (440) 26.62 38.63 88.13 24.75 −23.96 0.93 22.2 0.88

scheme lattice index ΘB/(◦) θin/(◦) θout/(◦) α/(◦) b Din/µrad Dout/µrad Temp. factor 2

1 (440) 26.62 87.58 39.18 −24.2 −0.05 19.5 1.06 0.88

2 (975) 80.41 −61.41 80.59 71 −2.92 1.07 3.11 0.54

3 (975) 80.41 80.59 −61.41 −71 −0.34 3.11 1.07 0.54

4 (440) 26.62 39.18 87.58 24.2 −18.37 1.06 19.5 0.88

scheme lattice index ΘB/(◦) θin/(◦) θout/(◦) α/(◦) b Din/µrad Dout/µrad Temp. factor 3

1 (511) 24.30 86.70 44.70 −21 −0.08 13.07 1.06 0.90

2 (975) 80.41 −61.41 80.59 71 −2.92 1.07 3.04 0.54

3 (975) 80.41 80.59 −61.41 −71 −0.34 3.11 1.07 0.54

4 (511) 26.62 44.70 86.70 21 −12.34 1.06 13.07 0.90

scheme lattice index ΘB/(◦) θin/(◦) θout/(◦) α/(◦) b Din/µrad Dout/µrad Temp. factor 4

1 (444) 33.28 84.22 29.22 −27.5 −0.12 9.12 1.05 0.82

2 (975) 80.41 −61.41 80.59 71 −2.92 1.07 3.11 0.54

3 (975) 80.41 80.59 −61.41 −71 −0.34 3.11 1.07 0.54

4 (444) 33.28 29.22 84.22 27.5 −8.67 1.05 9.12 0.82

2.2 Methods

The dynamical diffraction theory is implemented us-
ing the Matlab® package. To analyse the thermal de-
formation and heat distribution, we employed finite ele-
ment analysis (FEA) as implemented in commercial soft-
ware ANSYS®. To further study the performance of the
aforementioned HRMs, ray-tracing was conducted using
the XOP-SHADOWVUI [10] package. In Table 2, we
list the critical physical parameters of the silicon that
was used in this work.

2.2.1 Implementation of dynamical diffraction theory

A. Bragg diffraction and twobeam approximation
In the case of Bragg-geometry diffraction with the

two-beam approximation, the dynamical diffraction the-

ory (DDT) can be formulated as [11]:

[k2(1−ΓF0)−(K0·K0)D0]−k2PΓFHDH=0, (1)

−k2PΓFHD0+[k2(1−ΓF0)−(KH·KH)DH]=0, (2)

with

Γ =reλ
2/πV, (3)

Table 2. Basic information of Si.

working energy E/eV 14412.5

ambient temperature T 300K(26.85 ℃)

coefficient for thermal expansion β/K−1 2.616×10−6

lattice parameter a/nm 0.542109

Debye temperature Θ/K 530
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FH=
∑

n

(f 0(H)+f ′(λ)+if ′′(λ))nexp(2πiH·rn)exp(−M),

(4)
where k is the vacuum value of the wave vector; re is the
classical electron radius, which equals 2.818×10−13 cm;
V is the volume of the unit cell; P is the polarization;
P=1 for σ polarization and P=cos2θ for π polarization;
F0, FH, FH are the structure factors of the crystal; f 0

is the atomic scattering factor; and, f ′ and f ′′ are the
anomalous scattering corrections. The term exp(−M)
represents the Debye-Waller factor and is temperature
dependent. D0 and DH are the electric displacement
vectors inside the crystal, corresponding to the refracted
and diffracted directions, respectively.

The reflectivity of an infinitely thick crystal can be
obtained by [12]:
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represents the incident intensity. γ is the asym-

metry ratio, and η is the deviation parameter, which
characterizes the deviation from the Bragg condition. ηH

is the asymmetry angle. S(ηr) is the sign (negative or
positive) of real part of η. With the reflectivity calcu-
lated as above, we may deduce many important proper-
ties of single crystal reflection, such as the Darwin width,
or the width between η=−1 and η=1.
B. Diffraction from multi-bounce crystals

The reflectivity function of a multi-crystal is given
by:

Rtotal(E,θ)=
∏

i

Ri(θi), (9)

where i denotes the ith crystal; Ri is the reflectivity of
the ith crystal, which is described in the previous sec-
tion; and, θi is the incident angle. We point out that
the incident angle of the ith crystal equals the emergent
angle of the (i−1)th crystal. The relation of the incident
angle and the emergent angle of the ith crystal can be
written as:

sinθ′

i=sinθi+λ/dhklcos(ηH), (10)

where θi denotes the emergent angle of the ith crystal
and θ′

i denotes the incident angle. By integrating total
reflectivity over the incident angle, the angle of the first

crystal, we have:

T (E)=

∫
Rtotal(E,θ1)dθ1. (11)

The full width at half maximum (FWHM) of T (E) is
defined as the energy resolution of the monochromator.
In addition, we define the maximum of Rtotal(E,θ) as the
peak reflectivity.

2.2.2 Finite element analysis of heat/temperature dis-
tribution

For nested HRMs, the temperature difference be-
tween the inner pair of high index crystals will signifi-
cantly influence the performance. Therefore, in our FEA
analysis we mainly focus on the inner pair of [975] crys-
tals. The thermal boundary conditions are the same for
these two crystals. In our present discussion, the thermal
boundary condition for the crystal surface which is illu-
minated by the monochromatized light is set as a natural
boundary condition (or the second boundary condition)
while the other surfaces are set as mixed boundary con-
ditions (or the third boundary conditions).

2.2.3 Ray-tracing of HRMs with same source

The ray-tracing is performed using XOP-
SHADOWVUI. A Gaussian source was assumed for
all tracing works. The distribution of the source in
the phase space is 1 mm (H) by 0.5 mm (V) in size and
σ∼26 µrad (H) by σ∼20 µrad (V) in angular divergence.
The central energy was set as 14.4125 keV.

3 Results and discussion

To be specific, we used the real beamline parameters
[13] for our estimation of the thermal effects. The light
source is an undulator, with K=0.6265 corresponding
to the first harmonic energy of 14.4125 keV. The high
heat load diamond [111] double crystal monochromator
gives rise to 1 eV bandpass. With the source parameters
given in Table 3, the thermal power of [440]1 and follow-
ing [975]2 of Scheme 1 HRM (Table 1) is estimated to be
about 46.2 mW and 34.6 mW, respectively. Owing to the
strong reduction of bandpass by the high-order crystal,
the thermal power of the [975]3 crystal drops drastically
to 0.036 mW. As shown in Fig. 2, we estimate the power
density for [975]2 and [975]3 by considering the Gaussian
distribution of the source.

To analyze the temperature effects, we first need to
point out the factors that can be affected by tempera-
ture. One is the Debye-Waller factor [14]:

DWF = exp(−Mj)=exp

[

−BT

(

sinθB

λ

)2
]

= exp

[

−BT

(

1

2dH

)2
]

, (12)
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Table 3. Undulator parameters.

length/m period/cm tuning range/keV source size/µm divergence/µrad

6.7–16.0 (1st harmonic) Σx:276 Σx′:12.7
2.4 2.70

6.7–60 (1st to 5th harmonic) Σy: 11 Σy′6.7

Fig. 2. (color online) (a) Power density on 1st [975] crystal; (b) Power density projected on the surface of 1st [975]
crystal; (c) Power density of 2nd [975] crystal; and, (d) Power density projected on the surface of 2nd [975] crystal.

with

BT

[

Å
2
]

=
11492T [K]

AΘ2 [K2]
φ

(

Θ

T

)

+
2873

AΘ [K]
, (13)

φ(x) =
1

x

∫x

0

ξ

eξ−1
dξ, (14)

dH = a/
√

h2+k2+l2, (15)

where DWF denotes Debye-Waller factor; dH is the lat-
tice spacing of diffraction plane [hkl]; a is the lattice
parameter; h, k, and l are the Miller indices; A is the
atomic mass number; and, Θ is the Debye temperature.

Another temperature-dependent factor is the lattice
parameter a. The increasing temperature will cause ther-
mal expansion of the silicon crystals. Given that the tem-
perature variation is relatively small, the thermal expan-
sion coefficient is a constant, and then the energy drift

corresponding to the temperature variation is roughly
given by [9]

δT0=
1

β

∆E

E
, (16)

β is the coefficient of thermal expansion. For Si at 300 K
[15], β=2.616×10−6 K−1. From the formula given above,
the energy drift is estimated to be 1 meV when the tem-
perature changes by 26 mK.

3.1 FEA analysis of temperature distribution

With the estimated thermal power density (Fig. 2)
as an input, the temperature distribution on the surface
of the crystals can be estimated by FEA analysis while
maintaining the ambient temperature at 26.85 ℃ (300
K). Fig. 3 gives the temperature distributions on the
surface of the 1st and 2nd inner pair [975] of crystals.
Clearly, the temperature gradient in the 1st crystal is
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Fig. 3. (color online) (a) Temperature distribution
of 1st [975] crystal (dimensions 56 mm×20 mm);
(b) Temperature distribution of 2nd [975] crystal
(dimensions 47.5 mm×20 mm).

significant while that for the 2nd crystal is negligible with
a beam passing through the HRM. To be clearer, we
draw a line through the central region of the crystals,

where the temperature variation is larger than the rest.
As shown in Fig. 4, the mean value of the 1st crystal
temperature is 27.31459 ℃ and that of the 2nd crystal
is 27.29967 ℃. The temperature difference between the
[975]2 and [975]3 crystals is less than 20 mK.

Fig. 4. (color online) Temperature difference be-
tween crystal surface and ambient temperature.
The data is calculated crossing the central line of
crystals.

Fig. 5. (color online) 3D reflectivity diagram with temperature change of (a) 0.01 K; (b) 0.05 K; (c) 0.08 K; and,
(d) 0.1 K.
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Fig. 6. (color online) Angle integrated reflectivity
vs ∆E at different temperatures.

3.2 Performance of HRMs estimated from DDT

Temperature differences impose severe effects on the
energy resolution and energy drifts of HRMs. In Fig. 5,
we present the reflectivity of the HRMs as a function of
energy as well as angle with different temperature dif-
ferences. The obvious effects are the dropping of in-
tensity and the drift of central energy. In Fig. 6, the
angular-integrated reflectivity is compared for different
temperatures. The energy resolution is affected slightly
but the maximum reflectivity drops dramatically when
the temperature increases by 100 mK. In Fig. 7 we com-
pare the energy drift and peak reflectivity with respect

to the temperature difference. With a 100 mK tempera-
ture difference, the energy drifts about 2 meV and then
intensity drops by 20%.

3.3 Performance of HRMs estimated from ray-

tracing

The performance of HRMs simulated by the ray-
tracing approach is given in Fig. 8. The energy resolution
of the four schemes remains at about 2.4–2.7 meV while

Fig. 7. (color online) Variation of temperature on
1st [975] crystal. Energy drift is defined as the
difference between central energy and design en-
ergy.

Fig. 8. (color online) The angle-energy distribution of intensity after different HRMs with the same light source.
The parameters of the HRMs are given in Table 1.
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the transmitted intensity changes greatly. For Scheme
1 and Scheme 2, the major difference is the asymmet-
ric factor of the outer pair of crystals. The transmit-
ted intensity of Scheme 2 is slightly lower than that of
Scheme 1 while the energy resolution remains the same.
Scheme 3 and Scheme 4 employ different crystal planes
for the outer pair. Owing to the relatively narrower an-
gular acceptance of [511] and [444] crystals, the trans-
mitted intensity reduces by 30% and 57% for Scheme
3 and Scheme 4, respectively, with respect to that of
Scheme 1. We also estimate the heat load on the inner
pair crystals for all schemes. The temperature difference
between the two crystal planes of the inner pair crystals
are positively correlated with the heat load. We define
the power ratio between the [975]2 and [975]3 as another
criterion to evaluate the thermal effects of the nested
HRMs. The corresponding power ratios are 966, 956,
1030, and 733 for Scheme 1, Scheme 2, Scheme 3, and
Scheme 4, respectively. In comparison with the power
ratio of Scheme 1, Scheme 2 and Scheme 4 have lower
power ratios while Scheme 3 has a larger power ratio.
By employing Scheme 4, the power ratio drops by 24%
with respect to that of Scheme 1.

4 Conclusions

The high energy resolution monochromator (HRM)
is a pivotal instrument in the inelastic scattering tech-
nique. Although a large portion of the heat load is
dissipated by the pre-monochromator, using either cryo-
genically cooled Si[111] or water cooled diamond[111]

double crystal, the temperature difference between the
first and second crystal face of the inner pair of crystals
in a nested HRM could cause energy drift and inten-
sity reduction, thus deteriorating the performance of
the HRM. By employing dynamical diffraction theory,
finite element analysis, and ray-tracing, we have nu-
merically studied the temperature effect, as well as its
impact on the energy drift and transmitted intensity of
HRMs. From the detailed analysis, it is concluded that
the power ratio between the heated and less heated inner
pair crystals is not linearly correlated with the transmit-
ted intensity. Therefore, we propose power ratio as a
third criterion along with energy resolution and trans-
mitted intensity for designing nested HRMs. Our results
could also be extended to the design of nested HRMs
working at different energies. Furthermore, the heat
load on the inner pair crystals, as demonstrated in our
simulation, can be reduced using either the outer pair
of crystals with a narrower band-pass or compensated
by heating up the less heated crystal of the inner pair
of crystals with a well-adjusted heater bearing using the
same power distribution as caused by the X-ray.
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