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Nuclear structure study of some bubble nuclei in the light mass
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Abstract: We study the structural properties of some light mass nuclei using two different formalisms (i) a recently

developed simple effective interaction in the frame work of microscopic non-relativistic Hartree-Fock method and (ii)

the well-known relativistic mean field approach with NL3 parameter set. The bulk properties like binding energy, root

mean square radii and quadrupole deformation parameter are estimated and compared with the available experimental

data. The predicted results of both the formalisms are well comparable with the experimental observations. The

analysis of density profiles of these light mass nuclei suggest that 22O, 23F, 34Si and 46Ar have bubble like structure.
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1 Introduction

The advancement in radioactive ion beams (RIB) at
intermediate energy make it possible to explore the nu-
clear chart. The proton side of the drip line is explored
much better compared to the neutron counter part but
still most of the region needs to be resurveyed. Numer-
ous exotic phenomenon have been found in these days,
and those around the drip-line are of immense interest
of us [1–3]. Although the drip-line is well established for
doubly magic 24O nuclei (Z=8, N=16) [4], the study of
unbound oxygen isotopes [5] suggests the possibility of
shifting the drip line. The first observation regards the
existence of 40Mg and 42Al isotopes [6] beyond the drip-
line given by various mass formulae challenge the earlier
predictions and still the investigation of drip-line concept
is a challenge for the nuclear science community. One
of the interesting phenomena observed these days is the
bubble structure of some nuclei like 22O, 23F, 34Si, 36S,
36Ar, 46Ar, 84Se, 134Ce, 174Yb, 200Hg etc. [7–9]. The den-
sities of such cases is depleted from the center. The idea
of the bubble effect has been given by Wilson [10]. This
phenomenon has greater interest, because it changes the
shape of the density distribution from normal nuclei due
to different mean field potential. The possibility of for-
mation of bubble nuclei has been studied by various nu-
clear models. The microscopic calculations using Skyrme

Hartree-Fock (SHF) formalism have been carried out to
investigate this effect for various regions in Refs. [11–
13]. Recently the relativistic and non-relativistic mean
field formalism have been used to investigate such effect
in the light [14] and superheavy regions [15].

The paper is organized as follows: Section 1 contains
a brief introduction and Section 2 containing descrip-
tion of the relativistic and non-relativistic mean field
formalisms. The calculations and results are presented
in Section 3. The predictability of recently developed
HF(SEI-I) model to explore different features of nuclei
are included in this section along with the possible can-
didates of bubble structure of considered nuclei. Finally
the summary and conclusions are outlined in Section 4.

2 Formalisms

The structural properties are investigated using the
well-known non-relativistic mean field with newly devel-
oped simple effective interaction (SEI-I) and relativistic
mean field (RMF) formalism. The detailed description
of these formalisms are given below:

2.1 Hartree-Fock approximation with simple ef-

fective interactions

The simple effective interaction (SEI), like a hybrid
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of Gogny and Skyrme, is used to study the bulk proper-
ties of finite nuclei within the framework of Hartree-Fock
(HF) formalism. The form of SEI is given by [16, 17]

νeff(r) = t0(1+x0Pσ)δ(r)

+t3(1+x3Pσ)

(

ρ(R)

1+bρ(R)

)γ

δ(r)

+(W+BPσ−HPτ−MPσPτ)f(r), (1)

where f(r) is the functional form of the finite range inter-
action in terms of Gaussian function f(r)=e−r2/α2

which
contains a single range parameter α. The other terms
have their usual meanings [16]. The Hamiltonian density
functional using simple effective interaction is written as

H = K+HNucl+HSO(r)

+HCoul(r)+HRC. (2)

K=
~

2

2m
(τn+τp) is the kinetic energy term with τn and

τp are the proton and neutron kinetic energy densities
of nucleus. The second term of the Hamiltonian is the
nuclear contribution which contains the direct and ex-
change part. The direct contribution of nuclear energy
density comes from the central part of the effective in-
teraction. The third term, the spin-orbit interaction is
written as

HSO(r) =
−1

2
W0[ρ(r)∇J+ρn(r)∇Jn

+ρp(r)∇Jp]. (3)

The fourth term is due to Coulomb interaction contain-
ing both direct and exchange terms and is given by

HCoul(r) =
1

2

∫
ρp(ŕ)

|r−ŕ|
d3ŕ−

3

4

(

3

π

)1/3

ρ4/3
p . (4)

The last term of the equation arises from the zero range
part of the SEI, which plays the role of residual correla-
tion energy.

HRC =
t0
4

∫
[(1−x0)[ρ

2
n(r)+ρ2

p(r)]]

+
t0
4

∫
[(4+2x0)ρn(r)ρp(r)]

+
t3
24

∫
[(1−x3)[ρ

2
n(r)+ρ2

p(r)]]

+
t3
24

∫
[(4+2x3)ρn(r)ρp(r)]

(

ρ(r)

1+bρ(r)

)γ

. (5)

Here ρn, ρp, ρ, Jn, Jp and J are the neutron, proton and
total nuclear and current densities respectively. The 12
parameters γ, b, t0, t3, x0, x3, W , B, H , M , α andW0 are
used for the calculation of ground state properties. The
detailed procedure of calculations for ground state prop-
erties like binding energy, charge radius, nuclear matter
radius etc. and parameters may be seen in Ref. [16].

2.2 Relativistic mean field Lagrangian density

The relativistic mean field formalism is well docu-
mented in Refs. [18–22]. The basic ingredient of RMF
model is the relativistic Lagrangian density for a nucleon-
meson many body system which is defined as [18–20]

L = ψi(iγ
µ∂µ−M)ψi+

1

2
∂µ
σ∂µσ

−
1

2
m2

σ
σ2−

1

3
g2σ

3−
1

4
g3σ

4−gsψiψiσ

−
1

4
ΩµνΩµν+

1

2
m2

wV
µVµ

−gωψiγ
µψiVµ−

1

4
B

µν .Bµν

+
1

2
m2

ρ
R

µ.Rµ−gρψiγ
µ
τψi.R

µ

−
1

4
F µνFµν−eψiγ

µ (1−τ3i)

2
ψiAµ. (6)

Here σ, Vµ and Rµ are the fields for σ-, ω- and ρ-meson
respectively. Aµ is the electromagnetic field. The ψi are
the Dirac spinors for the nucleons whose third compo-

nent of isospin is denoted by τ3i. gs, gω, gρ and
e2

4π
=

1

137
are the coupling constants for the linear term of σ-, ω-
and ρ-mesons and photons respectively. g2 and g3 are
the parameters for the non-linear terms of the σ-meson.
M , mσ, mω and mρ are the masses of the nucleons, σ-,
ω- and ρ-mesons, respectively. Ωµν , B

µν and F µν are
the field tensors for the V µ, R

µ and the photon fields,
respectively. Now we used two assumptions, first the
nucleons are moving inside the nucleus in a spherically
symmetric potential. In this case, the large and small
components of Dirac spinor ψi are expanded separately
in terms of radial function of a spherical harmonic oscil-
lator potential and in a second assumption, the nucleons
are moving in non-spherical symmetric potential. In this
case the large and small components of the Dirac spinor
are expanded in axial symmetric manner in term of de-
formed harmonic oscillator potential by taking volume
conservation into account. The set of Dirac and Klein-
Gordon equations are solved by these two assumptions
to obtain the bulk properties of nuclei. The quadrupole
moment deformation parameter (β2), root mean square
radii (rm) and binding energy (B.E.) are evaluated using
the standard relations [20].

2.3 Pairing correlation

The constant gap, BCS-approach is reasonably valid
for nuclei in the valley of β-stability line for deter-
mining the bulk properties like B.E., nuclear radii and
quadrupole deformation parameter [23]. The pairing en-
ergy can be given as:

Epair=−G

[

∑

i>0

uivi

]2

. (7)
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where G is a pairing force constant, v2
i and u2

i = 1−v2
i

are the occupation probabilities [24, 25]. The variational
approach with respect to v2

i gives the BCS equation [24].

2εiuiv1−∆(u2
i−v

2
i )=0, (8)

using ∆=G
∑

i>0
uivi. The occupation number is defined

as:

ni=v
2
i =

1

2

[

1−
εi−λ

√

(εi−λ)2+∆2

]

. (9)

The chemical potentials λn and λp are determined by the
particle numbers for neutrons and protons. The pairing
energy is computed as

Epair=−∆
∑

i>0

uivi.

For a particular value of ∆ and G, the pairing energy
Epair diverges, if it is extended to an infinite configu-
ration space. In fact, for all realistic calculations with
finite range forces, ∆ decreases with states for large mo-
menta near the Fermi surface. We used pairing win-
dow, where the equations are extended upto the level
|εi−λ|62(41A

−1

3 ). The factor of 2 has been determined
so as to reproduce the pairing correlation for neutrons in
118Sn using Gogny force [25–27]. The values of ∆n and
∆p are taken as inputs of the BCS-equation [28]. These
constant gaps for neutrons and protons are given as:

∆p(MeV) = RBse
sI−tI2

/Z1/3, (10)

∆n(MeV) = RBse
−sI−tI2

/A1/3, (11)

with R=5.72 MeV, s=0.118, t=8.12, Bs=1 and I =
(N−Z)/(N+Z). The exponential terms take into the
account the dependencies of neutron-proton excess and
shape of the nucleus.

3 Results and discussions

3.1 Ground state properties

The bulk properties are very important for the char-
acteristics study of nuclear systems. We have used
RMF(NL3) [19–21, 29] and HF(SEI-I) [16, 17] formal-
ism to explain the nuclear bulk properties like B.E., rms
charge radii (rc) and quadrupole deformation parameter
(β2) for the considered nuclei. We follow the numerical
procedure of Refs. [30, 31] for spherical RMF(NL3) and
Refs. [20, 22, 26, 32] for deformed cases. The evaluation
procedure of SEI is given in Ref. [16, 17].

3.1.1 Binding energy

The binding energies (B.E.s) of 9−12Be, 12−15B,
12−20C, 20−23N, 20−24O, 23−27F, 28−32Ne, 32−35Mg, 32−35Si,
34−37S and 34−48Ar obtained by relativistic mean field
theory using spherical and axially deformed coordinates

systems and with non-relativistic mean field theory us-
ing simple effective interaction are presented in Table 1
along with experimental values [33, 34]. The B.E. of
10Be are 65.302, 63.49 and 64.855 MeV for HF(SEI-I),
Sph. RMF(NL3) and Def. RMF(NL3) solutions, well
comparable to its experimental value 64.970 MeV. Hence
by examining the results of this table, one may conclude
that both the formalisms are capable of reproducing the
experimental data of binding energy for the considered
nuclei.

3.1.2 Charge radius

The calculated root mean square charge radius (rc) of
9−12Be, 12−15B, 12−20C, 20−23N, 20−24O, 23−27F, 28−32Ne,
32−35Mg, 32−35Si, 34−37S and 34−48Ar nuclei from both
RMF(NL3) and non-relativistic HF(SEI-I) mean field
theories are presented in Table 1. The experimental
data are also given for comparison wherever available
[35]. The rms proton radius rp is obtained using the
distribution of point protons inside the nucleus. The
charge radius rc is calculated by taking the finite size
0.8 fm of the proton, which is evaluated from the for-
mula rc =

√

r2p+0.06 [20]. The calculated values of rc
for 11Be are 2.329, 2.479 and 2.449 fm from HF(SEI-I),
Sph. RMF(NL3) and Def. RMF(NL3) formalism, which
are well comparable with the experimental value of 2.46
fm. Similarly, rc for 36Ar and 46Ar are 3.035, 3.373 for
HF(SEI-I), 3.388, 3.410 for Sph. RMF(Nl3), 3.379, 3.415
for Def. RMF(NL3) and 3.390, 3.437 in Fermi scale for
experimental observations, respectively. In general, ob-
servation of this table signifies the predictability of these
theories as they show comparable results with experi-
mental data.

Fig. 1. B.E. and charge radius of 22O, 23F, 34Si,
36S, 36Ar and 46Ar bubble nuclei with experimen-
tal data [33–35].

3.1.3 Quadrupole deformation parameter β2

Table 1 also present the values of deformation along
with the experimental data [36] wherever available. The
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Table 1. The ground state properties of light mass nuclei obtained from RMF(NL3) and HF(SEI-I) calculations are
compared with experimental data wherever available. The binding energy (B.E.) is in MeV and charge radius rc

is in fm.

B.E. rc β2

nuclei
HF(SEI-I) RMF(NL3) RMF(NL3)

Expt.[33, 34]
HF(SEI) RMF(NL3) RMF(NL3)

Expt.[35]
RMF(NL3)

Expt.[36]
(Sph.) (Sph.) (Def.) (Sph.) (Sph.) (Def.) (Def.)

9Be 54.927 54.76 58.018 58.164±0.000 2.305 2.461 2.510 2.519 0.793
10Be 65.302 63.49 64.855 64.970±0.000 2.302 2.537 2.423 2.36 0.509
11Be 69.380 67.97 67.780 65.478±0.000 2.329 2.479 2.449 2.46 0.369
12Be 73.190 73.61 71.378 68.649±0.004 2.353 2.549 2.450 −0.137
12B 82.172 82.85 82.176 79.575±0.001 2.393 2.498 2.457 0.168
13B 88.250 88.84 88.842 84.453±0.001 2.411 2.540 2.492 0.097
14B 89.256 91.88 89.874 85.423±0.021 2.423 2.534 2.522 0.382
15B 90.162 93.64 92.593 88.194±0.022 2.435 2.532 2.564 2.511 0.611
12C 88.422 88.23 91.349 92.160±1.700 2.436 2.364 2.310 2.47 0.007 0.577(16)
13C 97.489 96.31 98.098 97.108±0.000 2.454 2.459 2.466 2.46 −0.000
14C 105.829 104.38 106.929 105.284±0.000 2.470 2.504 2.517 2.56 0.000 0.36(3)
15C 108.846 108.66 108.477 106.502±0.000 2.480 2.516 2.535 0.249
16C 111.642 113.45 111.874 110.752±0.003 2.489 2.531 2.565 0.448
17C 114.248 116.40 114.083 111.486±0.017 2.500 2.542 2.582 0.458
18C 116.709 118.79 116.842 115.670±0.030 2.509 2.552 2.601 0.471
19C 119.015 119.91 119.511 116.242±0.100 2.521 2.562 2.629 −0.438
20C 121.154 122.54 119.736 119.18±0.200 2.532 2.573 2.590 0.278
20N 139.487 139.37 136.772 134.184±0.055 2.605 2.671 2.683 −0.306
21N 143.095 142.59 141.475 138.768±0.100 2.614 2.674 2.694 −0.311
22N 146.205 145.55 143.948 140.052±0.200 2.624 2.679 2.678 −0.159
23N 148.765 148.17 147.864 141.726±0.300 2.637 2.687 2.674 −0.009
20O 154.043 152.71 151.585 151.36±0.100 2.668 2.720 2.726 0.250 0.268(6)
21O 159.645 157.95 156.944 158.928±0.100 2.673 2.721 2.716 0.132
22O 164.758 164.18 163.192 166.496±0.100 2.678 2.735 2.712 0.002 0.19(4)
23O 169.040 168.32 167.227 174.064±0.100 2.689 2.741 2.725 0.003
24O 172.508 171.87 171.665 181.632±0.100 2.701 2.752 2.737 0.003
23F 177.956 176.75 175.378 175.283±0.100 2.768 2.839 2.805 −0.188
24F 183.433 182.06 180.162 179.11±0.100 2.778 2.838 2.812 −0.128
25F 186.026 186.90 185.221 183.375±0.100 2.782 2.853 2.821 −0.087
26F 188.890 191.76 187.928 184.158±0.100 2.806 2.875 2.852 −0.125
27F 191.507 195.00 191.245 186.246±0.200 2.827 2.891 2.886 0.151
28Ne 207.273 210.62 208.122 206.89± 0.100 2.892 2.964 2.966 2.963 0.223 0.36(3)
29Ne 210.833 214.35 211.140 207.843±0.100 2.912 2.982 2.981 0.159
30Ne 214.160 218.02 214.920 211.29±0.300 2.933 2.998 2.999 0.098 0.49(17)
31Ne 214.569 221.97 215.812 211.42±0.200 2.944 3.012 3.032 0.238
32Ne 214.860 223.95 218.409 213.472±0.500 2.956 3.024 3.071 0.363
32Mg 249.390 252.06 250.387 249.804±0.200 3.032 3.095 3.091 3.186 0.119 0.51(5)
33Mg 252.015 256.02 252.982 252.017±0.200 3.043 3.107 3.118 0.231
34Mg 254.355 259.14 257.169 256.462±0.100 3.053 3.118 3.151 0.340 0.55(6)
35Mg 256.498 261.82 260.211 257.460±0.200 3.064 3.129 3.174 0.385
32Si 267.928 267.69 268.203 271.407±0.000 3.078 3.113 3.141 −0.203 0.26(4)
33Si 275.953 275.97 275.359 275.915±0.000 3.095 3.133 3.134 −0.085
34Si 283.470 283.78 278.249 283.428±0.014 3.111 3.153 3.206 −0.337 0.18(4)
35Si 288.258 289.77 287.135 285.903±0.038 3.119 3.163 3.164 −0.084
34S 286.424 286.05 286.295 291.838±0.000 3.199 3.270 3.259 3.28 −0.168 0.247(3)
35S 296.491 296.71 295.543 298.824±0.000 3.209 3.282 3.262 −0.077
36S 305.978 306.52 299.502 308.714±0.000 3.219 3.293 3.312 3.29 −0.309 0.157(7)
37S 312.676 313.58 309.946 313.017±0.000 3.224 3.299 3.290 −0.116

34Ar 273.357 273.76 273.397 278.719±0.000 3.295 3.387 3.360 3.365 −0.168 0.229(15)
36Ar 300.129 300.25 302.268 306.716±0.000 3.305 3.388 3.379 3.390 −0.209 0.253(8)
38Ar 324.432 325.59 319.946 327.342±0.000 3.318 3.397 3.396 3.402 −0.279 0.161(4)
40Ar 341.555 342.31 340.945 343.810±0.000 3.326 3.401 3.392 3.427 −0.160 0.269(5)
42Ar 357.013 357.39 356.393 359.335±0.005 3.335 3.406 3.402 3.435 −0.176 0.27(3)
44Ar 371.135 371.42 370.639 373.728±0.001 3.345 3.410 3.410 3.445 −0.179 0.22(16)
46Ar 383.672 384.57 384.603 386.927±0.040 3.373 3.410 3.415 3.437 −0.167 0.170(17)
48Ar 391.79 394.58 392.810 396±0.720 3.393 3.437 3.442 −0.198
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negative β2 values of nuclei in this table signify oblate
deformation, whereas positive values predict the prolate
deformation and zero represent the spherical behavior.
It is worth mentioning that the NL3 parameter set does
not give a converged solution for some of the light mass
nuclei such as 12C and 14C. To get a converged result
for such cases, we use the BCS pairing approach with a
small but finite value of the pairing strength ∆n,p. As a
result, the value of B.E. for 12C is 91.349 and for 14C is
106.929, which are both in nice agreement with exper-
imental data of 92.160±1.7 and 105.285±0.00, respec-
tively. But the values of quadrupole deformations are
0.007, 0.000, which have a large deviation with respect
to experimental values 0.577(16), 0.36(3). So we com-
promise a bit in the quadrupole deformation for such
cases. In a recent paper [37] we have observed that,
for both NL3 and SkI4 force parameter sets in the light
mass region, pairing is less important for the majority of
cases. It is also observed that the deformation becomes
negligible for 20Ne and do not agree with experimental
deformation parameter if one includes pairing. On the
other hand, without pairing, the deformation parame-
ter is reproduced substantially well as density of states
near the Fermi surface are small and do not require pair-
ing for such light mass nuclei as it is considered here.
The authors of paper [37] concluded that the deforma-
tion parameters start affecting experimental data if one
ignores pairing in this mass region. In the present work
we have performed the calculations for most of the nu-
clear systems without considering pairing effects due to
this reason.

3.2 Bubble nuclei

The bubble effect has appeared in some of the nuclei,
where the density of nucleus is depleted at the central
part. The main mechanism for the formation of bub-
ble nuclei is the lack of particles at the centre of nucleus
which causes the s levels to be less bound than observed
in the usual cases with the uniform density distribution.

Figure 1 represents the B. E. and charge radius (rc) of
22O, 23F, 34Si, 36S, 36Ar and 46Ar bubble nuclei obtained
from HF(SEI-I), sph RMF(NL3) and def RMF(NL3) for-
malism along with the experimental data. The values of
B.E. and charge radius are also given in Table 1. The
upper panel of the figure shows the charge radius and
lower panel B. E. of selected cases with the experimen-
tal data wherever it is available. This figure suggests
that both the formalism relativistic mean field and the
non-relativistic mean field are capable of reproducing the
bulk properties of such cases.

Close inspection of the figure suggests the results ob-
tained with relativistic mean field formalism are close
to the experimental values in comparison to the non-

relativistic mean field formalism.

3.2.1 Density

Figure 2 represents the densities of the considered set
of bubble nuclei as a function of radial distance (r in fm).
In normal cases, nucleon distribution inside the nucleus
is maximum at the center and starts decreasing continu-
ously towards the surface. Keen inspection of Fig. 2 in-
dicates that the considered set of nuclei shows depletion
of the densities at the centre, which is the primary in-
dication for their bubble structure. It also appears from
the figure that densities of the considered set of nuclei
shows a similar kind of trend for all the formalisms.

Fig. 2. Radial density plots of 22O, 23F, 34Si, 36S,
36Ar and 46Ar bubble nuclei using HF(SEI-I), Sph
RMF(NL3) and def RMF(NL3) formalism.

Figure 3 shows the proton and neutron density distri-
butions of 22O, 23F, 34Si, 36S, 36Ar and 46Ar as a function
of radial distance. The left panel of the figure shows the
neutron and the right panel shows the proton density
distribution of these bubble cases for HF(SEI-I), Sph.
RMF(NL3) and Def. RMF(NL3) densities, respectively.
It is clear from the figure that the depletion for proton
density distribution is more than the neutron counter-
part. This may be due to the Coulomb repulsion between
protons. So the particles rise high enough in energy and
highest s levels will be empty, resulting in depletion of
central density of particles as a consequence of which the
radius of the nucleus increases.
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Table 2. The depletion factor (D.F. in %) of neutron (N), proton (P) and total (T) densities for some probable
cases of bubble nuclei obtained from HF(SEI-I), Sph. RMF(NL3) and Def. RMF(NL3).

D.F.% D.F.% D.F.%

HF(SEI-I) Sph. RMF(NL3) Def. RMF(NL3)
nuclei

N P T N P T N P T

22O 8.21 19.14 13.21 9.49 20.23 14.46 24.35 22.47 23.29
23F 10.67 20.45 15 14.44 22.71 18.26 22.14 22.30 21.99
34Si — 36.66 — 0.36 36.27 16.75 — 3.73 —
36S — — — — — — 3.49 16.25 9.49

36Ar — — — — — — — — —
46Ar — 51.05 14.74 15.31 62.08 36.64 1.56 14.73 7.51

Fig. 3. Radial density plots for expected bubble nuclei 22O, 23F, 34Si, 36S, 36Ar and 46Ar obtained by (A) HF(SEI-I)
(B) Sph. RMF(NL3) (C) Def. RMF(NL3) formalism.

The depleted density of nuclei has been measured in
term of depletion factor (D. F .) defined as [7]

D.F.=
ρmax−ρcen

ρmax

, (12)

where ρmax and ρcen represent the values of maximum
and the central density. The calculated values of D.
F . in % for the 22O, 23F, 34Si, 36S, 36Ar and 46Ar are
presented in Table 3. The value of (D.F.)T in % for
22O are 13.21, 14.46 and 23.28 for the HF(SEI-I), Sph.
RMF(NL3) and Def. RMF(NL3) densities. Similarly the
(D.F.)T for the 23F are 15, 18.26 and 21.99 from same
densities, respectively. The (D.F.)P in % for the 34Si and
46Ar nuclei are 36.36 and 51.06 for HF(SEI-I), 36.27 and
62.08 for Sph. RMF(NL3) and 3.72 and 14.72 for Def.
RMF(NL3) densities which clearly indicate the nature

of their proton bubble. This table also signifies that no
bubble effect is seen for 36Ar, whereas 16.25% (D.F.)P

for 36S in Def. RMF(NL3) indicate that it may be a case
for proton bubble along with 34Si and 46Ar nuclei. Thus
prominent cases having bubble effects are observed to be
22O, 23F, 34Si and 46Ar.

4 Summary and conclusions

In summary, we have studied the structural proper-
ties of 9−12Be, 12−15B, 13−20C, 20−23N, 20−24O, 23−27F,
28−32Ne, 32−35Mg, 32−35Si, 34−37S and 34−48Ar in the
frame work of non-relativistic Hartree-Fock with simple
effective interaction and relativistic mean field formal-
ism in the light mass region. The bulk properties such
as binding energy, charge radius and quadrupole de-
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formation parameter β2 show good agreement with the
experimental data. The bubble effect for 22O, 23F, 34Si,
36S, 36Ar and 46Ar nuclei in light mass region is studied.
The prominent cases having bubble effects are observed
to be 22O, 23F, 34Si and 46Ar from our study. This will
affect studies of nuclear structure in the drip-line and su-
perheavy regions. In general, we observed that both the
formalisms are capable of studying the nuclear structure

for most of the light mass nuclei, with slightly better
accuracy for RMF formalism over the non-relativistic
HF(SEI-I). Further investigations in the medium and
heavy mass regions may impart better description re-
garding the comparative analysis of these formalisms.

One of the authors, MKS, thanks the Institute of

Physics, Bhubaneswar, for kind hospitality.
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