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Adaptive multitrack reconstruction for particle trajectories

based on fuzzy c-regression models *
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Abstract: In this paper, an approach to straight and circle track reconstruction is presented, which is suitable

for particle trajectories in an homogenous magnetic field (or 0 T) or Cherenkov rings. The method is based on

fuzzy c-regression models, where the number of the models stands for the track number. The approximate number

of tracks and a rough evaluation of the track parameters given by Hough transform are used to initiate the fuzzy

c-regression models. The technique effectively represents a merger between track candidates finding and parameters

fitting. The performance of this approach is tested by some simulated data under various scenarios. Results show

that this technique is robust and could provide very accurate results efficiently.
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1 Introduction

An important problem in the area of pattern recog-
nition is curve recognition (here lines are considered as
special curves). Such examples in the high energy physics
area are: finding Cherenkov rings and 2D track recon-
struction such as TPC. These problems can be consid-
ered as combinatorial optimization problems, i.e. given
a set of detector signals one has to reconstruct several
track subjects upon different constraints. Besides track
finding, another important problem for track reconstruc-
tion is track fitting, i.e. estimating the parameters of
the reconstructed tracks. The parameters of tracks are
always related to the momentum, charge and the type of
particles. Both the processes of track finding and track
fitting are essential steps in the data analysis chain of
high-energy physics experiments, especially for off-line
data analysis.

Variety track reconstruction methods have been pro-
posed for different experimental setups in the past. Some
general review papers about the reconstruction methods
can be found in Refs. [1–3]. All the methods can be
classified into two classes, one is the classical method
and the other is the adaptive method. The classical
methods mainly contain track road, track following and
the Hough transform [4]. Track road and track follow-

ing need an initial track, which is always given by two
or three random measurement points; however, the ef-
ficiency is limited because most of the initial tracks are
wrong. As a global method, the Hough transform treats
all measurements simultaneously; however the parameter
fitting accuracy depends heavily on the quantization of
the parameter space and the computational consumption
increases dramatically in the high dimensions. In some
track reconstruction methods [5], the Hough transform
is used to provide initial values of the track parameters.
The first attempt to apply adaptive methods for track
reconstruction is the application of the Hopfield neural
networks [6, 7]. Since then lots of methods such as elastic
nets and deformable templates [5, 8], Gaussian-sum filter
[9, 10], Kalman filter [11, 12] and cellular automaton [13]
are suggested. These adaptive methods are used widely
for track reconstruction in high energy physics, and each
method has its advantages and disadvantages. In gen-
eral, all the methods require numerical minimization of
a complicated energy function. In the initial stage, the
expectation–maximization (EM) algorithm [14] and sim-
ulated annealing algorithm [7, 8] are used and then the
adaptive least-squares estimators and Kalman filter [15]
are suggested.

In this work a new fuzzy c-regression models method
(FCRM) for the straight and circle track reconstruction
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is presented. Because those straight and circle tracks can
be described as regression models, then the FCRM algo-
rithm can be used to provide an effective way for mul-
titrack reconstruction. The regression equations stand
for the track models, the same as deformable templates,
which are initialed by the Hough transform. The Hough
transform provides the approximate number of regres-
sion models and a rough evaluation of the parameters of
the regression equation. Instead of complex algorithms
such as EM, simulation annealing and the Kalman Fil-
ter, we derived the minimum of energy function by solv-
ing regression equations with the weighted least squares
method. Compared to other adaptive methods, the en-
ergy function of FCRM is simple and easy to understand.
Because the fitting process in the FCRM is based on the
least squares method, the fitting parameters are very ac-
curate. Both the straight tracks and circle tracks from
simulated data are reconstructed in this paper. Results
show that FCRM is immune to noise and position uncer-
tainties and provides very accurate fitting parameters.

2 Fuzzy c-regressions method

2.1 General concepts of FCRM

Assume that S={(x1,y1),··· ,(xn,yn)} is a set of data
where each independent observation xk∈Rp has a corre-
sponding dependent observation yk∈Rt. If we assume
that the data to be drawn from c models:

y=fi(X;βi)+εi, 16i6c, (1)

where each βi∈Ωi⊂Rk, and each εi is a random vec-
tor with mean vector µi=0∈Rt and covariance Σi. The
switching regression is employed to find c linear regres-
sions

yj,i=βi0+βi1xj1+···+βipxjp, i=1,···,c, (2)

that best fit the data structure.
Hathaway and Bezdek [16] first combined switch-

ing regressions with fuzzy c-means and referred to
them as the fuzzy c-regressions models algorithm. The
FCRM algorithm is to minimize the objective function
Em(U,{βi}) defined in

Em(U,{βi})=
n
∑

k=1

c
∑

i=1

um
ikEik(βi), (3)

where m>1 is fixed, and the Eik(βi) is the measure of the
error in fi(Xk;βi) as an approximation to yk, 16i6c and
16k6n. The most common example for such a measure
is the squared vector norm Eik(βi)=‖fi(Xk;βi)−yk‖2.
U is the matrix of membership degree with U =(uik),

and 06uik61,
c
∑

i=1

uik=1 stands for the probability that

data (xk,yk) came from class i. The update equations

for the minimization are

Uik=
1

c
∑

j=1

(

Eik

Ejk

) 1

m−1

(4)

and
βi=[XTDiX]−1XTDiY , (5)

where X denotes the matrix in Rn×(p+1) having (1,xj)
as its jth row, Y denotes the vector in Rn having yj as
its jth component, and Di denotes the diagonal matrix
in Rn×n having um

ij as its jth diagonal element. The cal-
culation of uik uses the Lagrange multiplier and is given
in the appendix.
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2.2 Noise resistance method

In the real situation, the data set always contain some
noise signals, which affect the parameter fitting heavily.
Here we suggest a noise resistance approach to avoid the
effect of noise. In order to distinguish the noise from the
effective data, dik(xk,yk) is used to measure the distance
between the data point (xk,yk) and the regression model
y=f(x,βi). The distance is an abstract concept used
to describe the similarity between the data point (xk,yk)
and the regression model y=f(x,βi), commonly it comes
with Euclidean distance. Then, setting a cut threshold
w, if the distance dik>w for i=1,···,c, the data (xk,yk)
will be considered as noise.

2.3 Initiation by the Hough transform

The FCRM strategy is to match the measurements
(data points) to simple parameterized models (which in
our case are lines or circles). However, the performance
of FCRM depends heavily on initial values. Kuo-Lung
Wu [17] shows that, without initiation, for two paral-
lel lines there are about 53% trials that FCRM performs
with correct results and 82% for two cross lines. In order
to get a high quality solution avoiding the local minima, a
method is needed that provides us with the approximate
number of regression models and the approximate values
of the parameters. Some existing methods can give us
the initial values we need, such as k-mean clustering, the
mountain method [18, 19] and the Hough transform. In
this paper, for the track models which can be described
as lines or circles, the Hough transform was used for this
task.

By using the Hough transform, data transformation
should be processed first, i.e. transform the original c-
regression data set into a parameter space. For those
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straight tracks, any two points can form a line, for ex-
ample, any two points can have a regression equation
y=b0+b1x where the parameters of this equation is de-
noted by b=(b0,b1). If we pair all points of the data set to
form the regression lines, we will have a set of parameters
bl=(bl0,bl1), l=1,··· ,C2

n where C2
n denotes the number

of combinations. Then the histogram of the parameters
(bl0,bl1) will form local maximum peaks in the parameter
space. The number of the peaks indicate the regression
models and the location of the peaks indicate the ap-
proximate values of the parameters. However, for those
tracks that pass through the origin point, bl0≡0, the pa-
rameter of bl1 will form a new histogram with cleaner
signal-to-background separation. Fig. 1 shows the orig-
inal signals corresponding to non-perfect straight tracks
with noise and the distribution of θ, here θ=arctgbl1,
l=1,··· ,C2

n. It is obvious that the Hough transform
can give us the parameters, both the number of models
and the approximate values of (bl0,bl1), we need in the
FCRM, even though the tracks are not perfectly straight
and are noisy.

For those circle tracks, if the circles going through the
origin of a two-dimension x-y coordinate system (in fact
most track models from TPC satisfy this demand), they
will map onto straight lines in a u-v coordinate system
by the transformation

u=
x

x2+y2
, v=

y

x2+y2
, (6)

where the circles are defined by the circle equation
(x−a)2+(y−b)2=r2=a2+b2. The straight lines in the
u−v plane are then given by

v=
1

2b
−u

a

b
. (7)

Obviously, the problem finding tracks of circle models
through the origin point will change to a problem finding
straight tracks in the u-v space by the Hough transform,
and then all the processes of the Hough transform used
for finding straight tracks can be used naturally. Since
the transformed straight lines from circle tracks do not
always pass through the origin of the u-v coordinate sys-

tem, a histogram of parameters should be carried out
in a 2D parameter space. Fig. 2 shows the signals cor-
responding to non-perfect circle tracks with noise, the
mapping straight lines on the u-v coordinate system and

the 2D histogram of angles of slopes θ
(

θ=arctg
(

−a

b

))

and intercepts

(

1

2b

)

. The results shows that, based on

the transformation of (6), the Hough transform is still
an effective method for our initiation of FCRM.

Fig. 1. (a) Original signals corresponding to non-
perfect straight tracks with noise and (b) resulting
θ-distribution.

Fig. 2. (left) Original signals corresponding to non-perfect circle tracks with noise; (middle) straight lines transform
x−y space to u−v space and (right) the 2D histogram of the parameters.
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3 Simulations and results

In this section, some simulations have been done to
examine the performance of the FCRM method. In the
future the International Linear Collider (ILC) experi-
ment, with a high spatial resolution (∼100 µm) is de-
manded for its track detector. Several prototypes TPC
for ILC have been constructed and tested in the past few
years. The spatial resolution of these prototypes is about
100 µm, a minimal spatial resolution of (53±5) µm was
measured by Kaminski [20] and the result given by Oda
[21] is 79 µm. Another prototype TPC was tested by Yu-
lan LI [22] and a 100 µm spatial resolution was achieved.
Based on the experimental results, in the following sim-

ulation the simulated data are spread by a normal distri-
bution error with µ=0 and σ=100 µm. Here we assumed
that the tracks had 21 measurement layers with a layer-
to-layer distance of 5 mm, an inner radius of 30 mm, and
outer radius of 130 mm. The detection efficiency, which
was set to be 90%, was also considered in the simula-
tion. Some outlier data generated in random were used
to examine the noise resistance of FCRM. In fact, the
real particle trajectories from ILC are complex and the
track reconstruction was a systemic process with lots of
factors to consider, such as the reconstruction efficiency,
computer consumption, noise immunity and track multi-
plicity. The simple examples given in this paper are only
a principle proof of the FCRM.

Fig. 3. (left) The original signals and (right) the reconstructed tracks by FCRM.
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3.1 FCRM for line reconstruction

Figure 3 shows some results of the reconstructed
straight tracks. The left of Fig. 3 shows the original
signals obtained from the experiment which contain po-
sition uncertainties and noise and the right of that shows
the reconstructed tracks from FCRM. Because the detec-
tion efficiency is 90%, some measurement points are lost
in our simulation, as shown in the left of Fig. 3. The
results indicate that it is easy to distinguish multitracks
from each other using FCRM, and it is also efficient in
distinguishing signals from noises.

In order to evaluate the performance of the FCRM
algorithm, 10000 double tracks events are generated and
the distribution of the fitting parameters are shown in
Fig. 4. The true values of the parameters of the two
tracks are β11=0.7265, β12=0, β21=1, β22=0, which
means that the angle of slopes are 36◦ and 45◦ and
both of them pass through the origin point. The values
of the fitting parameters are β̂11=0.7265±7.5445×10−4,
β̂12=−4.5020×10−4±0.0527, β̂21=1.0000±7.6962×10−4,
β̂22=5.4008×10−4±0.0469. The results show that the
values of the fitting agree well with the true values of
the parameters. The error of the slope given by the least
squares method can be calculated as [23]:

σm=
σy

xN−x0

1√
N+1

√

12N

N+2
. (8)

Where σm is the error of the slope and σy=100 µm is the
spatial resolution, N =21 is the number of the measure-
ment, xN =130 mm, x0=30 mm. The calculated value
of σm is 7.0571×10−4. The error of intercept is given as:

σb=
σy√
N+1

Z(r,N), (9)

where σb is the error of intercept and r=
xN+x0

2(xN−x0)
,

Z(r,N)=

√

12r2+1+2N−1

1+2N−1
. So the calculated value of

σb is 0.0603 mm. Obviously, the parameters’ errors ob-
tained from FCRM are consistent with that from the
least squares method.

3.2 FCRM for circle reconstruction

Circle tracks always come from a projection of he-
lices in a certain readout plane or Cherenkov rings. From
section 3.2 we can transform the problem of circle track
reconstruction into a problem of straight line reconstruc-
tion in the u-v space by Hough transform, and then the
FCRM can be used naturally. However, we suggest a
new approach for circle tracks finding and fitting here,
which is based on new regression models.

Based on the initial parameters, such as the number
of tracks and the approximate value of the parameters
given by the Hough transform, we reconstruct the circle
tracks by a new regression model. Chernov and Ososkov
[24] gave four regression models for circle fitting and here
we use one of them for our FCRM. The equation of the
circle can be written as x2+y2+Ax+By+C=0, suppos-
ing that z=x2+y2 in the circle equation, the circle equa-
tion will be transformed into a linear regression equation

z=mx+ny+p, (10)

where m=2a, n=2b, p=R2−a2−b2 are treated as the
new unknown parameters, the circle center defined
as (a,b) and the radius equals R. Change our one-
dimensional linear regression to multi variable linear re-
gression models as

Fig. 4. The distribution of the fitting parameters.
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yji=βi0+βi1xj1+βi2xj2, i=1,···,c, (11)

where xj1=xj , xj2=yj and yji=zj. Then the fitting pa-
rameters can be obtained by

βi=
[

XTDiX
]

−1
XTDiY , (12)

where
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Then, the FCRM algorithm can be used and all the
calculation steps are the same steps as mentioned above.

It is worth mentioning that the Eik(βi), which stands
for the error in fi(Xk;βi) as an approximation to yk in
function (3), should be changed as below

Eik(βi) = Eik(mi,ni,pi)

= |(xk−ai)
2+(yk−bi)

2−R2
i |. (13)

Where ai=
mi

2
, bi=

ni

2
, R2

i =p2
i +a2

i +b2
i . Fig. 5 shows

some simulation results of double circle tracks and triple
circle track reconstruction by FCRM. Table 1 lists the
comparison of the real values and the fitting values of
the parameters from 10000 double circle track events,
both the center of the circles (a,b) and the radius (R)
contained. The results show that FCRM is effective for
the reconstruction of circle tracks.

Table 1. Comparison of the true values and fitting values of the circle parameters.

circle . circle /
parameters

a1 b1 R1 a2 b2 R2

true value −70.71 70.71 100.00 80.90 58.78 100.00

fitting value −70.67±0.57 70.71±0.07 99.98±0.50 80.81 ±0.48 58.78±0.12 100.00±0.46

Fig. 5. (color online) (left) The original measured signals and (right) the reconstructed circle tracks by FCRM.
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4 Conclusions

In this paper, a novel track reconstruction method
using fuzzy c-regression models is proposed, which com-
bines the finding and fitting problem into a single ap-
proach. For those straight and circle tracks, which can be
described as regression function, the method of FCRM
could be used effectively. By initializing a set of regres-

sion models with the Hough transform, both the multiple
straight and circle tracks can be found and fitted in syn-
chronously. The weighted least squares method is used
to solve the regression functions and an iteration process
is used to derive the minimum of the objective function,
then the track parameters are obtained. From the sim-
ulation results one may say that the FCRM method is
useful and provides an effective fitting.

Appendix A

The explicit formulas for the new iterates uik (16i6c)
are based on the Lagrange multiplier method. Let

F (λ,uik)=
c
∑

i=1

(uik)m(Eik(βi))+λ

(

c
∑

i=1

uik−1

)

, (A1)

then the minimum of F (λ,uik) can be obtained by solving
Eq. (A2) and (A3):

∂(λ,u1k,··· ,uck)

∂uik

=m(uik)m−1(Eik(βi))+λ=0, (A2)

∂(λ,u1k,··· ,uck)

∂λ
=

c
∑

i=1

uik−1=0, (A3)

from (A2), we can derive

uik=(
−λ

m(Eik(βi))
)

1

m−1 =(
−λ

m
)

1

m−1 (
−λ

(Eik(βi))
)

1

m−1 , (A4)

put (A4) into (A3)

c
∑

i=1

uik =

c
∑

i=1

(
−λ

m
)

1

m−1

(

−λ

Eik(βi)

) 1

m−1

=

(

−λ

m

)
1

m−1
c
∑

i=1

(

−λ

Eik(βi)

)
1

m−1

, (A5)

then
(

−λ

m

) 1

m−1

=
1

c
∑

i=1

(

−λ

Eik(βi)

) 1

m−1

, (A6)

put (A6) into (A4)

uik=
1

c
∑

j=1

(

Eik

Ejk

) 1

m−1

. (A7)
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