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Simulation of beam gas coulomb scattering in HALS *
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Abstract: In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using

the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) method,

we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to

better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose

the HeFei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime

we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value (5.0555 h /13.7024 h in x/y).

By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided

particles is 1.3431e-04, which is also very close to the theoretical value (1.3824e-04). Besides, the simulation shows

there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic

value in beam lifetime and loss probability indicates our simulation is reliable.
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1 Introduction

In an e-storage ring, there is always some residual
gas near the beam orbit, no matter how efficient the vac-
uum condition is. The electrons will inevitably collide
with it. The interaction between the electrons and resid-
ual gas is quite complex. There are mainly three mecha-
nisms: the coulomb scattering, bremsstrahlung scatter-
ing, and the inelastic scattering with the outer-shell elec-
tron. These collisions will cause the change of the beam
electron motion state; if the change is large enough, the
corresponding electron will be lost. In the three types of
beam gas interaction, the most common and basic is the
coulomb scattering on the nucleus which is called beam
gas coulomb scattering (BGCS). This forms the topic of
our study in this paper [1].

Conventionally, the analytical method is the most
common way to study BGCS [2, 3], and the analysis
is always limited to obtain the calculation formula of the
beam lifetime. In recent years minority or individual
researches try to simulate beam lifetime using the MC
method [4].

But does the beam gas scattering just affect the beam
lifetime? What about the particle distribution? We ex-

plore the process of particle loss. First the momentum
of the collided particle is changed due to the scattering.
Then along with the beam transport, the position of the
particle is changed. At last, the particle will be lost if
it exceeds the limited conditions. From this process, it
can be seen that the beam lifetime is also based on the
change of particle distribution. Unfortunately, there is
no research on the BGCS influence on particle distribu-
tion.

In this paper, using the particle-in-cell Monte Carlo
collisions (PIC-MCC) method and choosing an appro-
priate cross section and scattering angle, we not only
simulated the beam lifetime but also explored the effect
of BGCS on the beam distribution. Moreover, previous
studies on BGCS just gave a kick to transverse oscilla-
tion. In order to get the post-momentum of the particles
more accurately, we deal with the collision process in a
laboratory coordinate system.

This paper is organized as follows: In Section 2 the
basic theory is given. In Section 3 the simulation tech-
nique is described. The results of the simulation are com-
pared with the theoretic study in Section 4, and Section
5 is devoted to a discussion and conclusion.

Received 9 April 2014

∗ Supported by Natural Science Foundation of China (11175182, 11175180)

1) E-mail: yuluxin@mail.ustc.edu.cn

2) E-mail: gaomqr@mail.ustc.edu.cn

3) E-mail:wanglin@ustc.edu.cn
©2015 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

027004-1



Chinese Physics C Vol. 39, No. 2 (2015) 027004

2 Basic theory of the simulation

2.1 The PIC-MCC method [5, 6]

The PIC-MCC method is a numerical technique in
many-charged-particles simulation that has been widely
used for decades. It attempts to balance the PIC and
MCC. With the PIC-MCC method to track the motion
of massive particles, all the micro information of the par-
ticle system is included. Any information, whether mi-
crocosmic or macroscopic, in principle, can be obtained.

Using the PIC-MCC to describe the collision of par-
ticles, the collision probability during one time-step ∆t
can be obtained by the following expression [6]:

p(t)=1−exp(−σρν∆t), (1)

where σ is the collision cross section, ρ is the volume
density of target particles, ν is the relative velocity of
collided particles.

We generated a uniformly distributed random num-
ber Ri∈ [0 1], and by comparing the p(t) with Ri, deter-
mined if the particle can collide. If Ri was less than p(t),
the particle suffered a collision, then it was processed by
the MCC method. If Ri was larger than p(t), the par-
ticle did not collide, then it was processed by the PIC
method.

2.2 The derivation of collision formulas

By transferring the collision into the centre of mass
reference frame (CM), Vincenti and Kruger give the for-
mulas of collision between two non-relativistic particles
[7]. The main points are shown in Fig. 1.

Fig. 1. The trajectories of two particles during a
collision in the CM frame.

In Fig. 1, the initial momenta (pα, pβ) of the two
collided particles (α, β) are equal and opposite. Fur-
thermore, the force on each of the two particles is equal
in magnitude but opposite in direction. As a result the
final momenta deflecting at an angle η are also equal
and opposite. With (p′

α, p′

β) these results conservation

of total momentum and energy have been satisfied, and
the final momenta can be written in terms of the initial
momenta and η. The η is defined in the CM frame.

But it will be more complex to obtain the post-
momenta of relativistic particles, which need twice
Lorenz transformation [8]. In our simulation, we just
need the electron’s post-momentum. Combining the
above points, we deal with the collision in a laboratory
coordinate system. Below is the description.

For electron-atom elastic collision, the atom is con-
sidered to have a so large mass relative to the electron
that the electron only scatters in angle χ with no loss of
energy [5]. So the electron’s trajectory in a laboratory
coordinate system can be described as shown in Fig. 2.

Fig. 2. The electron’s deflection in a laboratory co-
ordinate system.

Where, k is the unit vector of p, while k′ is the unit
vector of p′, so the electron’s collision process can be de-
scribed as |p|=|p′| with the direction changed from k to
k′.

Since the p′=p, if the component of k′ is known, p′

will be easy to get. Now what we should do is find the
relationship between k′ and k. Fig. 3 shows the relation-
ship between k′ and k.

On the left of Fig. 3, the components of k in (x, y,
s) can be obtained by equation (2) [7].
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Fig. 3. The vector diagram of k and k′.
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Similarly, on the right of Fig. 3, there is a relationship
for k′ in (x′, y′, s′).
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Where the angle φ takes on values from 0 to 2π.

So k′ in (x, y, s) has the following relationship.
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It can be driven
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Taking k′=k=1 and Eq. (2) into Eq. (5):
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. (6)

Taking kx=px/p, ky =py/p, ks=ps/p, k⊥=p⊥/p into
Eq. (6); then the post-collision momentum in a labora-
tory coordinate system for an elastic collision is given
by

p′=p′k′=pcosχ+hsinχ, (7)

where h=(hx, hy, hs) with

hx = (pxpscosφ−pypsinφ)/p⊥

hy = (pypscosφ−pxpsinφ)/p⊥ (8)

hs = −p⊥cosφ.

where φ is uniformly distributed in [0, 2π]. χ is an angle
defined in a laboratory coordinate system.

It should be clearly noted that although Eq. (7) is ob-
tained under a laboratory coordinate system, though the
collision is instantaneous, it also applies to the Frenet-
Serret coordinate system.

With the collision formulas, we will investigate the
beam lifetime and the particle distribution’s change
caused by the coulomb scattering with the residual gas
atoms.

3 Simulation method

3.1 The description of the simulation method [4]

The simulation is based on the macro-particle
method. The macro-particles transfer through the ring
and encounter coulomb scattering with residue gas atoms
simultaneously.

The initial 6-D coordinates of n macro-particles are
given randomly with specified variances. Each macro-

particle (i) has a particle number (Ni). ΣNi is the total
number of particles in a bunch.

We set one fixed interaction point (IP) in the ring,
and used one turn transfer map to transmit the particle.
We define p as the probability that an electron scattering
collides with the gas nucleus in one turn. So the probabil-
ity that each macro-particle undergoes a random process
is Nip.

For each macro-particle, a random number R∈∞[0,1]
is chosen each turn, if R<Nip, we separate one electron
from the i-th macro-particle as a new macro-particle.
The new macro-particle has the same coordinates to the
parental macro-particle.

During the collision, the (px, py, ps) of the new
macro-particle is changed, while the (x, y, s) is consid-
ered the same as before. The new macro-particle will not
undergo the BGCS again, it just propagates in the ring.

As a result of the specific aperture, this process will
lead to the loss of particles. Then the beam lifetime of
the beam will be estimated in the simulation by counting
the number of the particles extending beyond the specific
aperture.

3.2 The choice of cross section and scattering
angle

In a previous simulation, only the scattering that
would cause the particle loss is considered to obtain the
beam lifetime. Whether the particle would be lost de-
pends on the relationship of the scattering angle and the
critical angle. The critical angle is the minimum angle
which would cause particle loss. The electron loss cross
section is used to calculate the loss probability. Now that
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we are going to explore the effect of gas scattering on
particle distribution, we should take into account all the
scatterings. So we choose the appropriate cross section
and scattering angle, rather than the particle loss section
and critical scattering angle, to simulate the BGCS.

For the relativistic electrons collisions, the knowledge
of the screening of the coulomb potential of the nuclei by
the atomic electrons is important, since they are always
scattered into a very small angle. The differential cross
section that contains the shielding effect of the electron
cloud can be determined by [9, 10].

dσ

dΩ
=

4Z2

a2
h

γ2

[

(

4π

λe

sin
χ

2

)2

+
1

R2

]2 , (9)

where Ω is the solid angle, χ the scattering angle, Z the
atomic number, λe the wave-length of the electron, γ the
Lorentz factor and the radius of atom R=ah*Z−1/3. ah

is the Bohr’s radius of the atoms.
By integrating Eq. (9) over the whole Ω, we can ob-

tain the total cross section
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)4(
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. (10)

With ε=(λe/4πR)2 is the shielding parameter.
During the simulation, a random number generator

is used at each turn to decide whether the scattering oc-
curs. If yes, the scattering angle is defined according to
the following formula [8]:

χ=
π

2
−arcsin

[

1−
2R1

1−(R1−1)(4πR/λe)
2

]

. (11)

where R1 is uniformly distributed from 0 to 1.
The distribution of the scattering angle under differ-

ent energy levels is shown in Fig. 4 and Fig. 5. It can

Fig. 4. (color online) The collision probability of
the electron with different energy levels being
scattered into an angle χ.

be seen that the higher energy the electron is, the smaller
angle the electron will be scattered at. Conversely, the
scattering angle tends to be uniform from 0 to pi for
nonrelativistic electrons. This is consistent with theoret-
ical analysis, which also shows the formula is reasonable
and reliable. For the HALS, the energy of the electron
is 1.8 GeV, and the probability that the scattering angle
is smaller than 2.5808e-5 rad is 98%.

Fig. 5. (color online) The distribution of the scat-
tering angle under different energy levels

4 Simulation results

In the simulation, because a secondary collision of the
newly generated macro-particles hardly occurs, we as-
sume the new micro-particles will not undergo the BGCS
again. For this reason, the number of initial micro-
particles should not be less than the number of collided
electrons in one turn. For HALS, about 7810 (nep) elec-
tron collisions occur in a turn, we set 8e5 (about 100
times the collided particles) initial macro-particles. The
total number of particles is 1e10, so each initial macro-
particle contains 12500 electrons.

Table 1. Simulation parameters of HALS.

parameter description value

E beam energy 1.8 GeV

C circumference 486 m

ne particles in bunch 1010

H harmonic number 810

βIP twiss parameter beta 9.1307/3.4663

αIP twiss parameter alpha −1.83e-3/5.6151e-5

γIP twiss parameter gamma 0.1095/0.2885

εx Hor. emittance 62 pm·rad

εy Ver. emittance 0.62 pm·rad

d dynamics aperture 2.4/1.5 mm

P N2-equivalent gas pressure 1ntorr

The vacuum is expressed by N2-equivalent gas pres-
sure. In order to verify the program, it is supposed that
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there is only N2 in the ring. Each N2 molecule has two
atoms with atomic number 7. Table 1 shows the simula-
tion parameters of HALS.

Moreover, in order to eliminate the MC fluctuation,
we run the simulation five times, and take the statistical
average.

4.1 The lifetime of a beam

Once a particle’s amplitude exceeds an aperture,
which is the dynamics aperture in this paper, this parti-
cle will be lost.

In the simulation, lost particles are counted each
turn. Fig. 6 shows the number of lost particles grow-
ing with time.

Fig. 6. The number of lost particles with time.

The simulation lifetime of a beam can be calculated
by the following formula.

n=nee
−t/τ . (12)

Where n is the number of total particles after time
t, while ne is the number of initial particles. With
the date in Fig. 6, the simulation beam lifetime is
5.1078 h/14.5507 h in x/y. Note that the lifetime in
our simulation is the lifetime at IP.

Now, what we have to do is to verify whether this
simulation result is reasonable. The beam coulomb life-
time related to the vacuum can be obtained as below
[11].

1

τelastic,u[s]
=

2πr2
ec

Kγ2

βu

AuT [0K]

∑

atom,j

(

Z2
j

∑

gas,i

αijPi[Pa]

)

.

(13)
With u presenting x or y. Taking βu = βIP, Au =
d2

u/βIP, βIP,µ then the corresponding lifetime at IP is
5.0555 h/13.7024 h in x/y.

It can be seen the simulation lifetime (4.8482 h/
13.8492 h) is very close to the theoretical value
(5.0555 h/13.7024 h).

On the other hand, the critical scattering angle can

be computed by the below [1].

θcx,y=dx,y/βx,y. (14)

Define σloss as the beam loss cross section. σloss equals
the integration of Eq. (9) from θc to π.

Taking the geometric mean of θc in x and y, we
have θc=3.3726e-04rad, then σloss=3.4710e-27 m2. With
σloss/σ, the theoretical loss probability of collided parti-
cles is 1.3824e-04.

In the simulation, take 10000 turns as an example,
the number of electrons that collided with the gas nu-
cleus is 77799091, the number of lost electrons is 10449,
so the simulation value of the loss probability of the col-
lided particles is 13.431e-04, which is very close to the
theoretical value (1.3824e-04).

4.2 The distribution of particles

In Fig. 7, the red dots represent the initial distribu-
tion of particles, while the blue dots represent the parti-
cle distribution after 10000 turns. Visually, the particles
have a diffusion in both x and y due to the beam gas
coulomb scattering. One thing is for sure, the peripheral
particles in the bunch after 10000 turns are mostly new
macro-particles.

Figure 8 shows the horizontal and vertical statistical
distributions of the particles in a bunch. The red dots
represent the initial distribution, and the blue ones the
distribution after tracking. It can be seen that there is a
tail because of the beam gas scattering. The tail accounts
for a little proportion of the total particles. In the hor-
izontal direction, the proportion that ρ is less than −15
is 6.9994e-04. In the vertical direction, the proportion
that ρ is less than −12 is 0.0029. The result shows the
tail in y is larger than x. In our simulation, the bunch is
much more concentrated in y, and there is no coupling

Fig. 7. The transverse distribution of particles.
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Fig. 8. The statistical distribution in transverse direction, the horizontal axis x/y is the distance normalized by the
nominal horizontal/vertical beam size. The vertical axis represents the distributions in x/y using a logarithmic
scale. The two pictures in (c) show the details in small distance.

in x and y. So we can conclude that the effect of BGCS
on particle distribution depends on how much the bunch
is diverging. This also means that the smaller the emit-
tance is, the greater the effect.

5 Summary and outlook

In this paper, by deducing the collision formulas in
a laboratory coordinate system and choosing an appro-
priate cross section and scattering angle, we simulate the

effect of the BGCS in the ultra-low emittance electron
storage ring using the PIC-MCC method. The results
show that the BGCS not only relates to the beam life-
time but can also cause the transverse diffusion.

In future work, more random processes will be added
to the simulation, such as more kinds of residual gases,
inelastic scattering with residual gas, IBS, synchrotron
radiation, etc. On the other hand, we are going to re-
alize program parallelization to improve computational
efficiency.
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