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Particle-number fluctuation of pairing correlations for Dy isotopes *
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Abstract: Within the relativistic mean field (RMF) theory, the ground state properties of dysprosium isotopes

are studied using the shell-model-like approach (SLAP), in which pairing correlations are treated with particle-

number conservation, and the Pauli blocking effects are taken into account exactly. For comparison, calculations of

the Bardeen–Cooper–Schrieffer (BCS) model with the RMF are also performed. It is found that the RMF+SLAP

calculation results, as well as the RMF+BCS ones, reproduce the experimental binding energies and one- and two-

neutron separation energies quite well. However, the RMF+BCS calculations give larger pairing energies than those

obtained by the RMF+SLAP calculations, in particular for nuclei near the proton and neutron drip lines. This

deviation is discussed in terms of the BCS particle-number fluctuation, which leads to the sizable deviation of pairing

energies between the RMF+BCS and RMF+SLAP models, where the fluctuation of the particle number is eliminated

automatically.
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1 Introduction

Relativistic mean field (RMF) theory [1], as a micro-
scopic model in nuclear physics, has been widely used.
It has been proven that RMF theory can describe lots
of nuclear phenomena successfully [2–7], including stable
nuclei [2, 4] and exotic nuclei [5, 8]. It offers good descrip-
tions for many nuclear properties, for example, magnetic
moments [9], antimagnetic rotation [10], single-particle
resonant states [11], collective excitation states [12], su-
perdeformation in the superheavy nuclei [13], giant res-
onances and identical bands in rotating superdeformed
nuclei [14] and gives more naturally the spin-orbit po-
tential and the origin of the pseudospin symmetry [15,
16] as a relativistic symmetry [17–20].

In order to investigate nuclear properties of the open
shell nuclei, RMF theory should be added with the suit-
able treatment of the pairing correlations, which play
an essential role in the properties of nuclei. So far, the
most commonly used methods, the Bardeen–Cooper–
Schrieffer (BCS) approximation and Bogoliubov trans-
formation, have become standard in nuclear physics lit-
erature [4, 21]. Recently, a separable form of pairing
interaction has been introduced and successfully applied
in the description of both static and dynamic properties

of superfluid nuclei [22]. Moreover, the shell-model-like
approach (SLAP) [23] has shown several advantages over
the conventional methods—BCS approximation and Bo-
goliubov transformation. SLAP can overcome their dif-
ficulties, including the violation of particle number con-
servation, unreasonable treatment of the Pauli blocking
effects and spurious states [24]. Since the Pauli block-
ing effects are strictly taken into account by diagonaliz-
ing the pairing Hamiltonian in the multiparticle config-
uration (MPC) space directly, both even–even and odd-
A nuclei can be treated in the same framework in the
SLAP. SLAP has been applied successfully for investigat-
ing odd–even differences in moments of inertia (MOIs)
[25], nonadditivity in MOIs [26], identical bands [27],
nuclear pairing reduction under rotation [28], high-spin
states and high-K isomers in the rare-earth, the actinide
region and superheavy nuclei [29, 30], α-cluster struc-
tures of light nuclei [31] and nuclear antimagnetic rota-
tion [32].

As one of the quantum fluctuations, the particle-
number uncertainty in the BCS approximation or Bo-
goliubov transformation and its effect in nuclei are worth
evaluating and comparing with the benchmark of the
particle number conserving SLAP. In this work, SLAP
and BCS are applied to study the ground state proper-
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ties of Dy isotopes in the RMF theory. A brief formal-
ism is presented in Section 2. In Section 3, we give the
numerical details, results and discussion for Dy isotopes.
Finally, a brief conclusion is given in Section 4.

2 Theoretical framework

The starting point of the RMF theory is the effective
Lagrangian, written as:

L = ψ̄(iγµ∂µ−M)ψ+
1

2
∂µ
σ∂µσ−

1

2
m2

σσ
2

−
1

3
g2σ

3−
1

4
g3σ

4−gσψ̄σψ−
1

4
ΩµνΩµν

+
1

2
m2

ωω
µωµ−gωψ̄γ

µψωµ+
1

4
g4(ω

µωµ)2

−
1

4
Rµν ·Rµν+

1

2
m2

ρρ
µ·ρµ−gρψ̄γ

µτ ·ψρµ

−
1

4
F µνFµν−eψ̄γ

µ 1−τ3
2

Aµψ, (1)

where the field tensors of the vector mesons and the elec-
tromagnetic field take the forms:
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With this Lagrangian of the RMF theory, the effec-
tive nucleon–nucleon interaction can be described by the
exchange of three mesons [3–5]: the scalar meson δ medi-
ates the medium-range attraction between the nucleons;
the vector meson ωµ mediates the short-range repulsion;
and the isovector–vector meson ρµ provides the isospin
dependence of the nuclear force.

The Dirac equation, which describes the nucleon mo-
tion, reads:

{−iα·∇+V (r)+β[M+S(r)]}ψi=εiψi, (3)

where the vector and scale potentials are defined as

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2
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(4)

For describing the mesons, the Klein–Gordon equa-
tions can be written as:
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where the source terms and densities for the mesons and
the photons are:
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Usually, the meson field operators in Eq. (5) are
replaced by their corresponding expectation values. In
such a way, the coupled equations can be solved by self-
consistent iteration. In the system considered in this
work, there are no nuclear currents and the spatial com-
ponents of ω, ρ , and A disappear. As the time reversal
symmetry is well conserved, only the time-like parts ω0,
ρ0, and A0 are left. Charge conservation guarantees that
only the 3-component of the isovector ρ survives. For
axially deformed nuclei, it is useful to work with cylin-
drical coordinates: x=r⊥cosϕ , y=r⊥sinϕ and z. The
Dirac wave function ψi for the nucleon with the index i
is labeled by the quantum numbers Ωi, πi and ti , where
Ωi=m`i+msi is the eigenvalue of the angular momentum
operator Jz, πi is the parity, and ti is the isospin.

The Dirac spinor ψi has the form:
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For each solution with positive ψi, Ωi, there is a time-
reversed solution with the same energy ψī = −iσνKψi.
Therefore, the densities can be represented as:

ρs,v=2
∑

i>0

ni[(|fi
+ |

2
+|fi

− |
2
)∓(|gi

+ |
2
+|gi

− |
2
)]. (8)

We can obtain ρ3 and ρc in a similar way. These
densities serve as the sources for the fields σ, ω0, ρ0 and
A0. The occupation probabilities ni can be obtained in
SLAP with the the pairing correlation considered.

The total energy of the system is:

ERMF=Enucleon+Eσ+Eω+Eρ+Ec+ECM+Epair, (9)
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where Enucleon is the summation of the energies of nu-
cleon εi; Eσ, Eω, Eρ and Ec are the energies of the me-
son fields and the Coulomb fields, ECM is the correction
for the center-of-mass motion, and Epair is the pairing
energy.

The main idea of SLAP in dealing with the pairing
correlations is diagonalizing the pairing Hamiltonian in
the MPC space directly. Using the single-particle lev-
els calculated from the RMF theory, the SLAP can be
chosen to treat the nuclear pairing correlations.

The Hamiltonian is given by:

H=Hs.p.+Hpair=
∑

i

εia
†
iai−G

j 6=i
∑

i,j>0

a†ia
†

ī
aj̄aj . (11)

For an even (N = 2n) particle system, the MPCs are
constructed as follows:

(a) The fully paired configuration (seniority s=0):

|c1c̄1···cnc̄n〉=a
†
c1
a†c̄1 ···a

†
cn
a†c̄n

|0〉. (12)

(b) The configuration with two unpaired particles (se-
niority s=2):

|ij̄c1c̄1···cn−1c̄n−1=a
†
ia

†

j̄
a†c1a

†
c̄1
···a†cn−1

a†c̄n−1
|0〉, (13)

and so on.
The others can be constructed similarly [19, 20].
For the axially deformed nuclei, the MPC space can

be written as:

MPC space = (s=0,K=0+)⊕(s=2,K=0+)
⊕ (s=2,K=1+)⊕(s=2,K=2+)
⊕ (s=4,K=0+)⊕(s=4,K=1+)
⊕ (s=4,K=2+)⊕···⊕···. (14)

For the ground states and the low-lying excited states
of nuclei, the number of major MPCs is limited. Only
the configuration with lower energy multiparticles con-
tributes significantly. An energy cutoff Ec is introduced

to diagonalize the Hamiltonian H in Eq. (11). Ei is the
energy of the ith configuration. If Ei−E0 6Ec, the cor-
responding wave function will be written as:
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∑

c1···ρn

vβ
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+
∑

i,j

∑
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vβ(ij)
c1···cn−1

|ij̄c1c̄1···cn−1c̄n−1〉,

where β=0 (ground state), 1, 2, 3, ··· (excited states).
The occupation probability of the ith level for state β is:

nβ
i =

∑

c1···cn−1

|V β
c1···cn−1,i|

2+
∑

i,j

∑

c1···cn−2

|V β(i,j)
c1···cn−2,i|

2

+··· , i=1,2,3,···. (15)

Replacing the occupation number ni in Eq. (8) by nβ
i ,

the source terms in Eq. (5) are obtained, which generate
new meson fields and a new electromagnetic field. These
new fields then are adopted to calculate the vector and
scalar potentials in Eq. (4). Using these new potentials,
the Dirac equation [Eq. (3)] is solved again. These pro-
cedures should be repeated until the results converge to
the given precision. More details of RMF+SLAP can be
found in Ref. [23].

3 Results and discussion

In this work, we select the effective interaction PK1
[33] to solve the Dirac equations and the Klein–Gordon
equations. The Dirac equations of the nucleons and the
Klein–Gordon equations of the mesons and photons are
solved by expansion in the harmonic oscillator basis with
18 oscillator shells for both the fermions and the bosons.
The deformation of harmonic oscillator basis β0 should
be reasonably set to obtain the lowest energy. For Dy
isotopes, β0 is set to 0.2. The pairing strengths Gn (neu-
tron), Gp (proton) and truncation energy Ec are the
three most important parameters in SLAP. With the
truncated energy fixed, the pairing strengths are adopted
by reproducing the experimental odd–even mass differ-
ences. The odd–even mass differences are defined as:

∆n=
1

2
[B(N−1,Z)+B(N+1,Z)]−B(N,Z). (16)

In the following calculations for the Dy isotopes, the
truncation energy is reasonably fixed to 15 MeV, and
the pairing strengths Gn for neutrons and Gp for pro-
tons are set to 45/A MeV and 54/A MeV respectively
in the RMF+SLAP calculations. In the RMF+BCS cal-
culations the pairing strength Gn is set to 19.5/A MeV,
and Gp is set to 31/A MeV.

Figure 1 demonstrates the odd–even mass differ-
ences of Dy isotopes calculated by RMF+SLAP and
RMF+BCS with PK1 in comparison with experimental
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data [34] as a function of neutron number N . It is ob-
served that both the RMF+BCS and RMF+SLAP cal-
culations reliably reproduce the experimental odd–even
mass differences with the chosen pairing strengths and
the corresponding configuration cut-off energy.

One- and two-neutron separation energies are sensi-
tive quantities to test a microscopic theory. Fig. 2 de-
picts the binding energies per nucleon E/A and one- and

Fig. 1. (color online) Odd–even mass differences
of Dy isotopes calculated by RMF+SLAP (open
squares) and RMF+BCS (open triangles) in com-
parison with experimental data [30] (full circles).

Fig. 2. (color online) Binding energies per nu-
cleon E/A (top panel), one- (middle panel) and
two-neutron separation energies (bottom panel)
calculated by RMF+SLAP (open squares) and
RMF+BCS (open triangles) in comparison with
experimental data [34] (full circles).

two-neutron separation energies Sn and S2n, for Dy iso-
topes calculated by RMF+SLAP and RMF+BCS with
PK1 as a function of neutron number N in comparison
with the experimental data [34]. We can see that the
binding energies per nucleon and one- and two-neutron
separation energies can be well described in both calcu-
lations of RMF+SLAP and RMF+BCS.

In Fig. 3, we present the neutron, proton and
total pairing energies for Dy isotopes calculated by
RMF+SLAP and RMF+BCS with PK1 as a function
of neutron number N . It is shown that both the
RMF+BCS and RMF+SLAP calculation results for neu-
tron pairing energies are small when the neutron num-
ber N is around 82. However, with increasing neutron
number, the differences of neutron pairing energies be-
tween these two calculation results is obviously increased.
In the case of the proton, however, the calculation re-
sults of RMF+BCS and RMF+SLAP have large devia-
tions when the neutron number N is small (about 692).
The differences between these two calculations diminish
rapidly with the increasing of neutron number and pro-
vide almost the same pairing energies when the neutron
number N is over 95. For the total pairing energies, it
is observed that the RMF+BCS calculations always give
larger pairing energies than those of the RMF+SLAP
calculations, in particular for nuclei near the proton and
neutron drip lines. Moreover, it can be seen that the
odd–even staggering of the neutron pairing energies are

Fig. 3. (color online) Pairing energies of neutron
(top panel), proton (middle panel), and the to-
tal (bottom panel) for Dy isotopes calculated
by RMF+SLAP (open squares) and RMF+BCS
(open triangles).
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clearly revealed, due to the correct treatment of the
Pauli blocking effects in SLAP. With the same fitting
procedure for odd–even mass differences of the iso-
topes, although calculations of both RMF+BCS and
RMF+SLAP can give reliable descriptions of the bind-
ing energies per nucleon E/A and one- and two-neutron
separation energies Sn and S2n, the RMF+BCS calcu-
lations overestimate the effect of pairing correlations of
the ground states, in particular for nuclei near the proton
and neutron drip lines.

In order to understand the behaviors of the pairing
energies of the Dy isotopes in Fig. 3, we calculate the
particle-number uncertainties of neutron and proton for
Dy isotopes by RMF+BCS with PK1.

We define the particle-number uncertainty as
∆C(τ)

C(τ)
,

where C(τ) is the expectation value of the particle-
number, τ=ν for neutron, τ=π for proton.

∆C(τ) is

(∆C(τ))2 :=〈BCS| ˆC(τ)
2

|BCS〉−C(τ)
2
=4
∑

k>0

u2
kv

2
k,

(17)

where v2
k represents the occupation probabilities and

u2
k=1−v2

k [35].
Figure 4 illustrates the particle-number uncertain-

ties of neutron and proton for Dy isotopes calculated
by RMF+BCS with PK1 as a function of neutron num-
ber N . It can be seen that the particle-number uncer-
tainty of neutrons increases with the increasing of neu-
tron number, and that of protons has the opposite ten-
dency. In addition, the particle-number uncertainties for
both neutrons and protons are between 1.5%–6%. The
uncertainty of protons is always larger than that of neu-
trons. Compared with Fig. 3, it can be observed that the
particle-number uncertainty of neutrons has a large value
when sizable deviations of neutron pairing energies be-
tween the RMF+SLAP and RMF+BCS arise. Generally
speaking, the particle-number uncertainty reduces with
the increase of the particle number. Hence, in solid state
physics, where C≈1023, the violation of particle number
has no influence on any physical quantity. In nuclei, how-
ever, the violation of the invariance corresponding to the
particle number in many cases gives rise to serious errors.
One consequence has been presented in Fig. 3, where the
BCS model overestimates the contribution of the pairing
correlation. Moreover, the exotic phenomenon that the
particle-number uncertainty of neutrons rises with the in-
crease of neutron number can be understood by the fact
that nuclei are not suitable to be investigated using the
BCS model, due to their novel characteristics in compar-
ison with stable nuclei. In addition, it is shown that the
particle-number uncertainty of the neutron is zero when
the neutron number N is around the magic number 82,

whereas the BCS equation only gives an unphysical solu-
tion. This defect can be eliminated automatically in the
RMF+SLAP model. This advantage will even be obvi-
ous when dealing with the excited states, e.g. rotational
nuclei or hot nuclei.

Fig. 4. (color online) Particle-number uncertain-
ties of neutron (open circles) and proton (open
squares) for Dy isotopes calculated by RMF+
BCS.

4 Summary

RMF+SLAP calculations with the PK1 effective in-
teraction have been used to study the ground state prop-
erties of Dy isotopes with the pairing correlations treated
by a particle-number conserving method, which can treat
the Pauli blocking effects exactly. Both the RMF+BCS
and RMF+SLAP calculations reliably reproduce the ex-
perimental odd–even mass differences with the chosen
pairing strengths and the corresponding configuration
cut-off energy. The calculated ground state proper-
ties, including the binding energies and one- and two-
neutron separation energies from both the RMF+BCS
and RMF+SLAP models, agree well with the experi-
mental data. The odd–even staggering is well repro-
duced, as shown in the binding energies, per-nucleon
and one-neutron separation energies. Compared with the
SLAP calculations, the BCS calculations always overes-
timate the effect of pairing correlations of the ground
states, in particular for nuclei near the proton and neu-
tron drip lines. This deviation is discussed in terms of
the particle-number uncertainties in BCS method. The
larger particle-number uncertainties lead to the sizable
deviations of pairing energies between the RMF+SLAP
and RMF+BCS models. The fluctuation of the par-
ticle number can be eliminated automatically in the
RMF+SLAP model. In future, it should be interesting
to investigate the effect of the particle-number fluctua-
tion in nuclei excited states, e.g. rotational nuclei or hot
nuclei.
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