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Magnetized strange quark matter in a mass-density-dependent model *
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Abstract: We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark

confinement by the density dependence of quark masses considering the total baryon number conservation, charge

neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression

to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the

magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss

when the density is fixed at two times the normal nuclear saturation density.
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1 Introduction

Strange quark matter (SQM) is a new form of mat-
ter that contains a large number of deconfined quarks in
β-equilibrium, with electric and color charge neutrality.
After Witten conjectured that SQM could be the true
ground state of strong interactions [1–3], Farhi and Jaffe
[4] studied SQM in the framework of the MIT bag model
[5] with various values of the strange quark mass and the
bag constant. SQM could be found in the inner core of
a neutron star where strange quarks would be produced
through the weak processes with dynamic chemical equi-
librium among the constituents. It is possible that after
a supernova explosion its core directly forms a strange
quark star (SQS) [6, 7]. An astrophysical object could
also form a hybrid star that has a quark core and a crust
of hadronic matter.

The stability of SQM is strongly affected in a strong
magnetic field [8]. The typical strength on the surface
of pulsars could be of the order ∼ 1012 G. Magnetars
and neutron stars could be associated with sources with
intense magnetic fields around ∼ 1013–1015 G or even
higher [9, 10]. The origin of such ultrastrong magnetic
fields could be explained in two ways. One is the mag-
netohydrodynamic dynamo mechanism with large mag-
netic fields generated by rotating plasma of a protoneu-
tron star [10]. The other is that during the star collapse
with magnetic flux conservation, the relatively small
magnetic fields were amplified [11]. In recent research,
it was found that noncentral high-energy heavy-ion col-

lisions could generate intense magnetic fields as high as
about 1019 G, corresponding to eBm ∼ 6m2

π
, where e is

the fundamental electric charge and mπ is the pion mass.
Since the lattice approach still has difficulty in con-

sistent treatment of the finite chemical potential, and
the application of perturbative quantum chromodynam-
ics (QCD) to the strong-coupling domain is unbelievable,
one has to use phenomenological models in most cases.
In Ref. [8], Chakrabarty studied quark matter in a strong
magnetic field with the conventional MIT bag model, and
found that SQM becomes more stable if the order of the
strength of the magnetic field is greater than some crit-
ical value. In Refs. [12, 13], the authors confirmed that
there is an anisotropy of pressures due to the strong mag-
netic field [14–16] and that the MIT bag model can be
used to study magnetized SQM (mSQM) satisfactorily.
With the Nambu-Jona-Lasinio (NJL) model the proper-
ties of mSQM were also discussed by many researchers
[17–21]. The linear sigma model coupled to quarks and
to the Polyakov loop was also used to investigate the
influence of a strong magnetic field on confinement and
chiral properties of QCD [22].

It is well known that particle masses vary with envi-
ronment. Such masses are usually called effective masses
[23–26]. Effective masses and effective bag constants for
quark matter have been broadly studied [27, 28]. For
example, in a quasiparticle model, the particle mass is
derived at the zero-momentum limit of the dispersion
relations from an effective quark propagator by resum-
ing one-loop self-energy diagrams in the hard-dense-loop
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approximation. This reveals the dependence of particle
masses on chemical potentials. In recent research [29],
the authors extended the quasiparticle model to study-
ing mSQM. They found a density- and magnetic-field-
dependent bag function, which has a maximum at 2–3
times the saturation density when the QCD scale param-
eter is larger than 123 MeV.

In the present paper, we apply another quark model
with confinement by the density dependence of quark
masses (QMDD). In this model the masses of quarks
depend upon the baryon number density. This idea
was initially introduced by Fowler, Raha, and Weiner
to study light quark matter [30]. Later Chakrabarty
and co-workers applied the model to the case of SQM
[31–33]. The main advantage of QMDD is the inclu-
sion of quark confinement without using the bag con-
stant. Instead, it is achieved by the density dependence
of the quark masses derived from in-medium chiral con-
densates [34–36]. The two most important aspects in
this model are the quark mass scaling and the thermo-
dynamic treatment. Originally, the interaction part of
the quark masses was assumed to be inversely propor-
tional to the density [30, 31]. Researchers also suggested
other mass scalings [37, 38]. In Ref. [34] and [36], a
cubic root scaling was derived based on the in-medium
chiral condensates and linear confinement at zero and
finite temperature respectively. This scaling has been
used to investigate many aspects of SQM [39–42]. In the
present article, we use the QMDD model with cubic root
mass scaling to study the properties of SQM in a strong
magnetic field.

The paper is organized as follows. In Section 2, we de-
rive the thermodynamic formulas when quark masses are
density dependent. In Section 3, we analyze the prop-
erties of mSQM and present our numerical results. In
Section 4, the mass-radius relation of magnetized quark
stars is investigated. A short summary is presented in
Section 5.

2 Thermodynamic treatment

In the QMDD model, quark confinement is achieved
by the density dependence of quark masses: with de-
creasing density, the mass of a quark becomes infinitely
large so that the vacuum is unable to support it. There-
fore, the proper form of the density dependence is very
important. Originally, the quark masses are parameter-
ized as

mq=mq0+
B

3n
, (1)

where q=u, d, s quarks, mq0 is the current mass of quark
flavor q, B is the famous MIT bag constant, n is the
baryon number density.

Based on the in-medium chiral condensates, a cubic
root scaling was derived at zero temperature [34], and

extended to finite temperature [36]. We adopt this mass
scaling in the present article. At zero temperature, the
mass scaling is

mq=mq0+
D

n
1

3

, (2)

where mq0 is the quark current mass, D is the confine-
ment parameter, n is the total baryon number density,
the exponent of density was derived based on the in-
medium chiral condensates and linear confinement at
zero temperature [34]. In the present model, the pa-
rameters are quark current masses mu0, md0, ms0, and
the confinement parameter D. The electron does not
participate in the strong interaction; its mass is a con-
stant, i.e. me=0.511 MeV. Since the light-quark current
masses are too small compared to the interaction part,
we take mu0=md0=0. The strange quark current mass is
95±25 MeV [43]. The parameter D has been discussed in
Refs. [35, 36, 44]. We treat D as a free parameter here.
The value of D1/2 should be in the range (156, 270) MeV
[36, 44].

The starting point of our manipulation for SQM in a
strong magnetic field is the energy density. Let us start
with the energy density expression of a free particle sys-
tem

E=
∑

i

2gi

(2π)3

∫∫∫
√

p2+m2
i d

3~p, (3)

where the summation goes over all particles involved, gi

is the degeneracy factor with gi=3 (color) for quarks and
gi=1 for electrons. The degeneracy due to spin has been
denoted by factor 2 in the numerator.

We assume the magnetic field to be directed along
the z axis with constant field strength Bm. The single
particle energy spectrum is given by [45]

ε=
√

p2
z+m2

i +eiBm(2l±2s+1), (4)

where l=0, 1, 2,···, are the principal quantum numbers
for Laudau levels, ei is the absolute value of the electronic
charge, ei =|qi | (i.e. eu =2/3, ed =es =1/3, and ee =1),
s = ±1/2 refers to spin-up or spin-down states, and pz

is the component of particle momentum along the direc-
tion of the external magnetic field. The notation ‘±’ is a
plus or minus sign if the corresponding particles are neg-
atively or positively charged. The anomalous moments
of quarks and electrons are either small or not well un-
derstood and thus not considered here.

Setting ν=l−sign(qi)s+1/2, the single particle energy
spectrum becomes

ε=
√

p2
z+m2

i +2νeiBm≡
√

p2
z+M 2

i,ν, (5)

where we have used the definition

Mi,ν≡
√

m2
i +2νeiBm. (6)
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We now should replace the integration over px-py

plane in the momentum space by the rule [8]

2

∫∫
dpxdpy→2πeiBm

∑

ν

(2−δ0ν). (7)

Accordingly, the energy density for the ith (i=u, d, s and
e) species is given by

Ei =
gieiBm

4π2

∑

ν=0

(2−δν0)

×

∫
√

p2
z+m2

i +2νeiBmdpz. (8)

Explicitly carrying out the integration gives

Ei =
gieiBm

4π2

νmax
∑

ν=0

(2−δν0)

[

εi

√

ε2
i −M 2

i,ν

+M 2
i,νln

(

εi+
√

ε2
i −M 2

i,ν

Mi,ν

)]

, (9)

where εi is the Fermi energy for particle type i, pi,ν =
√

ε2
i,ν−M 2

i,ν is the maximum value of pz for the energy
level ν. From the positive value requirement on the Fermi
energy we can determine the upper bound νmax of the
summation index ν

ν6νmax≡int

[

ε2
i −m2

i

2eiBm

]

, (10)

where int[ ] means taking the integer part.
In the presence of a magnetic field, according to the

rule in Eq. (7), the expression of the number density can
apparently be given as

ni =
gieiBm

2π2

νmax
∑

ν=0

(2−δν0)

∫pi,ν

0

dpz

=
gieiBm

2π2

νmax
∑

ν=0

(2−δν0)
√

ε2
i −M 2

i,ν. (11)

The chemical potentials are connected to the energy
density by

dE=
∑

i

µidni, (12)

where

dE=
∑

i

dEi=
∑

i

(

∂Ei

∂εi

dεi+
∂Ei

∂mi

dmi

)

, (13)

dni=
∂ni

∂εi

dεi+
∂ni

∂mi

dmi, (14)

dmi=
∑

j

∂mi

∂nj

dnj. (15)

Using these relations, we finally have

µi=εi+µI, (16)

with

µI = −
1

3

dmI

dn

∑

j

gjejmjBm

2π2

νmax
∑

ν=0

(2−δν0)

×ln

(

εj+
√

ε2
j−M 2

j,ν

Mj,ν

)

. (17)

Because all particle masses do not depend on the density

of electrons, i.e.
∂mj

∂ne

=0, the summation is just over u,

d, s and the term µI as a whole is independent of quark
flavors.

In order to obtain the equation of states and check the
thermodynamic consistency, we use the thermodynamic
relation between pressure and the chemical potentials µi:

P =−E+
∑

i

µini, (18)

which is valid for an arbitrary infinitely large system.
Substituting Eqs (9), (11), (16), (17) into equa-

tion (18) gives
P =−Ω0+δP, (19)

where Ω0 is the free particle contribution, i.e.

Ω0 = −
∑

i

gieiBm

4π2

νmax
∑

ν=0

(2−δν0)

×

{

εi(ε
2
i −M 2

i,ν)
1/2

−M 2
i,νln

[

εi+
√

ε2
j−M 2

j,ν

Mi,ν

]

}

, (20)

and δP appears due to the density dependence of quark
masses

δP = −
D

3n1/3

∑

j

gjejmjBm

2π2

νmax
∑

ν=0

(2−δν0)

×ln

(

εj+
√

ε2
j−M 2

j,ν

Mj,ν

)

. (21)

3 Properties of mSQM

As usually done, we consider mSQM as a mixture
of u, d, s quarks and electrons. The weak equilibrium
condition gives

µu+µe=µd, (22)

µd=µs. (23)

Considering Eq. (16), we have

εu+εe=εd, (24)

and
εd=εs. (25)

The charge neutrality condition gives

2

3
nu−

1

3
nd−

1

3
ns−ne=0, (26)
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and the baryon number density is given by

n=
1

3
(nu+nd+ns). (27)

Equations (24)–(27), together with Eq. (11), form
the full set of self-consistent equations for finding the
Fermi energy for quarks and electrons. We solve these
equations numerically at a given density n and for differ-
ent values of Bm, and then evaluate the thermodynamical
quantities of the mSQM system.

In Fig. 1, the energy per baryon of mSQM is shown
as functions of the baryon number density for different
parameter sets. For each parameter set the pressure is
zero at the minimum of the energy per baryon. In fact
from Eqs. (18), (12), (22) and (23) one can obtain

P =n2 d(E/n)

dn
. (28)

Fig. 1. Energy per baryon of mSQM in the present
model. The energy minimum is located exactly at
the same point of the zero pressure.

This relation must be satisfied for a fully thermody-
namically consistent treatment. In the present paper, we
assume the magnetic field to be directed along the z axis
and is a constant. If one allows the magnetic field to
vary with the density, one should add another new term
to the chemical potential. The details of the magnetic
field variation with the baryon number density is beyond
this paper.

In Fig. 2, we plot the quark fractions, i.e. nu/(3n),
nd/(3n), ns/(3n), and the 103 times the electron frac-
tion, 1000ne/(3n), versus the baryon number density for
D1/2 =160 MeV and ms0 =80 MeV. The magnetic field
strength is Bm = 1018 G. The fraction of up quarks is
always about one third. The fraction of down quarks
decreases with increasing density while the fraction of
strange quarks increases with increasing density. Both

fractions approach one third when the density is large
enough. The figure indicates that the fraction of elec-
trons is very small and it decreases with increasing den-
sity. The ladder-like shape is introduced by the quan-
tized Laudau levels. We can expect that when the den-
sity increases to a large enough value, the current mass
of strange quarks can be ignored and all three kinds of
quarks can be treated with equal footing. This is easy
to understand. For fermions at zero temperature, the
states below Fermi energy are all occupied. Adding par-
ticles into the system just enlarges the Fermi energy. At
the same time the effective mass decreases with density.
When the Fermi momentum is sufficiently large, the

Fig. 2. Quark fraction versus baryon number den-
sity for D1/2 = 160 MeV, ms0 = 80 MeV and
Bm=1018 G.

Fig. 3. The terms introduced by the density depen-
dence of quark masses for pressure and chemical
potential versus baryon number density. D1/2 =
160 MeV, ms0=80 MeV and Bm=1018 G.
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masses of most particles are ignorable compared to their
momenta and we can treat them as if their effective
masses are zero.

To explicitly demonstrate the properties of µI and
δP , we plot them in Fig. 3. The µI term tends to reduce
the total value, but the effects become gradually weaker
when the baryon number density increases. For δP , it
is a negative number and the curve shows an increasing
tendency of the absolute value with baryon number den-
sity. However, its relative importance to the free particle
contribution becomes smaller with increasing density.

Fig. 4. Energy density of mSQM as a function of
the magnetic field strength. The parameter pair
(ms0,D

1/2) in MeV is (80,160). The solid line
is for n = 3n0 and the dash line is for n = 2n0

(n0=0.16 fm−3).

Fig. 5. Energy density plus that of the mag-
netic field as a function of the magnetic field
strength. The parameter pair (ms0,D

1/2) in MeV
is (80,160). The solid line is for n=3n0 and the
dash line is for n=2n0 (n0=0.16 fm−3).

In Fig. 4, we show how the energy density of mSQM
varies with the magnetic field strength at given densi-
ties n = 2n0 (dotted curve) and n = 3n0 (solid curve).
For small Bm, it is very obvious that the energy density
of mSQM is nearly constant. When the magnetic field
strength exceeds a critical value, which is about 3×1018 G
for n=2n0, the energy density begins to decrease, until a
minimum is reached. The minimum depends on the den-
sity. It is 6×1019 G for n=2n0. If one includes the pure
magnetic field term B2

m/2, as shown in Fig. 5, the min-
imum disappears and the total energy density increases
monotonously. This is because the magnetic field itself
becomes dominant at extreme strong strength.

Fig. 6. Chemical potentials as a function of the
magnetic field strength at zero temperature for
n=2n0.

Fig. 7. Chemical potentials as a function of the
magnetic field strength at zero temperature for
n=3n0.
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Figure 6 and Fig. 7 show the chemical potentials
as functions of the magnetic field for n = 2n0 and
n = 3n0 respectively. The chemical potentials keep ap-
proximately constant with the increasing magnetic field
for Bm 6 1018 G. The apparent Laudau oscillation of
chemical potentials appears between 3×1018–2×1019 G.
At Bm > 3×1019 G quark chemical potentials decrease
with magnetic field. We notice that in both figures the
chemical potential of the electron dramatically climbs
from an initial relatively small value to its summit (about
80 MeV) in the interval 2×1019 G6 Bm 6 3×1019 G,
then decreases to a relatively high and even stage (about
60 MeV). We have not encountered negative chemical
potential for an electron.

In Fig. 8 we show the pressure as a function of the
strength of the magnetic field for n = 3n0 (solid line)
and n=2n0 (dash line). At the beginning the pressure
stays nearly constant and starts to decrease apparently
at 2×1018 G.

Fig. 8. Pressure in mSQM at zero temperature
as a function of the magnetic field strength for
ms0=80 MeV and D1/2=160 MeV.

4 Mass-radius relation of magnetized

SQSs

It has been speculated that the currently named neu-
tron stars might in fact be SQSs [46], a family of com-
pact stars consisting completely of deconfined u, d, s
quarks. The structure of SQSs has attracted plenty of
researchers. We now investigate the mass-radius relation
of SQSs in ordinary phase in the framework of the new
EOS we obtained in the preceding section. In principle,
the pressure in mSQM is anisotropic [47, 48]. However,
one presently does not exactly know at how high a den-
sity the difference between the longitudinal pressure pl

and the transverse pressure pt becomes significant. We
therefore work in the density region where pl≈pt.

We numerically solve Toman-0ppenheimer-Volkoff
(TOV) equations when fixing a central pressure Pc, and
obtain a mass-radius relation by continuously varying
the central pressure. For a concrete description of the
solving process, one may refer to Ref. [35]. In fact, we
alter the parameter D and magnetic field strength Bm to
see how the magnetic field affects the structure of SQSs.
The results have been shown in Fig. 9. The full dots
represent the maximum mass on each line.

Fig. 9. The mass-radius relation of SQSs at dif-
ferent magnetic fields Bm with D1/2 = 160 MeV
(solid lines) and D1/2 = 170 MeV (dash lines).
The maximum masses on each curve are marked
by full dots.

We can see that the larger Bm or D could produce a
smaller maximum mass. According to Fig. 5 and Fig. 8,
enhancing the magnetic field strength will increase en-
ergy density and decrease pressure which means a softer
EOS. Therefore the present EOS is unable to produce
the maximum star mass as large as two times the so-
lar mass (2M�) [49, 50]. This is due to the fact that
the quark mass scaling used in the present calculations
includes only the confinement interaction effects whose
contribution to the pressure is negative, while the per-
turbative interactions become important at high density.
Therefore, it is meaningful to deduce a quark mass scal-
ing considering both the confinement and perturbative
effects [51], which is a forthcoming task in the near fu-
ture.

5 Summary

We have extended the QMDD model with a cubic
root mass scaling to study the properties of SQM in the
presence of a strong magnetic field. Our thermodynamic
treatment automatically guarantees the self-consistency.
It is found that at high density, quarks of different kinds
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can be treated equivalently for dynamic properties and
an individual particle acts like a free particle while the
overall effect introduced by the density dependence of
quark masses always exist. The magnetic field will re-
duce the energy density of pure magnetized SQM at a
certain range of the field strength. At Bm 61018 G, the
magnetic field affects the properties of the system only
slightly. At 1018 G 6 Bm 6 1019 G, Laudau oscillation
appears in chemical potentials and the pressure dramat-

ically decreases. At Bm≈4×1018 G the energy density of
the pure magnetic field becomes comparable with, and fi-
nally much larger than that of the pure magnetized SQM.
With the obtained EOS, we study the mass-radius rela-
tion of quark stars, and find that one cannot produce a
pure quark star with a mass as large as 2M� considering
only the confinement interaction in the cubic–root quark
mass scaling. A quark mass scaling with both confine-
ment and perturbative interactions is needed.
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