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Geometry of the effective Majorana neutrino mass in the 0νββ decay *
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Abstract: The neutrinoless double-beta (0νββ) decay is a unique process used to identify the Majorana nature of

massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass 〈m〉ee. We put forward

a novel ‘coupling-rod’ diagram to describe 〈m〉ee in the complex plane, by which the effects of the neutrino mass

ordering and CP -violating phases on 〈m〉ee are intuitively understood. We show that this geometric language allows

us to easily obtain the maximum and minimum of |〈m〉ee|. It remains usable even if there is a kind of new physics

contributing to 〈m〉ee, and it can also be extended to describe the effective Majorana masses 〈m〉eµ, 〈m〉eτ, 〈m〉µµ,

〈m〉µτ and 〈m〉ττ which may appear in some other lepton-number violating processes.
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1 Introduction

Whether massive neutrinos are Majorana particles re-
mains an open question in particle physics. By definition,
a Majorana neutrino is its own antiparticle [1], and this
consequently leads to lepton number violation. Because
the masses of three known neutrinos are extremely small,
the only feasible way to identify their Majorana nature
is to detect the neutrinoless double-beta (0νββ) decay
of some even-even nuclei [2]: N(A, Z)→N(A,Z+2)+2e−,
in which the lepton number is violated by two units.
On the basis where flavor and mass eigenstates of the
charged leptons coincide with each other, the 0νββ de-
cay rate is controlled by the (e,e) element of the effective

Majorana neutrino mass matrix [3]

Mν =







〈m〉ee 〈m〉eµ 〈m〉eτ

〈m〉µe 〈m〉µµ 〈m〉µτ

〈m〉τe 〈m〉τµ 〈m〉ττ






,

〈m〉αβ ≡
∑

i

(

miUαiUβi

)

, (1)

where the Greek subscripts run over e, µ and τ, mi de-
notes the i-th neutrino mass, and Uαi stands for the cor-
responding element of the lepton flavor mixing matrix U

[4]. Of course, 〈m〉αβ = 〈m〉βα holds for symmetric Mν.
In the standard three-flavor scheme, U is a unitary ma-
trix and can therefore be parametrized in terms of three
flavor mixing angles and three CP -violating phases:

U =







c12c13 s12c13 s13e
−iδ

−s12c23−c12s13s23e
iδ c12c23−s12s13s23e

iδ c13s23

s12s23−c12s13c23e
iδ −c12s23−s12s13c23e

iδ c13c23






Pν, (2)

where cij ≡ cosθij , sij ≡ sinθij (for ij=12, 13, 23), and

Pν = Diag
{

eiρ/2,1,ei(δ+σ/2)
}

. As a result, the effective
mass term of the 0νββ decay reads

〈m〉ee = m1|Ue1|
2eiρ+m2|Ue2|

2+m3|Ue3|
2eiσ

= m1c
2
12c

2
13e

iρ+m2s
2
12c

2
13+m3s

2
13e

iσ. (3)

So far the values of θ12, θ13 and θ23 have been determined
to a good degree of accuracy from current neutrino os-
cillation data, but the three phase parameters remain
unknown [5]. While the value of ∆m2

21 ≡ m2
2−m2

1 and
the absolute value of ∆m2

31≡m2
3−m2

1 are also measured,
the sign of ∆m2

31 and the absolute neutrino mass scale
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remain unknown. Hence the size of 〈m〉ee suffers from
three kinds of uncertainty even without any new physics
pollution:

(1) The unknown absolute neutrino mass scale (i.e.
the value of m1, m2 or m3);

(2) The unknown neutrino mass ordering (i.e. either
∆m2

31>0 or ∆m2
31<0);

(3) The unknown Majorana CP -violating phases ρ

and σ appearing in |〈m〉ee|.
Up to now, a lot of phenomenological efforts have

been made to probe the parameter space of 〈m〉ee and
discuss its sensitivity to possible new physics [6].

In the present work we are going to put forward a
novel ‘coupling-rod’ diagram to describe the salient fea-
tures of 〈m〉ee in the complex plane, by which the effects
of the neutrino mass ordering and CP -violating phases
on 〈m〉ee can be intuitively understood. Some special
but interesting cases, including the behavior of 〈m〉ee
with m1 = 0 or m3 = 0 and the maximum or minimum
of |〈m〉ee| in two different neutrino mass spectra, are eas-
ily explained in this geometric language. We point out
that the coupling-rod diagram remains applicable even if
a kind of new physics, such as an extra light but sterile
neutrino, contributes to 〈m〉ee. It can also be extended
to provide a vivid description of the effective Majorana
neutrino masses 〈m〉eµ, 〈m〉eτ, 〈m〉µµ, 〈m〉µτ and 〈m〉ττ,
which may show up in neutrino-antineutrino oscillations
and some other lepton-number violating processes.

2 The coupling-rod diagram of 〈m〉
ee

Given ∆m2
21 > 0 as established from the solar neu-

trino oscillation data, the unfixed sign of ∆m2
31 implies

that the neutrino mass ordering can be either normal
(i.e. m1 <m2 <m3) or inverted (i.e. m3 <m1 <m2). In
particular, the possibility of m1 =0 or m3 =0 is still al-
lowed by current experimental data. Because of m2>0,
together with

m1=
√

m2
2−∆m2

21,

m3=
√

m2
2−∆m2

21+∆m2
31,

(4)

we find that it is most convenient to take the nonzero
m2U

2
e2 term as the base vector to geometrically describe

〈m〉ee in the complex plane1). Taking account of the
phase convention of Pν in Eq. (3), which allows Ue2 to
be real and positive, we have

−→
OA ≡ m2U

2
e2=m2|Ue2|

2,
−−→
AB ≡ m1U

2
e1=m1|Ue1|

2eiρ, (5)
−−→
CO ≡ m3U

2
e3=m3|Ue3|

2eiσ,

as illustrated in Fig. 1. So the vector
−−→
CB=

−→
OA+

−−→
AB+

−−→
CO,

which connects the two circles formed by the rotations

of
−−→
AB and

−−→
OC about their respective origins A and O,

looks like the ‘coupling rod’ of a locomotive and stands

for 〈m〉ee. Depending on the length of
−→
OA and the radii

of
⊙

O and
⊙

A, there are five possibilities for the rela-
tive positions of these two circles:

Fig. 1. The coupling-rod diagram of 〈m〉ee ≡
−−→
CB

in the complex plane, where
−→
OA ≡ m2|Ue2|

2,
−→
AB ≡m1|Ue1|

2eiρ and
−−→
CO ≡ m3|Ue3|

2eiσ. If the
neutrino mass ordering is normal, the three con-
figurations of 〈m〉ee are all possible; but if the neu-
trino mass ordering is inverted, then only Fig. 1(c)
is allowed.

(1) AB+OC < OA as shown in Fig. 1(a), or equiv-
alently m1cos2θ12 +m3tan2θ13 < m2sin

2θ12. Namely,

1) Some authors have chosen the m1U2
e1 term as the base vector to illustrate the geometry of 〈m〉ee [7]. Such a choice has a remarkable

disadvantage, because the m1→0 limit will make this geometric language invalid.
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⊙

O and
⊙

A are external to each other, and thus
|〈m〉ee| = BC > 0 holds. The allowed range of |〈m〉ee|
turns out to be OA−AB−OC6 |〈m〉ee|6OA+AB+OC.

(2) AB +OC = OA, or equivalently m1cos2θ12 +
m3tan2θ13 = m2sin

2θ12. Namely,
⊙

O and
⊙

A touch
externally on the horizontal axis. At the touching point
ρ=σ=π and |〈m〉ee|=BC =0 hold. In this special case
the quadrilateral collapses into lines, and thus m2 can be
uniquely determined in terms of ∆m2

21, ∆m2
31, θ12 and

θ13. We find m2 ≈ 8.4 MeV to 9.9 MeV by using the
3σ ranges of the four input parameters [8]. It will be
explained later on that only the normal neutrino mass
ordering is suitable for this case.

(3) |AB−OC|<OA<AB+OC as shown in Fig. 1(b),
where

⊙

O and
⊙

A intersect. The two points of inter-
section imply |〈m〉ee|=BC=0; namely, the quadrilateral
collapses into a triangle. In this case, however, the two
Majorana phases should take some nontrivial values [9].

(4) AB −OC = OA, or equivalently m1cos2θ12 −
m3tan2θ13 = m2sin

2θ12. Namely,
⊙

O and
⊙

A touch
internally on the horizontal axis. At the touching point
ρ=π and σ =0 hold, so does |〈m〉ee|=BC =0. In this
special case we find m2 ≈ 9.5 MeV to 13.7 MeV by in-
putting the 3σ ranges of the four parameters [8]. Only
the normal neutrino mass ordering is suitable for this
case.

(5) AB−OC > OA as shown in Fig. 1(c), where
⊙

O and
⊙

A do not touch and the former is con-
tained in the latter. In this case |〈m〉ee| = BC > 0
holds. The allowed arrangement of |〈m〉ee| turns out to
be AB−OA−OC6|〈m〉ee|6AB+OA+OC.

Note that the above discussions are not apparently
subject to the neutrino mass ordering, but the situation
will be remarkably simpler if the neutrino mass order-
ing is inverted. To see this point clearly, let us take
into account |∆m2

31| ∼ 30∆m2
21 and |Ue1|

2 ∼ 2|Ue2|
2 ∼

30|Ue3|
2 as indicated by current experimental data [8].

So ∆m2
31 <0 leads us to m3 <m1 .m2, and the relative

length of OC becomes maximal when the three neutrino
masses are nearly degenerate (i.e. m3 . m1 . m2). In
the latter case we are simply left with AB:OA:OC ∼
|Ue1|

2:|Ue2|
2:|Ue3|

2∼30:15:1, and thus it is impossible to
satisfy either AB+OC6OA or |AB−OC|6OA. In other
words, only AB−OC>OA can be satisfied in the inverted
neutrino mass ordering, and this observation stays valid
no matter whether m3 is vanishing or close to the value
of m1, or in between. We arrive at two conclusions about
〈m〉ee in Fig. 1: (1) when m1<m2<m3 holds, the possi-
bilities illustrated in Fig. 1(a), (b) and (c) are all allowed,
and they correspond to the values of m1 which are small
(m1 � m2 � m3), medium and large (m1 . m2 . m3),
respectively; (2) when m3<m1<m2 holds, only the pos-
sibility shown in Fig. 1(c) is allowed, excluding |〈m〉ee|=0
in this case.

The geometric language has helped us to understand
some salient features of 〈m〉ee. We proceed to discuss the
maximum and minimum of |〈m〉ee| in an analytical way.
Eq. (3) can be rewritten as

〈m〉ee = m2|Ue2|
2

[

1+
m1

m2

|Ue1|
2

|Ue2|2
eiρ+

m3

m2

|Ue3|
2

|Ue2|2
eiσ

]

= m2sin
2θ12cos2θ13

[

1+

√

1−
∆m2

21

m2
2

cot2θ12e
iρ

+

√

1−
∆m2

21

m2
2

+
∆m2

31

m2
2

tan2θ13

sin2θ12

eiσ

]

, (6)

where m2>
√

∆m2
21 must hold for the normal mass order-

ing, or m2 >
√

∆m2
21−∆m2

31 must hold for the inverted
mass ordering. With the help of the intuitive coupling-
rod diagram of 〈m〉ee in Fig. 1, we can obtain the maxi-
mum or minimum of |〈m〉ee| in two different cases:

(1) m1 < m2 < m3. In this case the maximum of
|〈m〉ee|=BC can be achieved in Fig. 1(a) when both B

and C are located on the horizontal axis and their dis-
tance is maximal (i.e. ρ=σ =0). Namely, |〈m〉ee|max

=
OA+AB+OC, or equivalently

|〈m〉ee|max
= m2sin

2θ12cos2θ13

[

1+

√

1−
∆m2

21

m2
2

cot2θ12

+

√

1−
∆m2

21

m2
2

+
∆m2

31

m2
2

tan2θ13

sin2θ12

]

. (7)

The minimum of |〈m〉ee| is a bit subtle as it must arise
from the maximal cancellation among its three complex
components [10]. Given ∆m2

31 >0, |〈m〉ee|min
=0 comes

out if
⊙

O and
⊙

A in Fig. 1 touch or intersect. When
⊙

O and
⊙

A are external to each other as shown in

Fig. 1(a), |〈m〉ee|
(a)

min
=OA−AB−OC, or equivalently

|〈m〉ee|
(a)

min
= m2sin

2θ12cos2θ13

[

1−

√

1−
∆m2

21

m2
2

cot2θ12

−

√

1−
∆m2

21

m2
2

+
∆m2

31

m2
2

tan2θ13

sin2θ12

]

. (8)

But when
⊙

O is contained in
⊙

A as shown in Fig. 1(c),

|〈m〉ee|
(c)

min
=AB−OA−OC; namely,

|〈m〉ee|
(c)

min
= m2sin

2θ12cos2θ13

[
√

1−
∆m2

21

m2
2

cot2θ12−1

−

√

1−
∆m2

21

m2
2

+
∆m2

31

m2
2

tan2θ13

sin2θ12

]

. (9)
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(2) m3 <m1 <m2. In this case 〈m〉ee is uniquely de-
scribed by Fig. 1(c), and its maximum or minimum can
be obtained when both B and C are located on the hor-
izontal axis and their distance is maximal (i.e. ρ=σ=0)
or minimal (i.e. ρ = π and σ = 0). The expressions of
|〈m〉ee|max

and |〈m〉ee|min
are the same as Eqs. (7) and

(9), but the sign of ∆m2
31 is now negative.

We plot the dependence of |〈m〉ee| on m2 in Fig. 2 by
inputting the 3σ ranges of ∆m2

21, ∆m2
31, θ12 and θ13 [8]

and allowing the relevant CP -violating phases to vary
between 0 and 2π. The numerical results are consistent
with the above analytical observation. In particular, the
upper or lower bound of |〈m〉ee| in the inverted neutrino
mass ordering follows almost the same behavior as that
in the normal case, because both of them are governed by
Eq. (7) or Eq. (9) with ∆m2

31 taking the opposite signs.
Thanks to m2>

√

∆m2
21 in the normal case, the allowed

region of |〈m〉ee| looks like a hockey stick. But it has to be
cut shorter by |〈m〉ee|<0.19–0.45 eV (or 0.2–0.4 eV) set
by the EXO-200 [11] (or GERDA [12]) experiment at the
90% confidence level, and by m2<0.08 eV that is derived
from the cosmological constraint m1+m2+m3<0.23 eV
set by the Planck data [13] at the 95% confidence level.

Fig. 2. The dependence of 〈m〉ee on m2 in the
normal ordering or inverted ordering of three
neutrino masses, where the 3σ ranges of ∆m

2
21,

∆m
2
31, θ12 and θ13 [8] have been input, and the

relevant CP -violating phases are allowed to vary
between 0 and 2π.

On the other hand, Fig. 2 tells us that |〈m〉ee| tends
to approach a very small value and even vanishes when
m2 is not far away from its lower bound

√

∆m2
21 ≈

8.7×10−3 eV (i.e. when the base vector
−→
OA in Fig. 1

is roughly as short as possible). This observation is cer-
tainly true, as geometrically shown in Fig. 1, where a
sufficiently short OA means that

⊙

O and
⊙

A are more
likely to touch or intersect, allowing |〈m〉ee|→0 to natu-
rally take place.

In case the experimental sensitivity has been good
enough but a signal of the 0νββ decay remains absent,
there might be three possibilities: (1) massive neutri-
nos are the Dirac particles; (2) |〈m〉ee| itself is too small;
(3) new physics corrects 〈m〉ee in a destructive way to
make its size too small. Although |〈m〉ee| → 0 implies
that it will be impossible to identify the Majorana na-
ture of massive neutrinos via the 0νββ decay, this special
case is interesting in the sense that it allows us to deter-
mine the two Majorana CP -violating phases [9]. As one
can see in Fig. 1(b), the quadrilateral becomes a triangle
(i.e. 4OP1A or 4OP2A) in the |〈m〉ee|=BC→0 limit.
Because of 4OP2A

∼=4OP1A, we have ρ = π∓∠OAP1

and σ = π±∠AOP1 for 4OP1A and 4OP2A, respec-
tively. In this case the two inner angles of 4OP1A can
be calculated from its three sides OA, AP1 = AB and
OP1 =OC by means of the cosine theorem. An analyt-
ical discussion has been done in [9] by taking 〈m〉ee =0
in Eq. (6) to obtain two constraint equations for ρ and
σ. From a phenomenological point of view, however, one
certainly prefers that the neutrino masses are nearly de-
generate or have the inverted ordering, so as to assure
|〈m〉ee|>10 MeV which should be accessible in the next-
generation 0νββ experiments.

Once |〈m〉ee| is determined from a measurement of
the CP -conserving 0νββ decay, one will be able to partly
constrain the absolute neutrino mass scale and two Ma-
jorana CP -violating phases [6]. There are two special
cases, in which m2 can be fixed and 〈m〉ee only involves
a single phase parameter:

(1) m1 =0, which leads to AB=0. In this case
⊙

A

shrinks into a point, and thus the quadrilateral in Fig. 1
is simplified to 4OAC. As a result, |〈m〉ee| only depends
on a single CP -violating phase:

|〈m〉ee|=

√

∆m2
21s

4
12c

4
13+∆m2

31s
4
13+2

√

∆m2
21∆m2

31 c2
12s

2
12s

2
13cosσ. (10)

(2) m3 = 0, which leads to OC = 0. In this case the quadrilateral in Fig. 1 is simplified to 4OAB, and the
magnitude of 〈m〉ee turns out to be

|〈m〉ee|=c2
13

√

(∆m2
21−∆m2

31)s
4
12−∆m2

31c
4
12+2

√

∆m2
31(∆m2

31−∆m2
21) c2

12s
2
12cosρ, (11)
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which is also dependent upon a single CP -violating
phase.

In either case the range of |〈m〉ee| can easily be de-
termined by allowing the respective CP -violating phase
to vary from 0 to 2π. With the help of the 3σ ranges of
∆m2

21, ∆m2
31, θ12 and θ13 [8], we immediately arrive at

0.68 MeV 6 |〈m〉ee|6 4.7 MeV in the m1 = 0 case, and
12.4 MeV 6 |〈m〉ee|650.1 MeV in the m3 =0 case. The
latter is of course more promising in the future 0νββ

experiments.

3 Comments on 〈m〉
αβ

and new physics

The coupling-rod diagram of 〈m〉ee in Fig. 1 can be
extended to geometrically describe 〈m〉αβ (for α, β=e,
µ, τ) in general. For each individual 〈m〉αβ, it is always
possible to adopt a proper parametrization and phase
convention of U to make m2Uα2Uβ2 real and positive. A
typical example of this kind is [14]1)

U =











c′12c
′

13 s′

12 −c′12s
′

13

−c′12s
′

12c
′

13+s′

12s
′

13e
−iδ′ c′12c

′

23 s′

12s
′

13c
′

23+c′13s
′

23e
−iδ′

−s′

12c
′

13s
′

23−s′

13c
′

23e
−iδ′ c′12s

′

23 s′

12s
′

13s
′

23−c′13c
′

23e
−iδ′











P ′

ν, (12)

where c′ij≡cosθ′

ij , s′

ij≡sinθ′

ij (for ij=12, 13, 23), and P ′

ν

is a diagonal matrix containing the other two indepen-
dent CP -violating phases. Its connection to the stan-
dard parametrization of U in Eq. (2) is straightforward.
In this case one may express 〈m〉αβ as a sum of three
vectors in the complex plane:

〈m〉αβ≡
−−→
CB=

−→
OA+

−−→
AB+

−−→
CO, (13)

where
−→
OA ≡ m2Uα2Uβ2=m2|Uα2Uβ2|,
−−→
AB ≡ m1Uα1Uβ1=m1|Uα1Uβ1|e

iρ′

, (14)
−−→
CO ≡ m3Uα3Uβ3=m3|Uα3Uβ3|e

iσ′

.

Note that the phase parameters ρ′ and σ′ depend on
the subscripts α and β. Of course, Eq. (13) stands for
a quadrilateral which is quite similar to the coupling-
rod diagram of 〈m〉ee in Fig. 1. Depending on the radii
of

⊙

O and
⊙

A with respect to 〈m〉αβ, Fig. 1(a), (b)
and (c) may analogously describe the relative positions
of these two circles. An exceptional case, which is not
shown in Fig. 1, is that

⊙

A is likely to be contained
in

⊙

O (i.e., OC > OA+AB) for some of the effective
Majorana mass terms2).

While we do not go into details of the coupling-rod
diagrams of 〈m〉αβ in the present work, it is desirable
for us to stress the importance of probing these effective
neutrino masses in all the possible lepton-number vio-
lating processes (e.g. 〈m〉αβ can play an important role
in the probabilities of neutrino-antineutrino oscillations

and in the rates of H++→l+α l+β and H+→lαν decays [15]).
Next, let us briefly comment on possible corrections

to 〈m〉αβ from underlying new physics. For simplicity, we
assume that the effect of new physics is not correlated
with the standard three-flavor 〈m〉αβ in the leading-order
approximation but only provides a linear correction to
〈m〉αβ in the form of

〈m〉′αβ=〈m〉αβ+new physics. (15)

The source of new physics is unknown to us, but some
typical examples like the sterile neutrinos and the R-
parity violating supersymmetry have been explored in
the literature [6]. Because the new-physics term gener-
ally involves one or more CP -violating phases, a poten-
tial cancellation between it and 〈m〉αβ is likely to lead to
vanishing or vanishingly small 〈m〉′αβ [16].

To illustrate, Fig. 3 shows a coupling-rod-like dia-
gram of 〈m〉′ee in the presence of new physics described

by the
−−→
BD vector:

〈m〉′αβ≡
−−→
CD=〈m〉αβ+

−−→
BD=

−−→
CO+

−→
OA+

−−→
AB+

−−→
BD. (16)

Depending on the size and phase of
−−→
BD, a number of

different configurations of the vectors in Eq. (16) are
possible. Fig. 3 only illustrates two simple cases: (a)
⊙

O and
⊙

A are external to each other; and (b)
⊙

O

is contained in
⊙

A. Once the nature of new physics is
quantitatively fixed, one may give a detailed geometrical
description of the salient features of 〈m〉′ee as what we
have done for 〈m〉ee itself.

1) Among the nine possible parametrizations of U listed in [14], patterns (5), (6) and (7) satisfy the requirement because the relevant
Uα2 elements (for α = e,µ,τ) are all independent of the ‘Dirac’ CP -violating phase. Hence these elements can also be arranged to be
independent of the two Majorana CP -violating phases in a very straightforward way.

2) If the standard parametrization of U in Eq. (2) is applied to Eqs. (13) and (14), a nontrivial issue associated with 〈m〉
αβ

(for αβ 6=ee)
will be that OA and AB become dependent upon the CP -violating phase δ. The latter remains unknown, and thus its uncertainty will
more or less complicate our discussions.

011001-5



Chinese Physics C Vol. 39, No. 1 (2015) 011001

Fig. 3. A coupling-rod-like diagram of 〈m〉′ee≡
−−→
CD

in the complex plane: (a)
⊙

O and
⊙

A are ex-
ternal to each other; and (b)

⊙

O is contained

in
⊙

A, where
−→
OA≡m2|Ue2|

2,
−→
AB≡m1|Ue1|

2eiρ,
−−→
CO≡m3|Ue3|

2eiσ, and the new physics contribu-

tion is described by the vector
−−→
BD for illustration.

4 Summary

The 0νββ decay has long been recognized as a unique

process to identify the Majorana nature of massive neu-
trinos, and hence searching for its signal becomes al-
most the most important task in the non-oscillation as-
pects of today’s neutrino physics. Now that the 0νββ

decay rate depends on the size of the effective Majo-
rana neutrino mass 〈m〉ee, it is desirable to explore the
salient features of 〈m〉ee in a phenomenologically favored
way. In this work we have put forward a novel coupling-
rod diagram to describe 〈m〉ee in the complex plane, by
which the effects of the neutrino mass ordering and CP-
violating phases on 〈m〉ee can be intuitively understood.
We have shown that this simple geometric language al-
lows us to easily obtain the maximum and minimum
of |〈m〉ee|. It remains usable even if there is a kind of
new physics contributing to 〈m〉ee. It can also be ex-
tended to describe the effective Majorana masses 〈m〉eµ,
〈m〉eτ, 〈m〉µµ, 〈m〉µτ and 〈m〉ττ which may appear in
some other lepton-number violating processes, if a proper
parametrization and phase convention of the lepton mix-
ing matrix U is adopted.

Although the geometrical and analytical descriptions
of 〈m〉ee are ‘scientifically indistinguishable’, ‘they are
not psychologically identical’ in making the underly-
ing physics more transparent [17]. For this reason we
expect that the coupling-rod diagram of 〈m〉ee, just
like the unitarity triangles of quark and lepton flavor
mixing matrices, can prove to be useful in neutrino
phenomenology.

We are indebted to W.L. Guo, Y.F. Li, L.J. Wen

and S. Zhou for helpful discussions.
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