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Astrophysical S-factor of the 12C(α, γ) 16O reaction at solar energies
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Abstract: The astrophysical S-factor of the 4He+12C radiative capture is calculated in the potential model at the

energy range 0.1–2.0 MeV. Radiative capture 12C(α, γ) 16O is extremely relevant for the fate of massive stars and

determines if the remnant of a supernova explosion becomes a black hole or a neutron star. Because this reaction

occurs at low energies, the experimental measurements are very difficult and perhaps impossible. In this paper,

radiative capture of the 12C(α, γ) 16O reaction at very low energies is taken as a case study. In comparison with

other theoretical methods and available experimental data, good agreement is achieved for the astrophysical S-factor

of this process.
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1 Introduction

During a star’s hydrogen-burning phase transition,
the star is in the helium-burning phase. The thermal
energy at 1.5×108 K is sufficient for the fusion of two
helium nuclei into the unstable 8Be nucleus. If the con-
ditions are suitable, 8Be nuclei are converted to 12C nu-
clei by the capture of α-particle radiation. The process
of forming the 12C nucleus is called the triple-α process
[1, 2].

4He+4He+4He↔8Be+4He→12C+γ. (1)

Therefore, conditions at 1.5×108 K are sufficient for α-
particle capture by 12C nuclei and 16O nuclei are pro-
duced:

12C+4He→16O+γ. (2)

These reactions are important because carbon and oxy-
gen are the most abundant elements in the universe pro-
duced from the burning of helium, and heavier elements
are often formed from these two elements. Our under-
standing of the reaction 12C(α, γ) 16O is therefore helpful
to better understand the evolution of condensed stars,
such as neutron stars and black holes. For example, a
large cross section for this reaction leads to the produc-
tion of heavier elements, while a small cross section can
lead to the reverse situation and production of lighter el-
ements. Thus, our main purpose is to calculate the cross
section of this process.

The 12C(α, γ) 16O radiative capture process plays a
major role in stars’ fuel when they collapse. There is
no accurate and complete information about these reac-

tions, because the cross section of this reaction is low
and impossible to produce in the laboratory directly at
low energies [3–7].

In the past few decades, the yield of capture rays
has been studied for Eα up to 42 MeV [8]. The cross
section of the 12C(α, γ) 16O capture process has been
obtained by fitting the measured cross sections and ex-
trapolating to low energies using standard R-matrix, Hy-
brid R-matrix and K-matrix procedures. The influence
of vacuum polarization effects on sub barrier fusion is
also evaluated in Ref. [9], and the relevance of Coulomb
dissociation of 16O into 12C+α is studied in Ref. [10–12].
Calculations to test the sensitivity of stellar nucleosyn-
thesis to the level of 12C at 7.74 MeV are described in
Ref. [13].

At higher energies the E2 cross section shows reso-
nances at Ex=13.2, 15.9, 16.5, 18.3, 20.0, and 26.5 MeV.
Some E2 strength is also observed for Ex=14 to 15.5
and 20.5 to 23 MeV. In the range Eα=7 to 27.5 MeV
with T=0, E2 strength is 17 times the sum-rule value.
It appears from this and other experiments that the E2

centroid is at Ex∼15 MeV, with a 15 MeV spread. Struc-
tures are observed in the yield of γ-rays from the decay
to 16O∗(14.8± 0.1) for Ex=34–39 MeV. It is suggested
that these correspond to a giant quadrupole excitation
with Jπ=8+ built on the 6+

1 state at Ex=14.815 MeV [8].
Recently, Dubovichenko et al. have calculated the as-

trophysical S-factor of 4He+12C radiative capture using
the cluster model at the energy range 0.1–4.0 MeV. They
show that the approach used, which takes into account
E2 transitions only, gives a good description of the new
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experimental data for adjusted parameters of potentials
and leads to the value S(300)=16.0 keV·b [14, 15]. More
recently, Bertulani presented a computer program aim-
ing at the calculation of bound and continuum state ob-
servables for a nuclear system, such as the reduced tran-
sition probabilities, phase-shifts, photo-disintegration
cross sections, radiative capture cross sections, and as-
trophysical S-factors [16–18]. The code is based on a po-
tential model type and can be used to calculate nuclear
reaction rates in numerous astrophysical reactions. In
order to calculate the direct capture cross sections, one
needs to solve the many-body problem for the bound and
continuum states of relevance for the capture process. A
model based on potential can be applied to obtain single-
particle energies and wave functions. In numerous situa-
tions, this solution is good enough to obtain cross section
results which fit the experimental data.

This paper is organized as follows: a brief review of
multipole matrix elements and reduced transition prob-
abilities is given in Section 2, along with definitions of
the relevant formalism and parameters, electric and mag-
netic multipole matrix elements and reduced transition
probabilities. In Section 3, the findings of the model with
asymptotic wave functions are corroborated in more real-
istic calculations using wave function generated from the
Woods-Saxon potentials and experimental data, in Sec-
tion 3. A summary and conclusions follow in Section 4.

2 Brief review of theoretical framework

The computer code RADCAP calculates various
quantities of interesting radiative capture reactions. The
bound state wave functions of final nuclei are given by
ΨJM (r) and the ground-state wave function is normal-

ized so that

∫
d3r |ΨJM (r)|2=1.

The wave functions are calculated using the central
(V0(r)), spin-orbit (VS(r)) and the Coulomb potential
(VC(r)) potentials. The potentials V0(r) and VS(r) are
given by

V0(r) = V0 f0(r), VS(r)=− VS0

(
~

mπc

)2
1

r

d

dr
fS(r),

fi(r) =

[
1+exp

(
r−Ri

ai

)]−1

, (3)

where V0, VS0, R0, a0, RS0, and aS0 are adjusted so that
the ground state energy EB or the energy of an excited
state, is reproduced.

The radial Schrödinger equation for calculating the
bound state is given by solving

− ~
2

2mab

[
d2

dr2
− l(l+1)

r2

]
uJ

lj (r)+[V0(r)+VC(r)

+〈s·l〉 VS0(r)]u
J
lj (r)=Eiu

J
lj(r), (4)

with 〈s·l〉=[j(j+1)−l(l+1)−s(s+1)]/2.
The electric and magnetic dipole transitions are given

by introducing the following operators [19]

OEλµ=eλrλYλµ(r̂),

OM1µ=

√
3

4π
µN

[
eM lµ+

∑

i=a,b

gi(si)µ

]
,

(5)

where

eλ=Zbe

(
−ma

mc

)λ

+Zae

(
mb

mc

)λ

and

eM =

(
m2

aZa

m2
c

+
m2

bZb

m2
c

)

are the effective electric and magnetic charges, respec-
tively. lµ and sµ are the spherical components of order µ
(µ=−1,0,1) of the orbital and spin angular momentum
(l =−ir×∇, and s =σ/2) and gi are the gyromagnetic
factors of particles a and b. µN is the nuclear magneton.

The matrix element for the transition J0M0−→JM
is given by [19, 20]

〈JM |OEλµ|J0M0〉 = 〈J0M0λµ|JM〉 〈J ‖OEλ‖J0〉√
2J+1

,

〈J ‖OEλ‖J0〉 = (−1)
j+Ia+J0+λ

[(2J+1)(2J0+1)]
1/2

×
{

j J Ia

J0 j0 λ

}
〈lj‖OEλ‖l0j0〉J

, (6)

where the subscript J is a reminder that the matrix ele-
ment is spin dependent. For l0+l+λ=odd, the reduced
matrix element is null and for l0+l+λ=even, is given by

〈lj‖OEλ‖l0j0〉J
=

eλ√
4π

(−1)l0+l+j0−j λ̂ĵ0

̂

〈
j0

1

2
λ0|j 1

2

〉

×
∫∞

0

drrλ uJ
lj (r)u

J0

l0j0
(r). (7)

At very low energies, the transitions will be much
smaller than the electric transitions. The M1 contribu-
tion has to be considered in the cross sections for neutron
photo-dissociation or radiative capture. The M1 transi-
tions, in the case of sharp resonances, play a role in the
J = 1+ state in 8B at ER = 630 keV above the proton
separation threshold [21, 22].

For the reduced matrix elements of the M1 transition,
the magnetic dipole matrix element is zero for l 6=l0, and
for l=l0, it is given by [23]
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〈lj‖OM1‖l0j0〉J
= (−1)

j+Ia+J0+1

√
3
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Ĵ Ĵ0

{
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J0 j0 1

}
µN

×
{

1

l̂0
eM

[
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l̂0
(l0δj0, l0+1/2+(l0+1)δj0, l0−1/2)+(−1)

l0+1/2−j ĵ0√
2
δj0, l0±1/2δj, l0∓1/2

]

+gN

1

l̂20

[
(−1)

l0+1/2−j0 j̃0δj, j0−(−1)
l0+1/2−j ĵ0√

2
δj0,l0±1/2δj, l0∓1/2

]

+ga(−1)
Ia+j0+J+1

Ĵ0Ĵ ÎaĨa

{
Ia J j0

J0 Ia 1

}}∫∞

0

dr uJ
lj (r) uJ0

l0j0
(r). (8)

We use the notation k̂ =
√

2k+1, and k̃ =
√

k(k+1)
and gN=5.586(−3.826) for the proton (neutron). µa =
gaµN is also the magnetic moment of the core nucleus.

The reduced transition probability dB((E,B)λ)/dE
of the nucleus, i into j+k, contains the information on the
structure in the initial ground state and the interaction in
the final continuum state. The reduced transition prob-
ability for a specific electromagnetic transition (E,B)λ
to a final state with momentum ~k in the continuum is
given by [16]

dB

dE
((E,B)λ,Jis→kJfs)

=
2Jf+1

2Ji+1

∑

jf lf

∣∣∣∣∣
∑

jilijc

〈kJfjf lfsjc||M((E,B)λ)||Jijilisjc〉
∣∣∣∣∣

2

× µk

(2π)3~2
. (9)

The electric excitations (E) with multipole operator
are given by

M(Eλµ)=Z(λ)
eff erλYλµ(r̂), (10)

where

Z(λ)
eff =Zb

(
mc

mb+mc

)λ

+Zc

(
− mb

mb+mc

)λ

is the effective charge number.
For proton radiative capture the effective charge

numbers for E1 and E2 have to consider all contribu-
tions to the cross sections from Coulomb breakup, photo
dissociation and radiative capture. In the case of neutron
radiative capture, the E1 transition dominates the low-
lying electromagnetic strength and the E2 contribution
can be neglected.

The initial and final state are given by the following

wave functions [16]

Φi(r) = 〈r|Jijilisjc〉=
1

r

∑

mimc

(jimijcmc|JiMi)f
jc
Jijili

(r)

×Y lis
jimi

(r̂)φjcmc
, (11)

Φf(r) = 〈r|kJfjf lfsjc〉

=
4π

kr

∑

mfmc

(jfmfjcmc|JfMf)g
jc
Jf jf lf

(r)ilf Y ∗
lfmf

(k̂)

×Y lfs
jfmf

(r̂)φjcmc
,

where f jc
Jijili

(r) and gjc
Jfjf lf

(r) are the radial wave func-
tions and φjcmc

is the wave function of the core.
The spinor spherical harmonics are denoted by Y ls

jm =∑
mlms

(lmlsms|jm)Ylm(r̂)χsms.
The reduced matrix element in (9) can be expressed

as [16]

〈kJfjf lfsjc||M(Eλ)||Jijilisjc〉

=
4πZ(λ)

eff e

k
DJf jf lf

Jijili
(λsjc)(−i)lf IJf jf lf

Jijili
(λjc), (12)

where the angular momentum coupling coefficient
DJf jf lf

Jijili
(λsjc) and the radial integral IJf jf lf

Jijili
(λjc) are given

by

DJf jf lf
Jijili

(λsjc) = (−1)s+ji+lf+λ(−1)jc+Ji+jf+λ(li0λ0|lf0)

×
√

2ji+1
√

2li+1
√

2Ji+1
√

2jf+1

×
√

2λ+1

4π

{
li s ji

jf λ lf

}{
ji jc Ji

Jf λ jf

}
,

IJf jf lf
Jijili

(λjc) =

∫∞

0

drgjc∗
Jf jf lf

(r)rλf jc
Jijili

(r), (13)

with the asymptotic radial wave functions for the bound
state

f jc
Jijili

(r)→Cjc
Jijili

W−ηi,li+1/2(2qr), (14)
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Table 1. The set of Woods-Saxon potential parameters, applied for calculation.

V0/MeV R0/fm a0/fm VS0/MeV RS0/fm aS0/fm RC/fm

−51.8 2.41 0.644 39.54 2.291 0.644 2.41

and the asymptotic form of the continuum state for the
scattering state

gjc
Jfjf lf

(r)→exp
[
i(σlf +δjc

Jf jf lf
)
]
×

[
cos(δjc

Jf jf lf
)Flf (ηf ;kr)

+sin(δjc
Jf jf lf

)Glf (ηf ;kr)
]
, (15)

where Cjc
Jijili

, W−ηi,li+1/2, Flf , Glf and ηf = ηi/x are the
asymptotic normalization coefficient, Whittaker func-
tion, regular Coulomb wave functions, irregular Coulomb
wave functions and the Sommerfeld parameter, respec-
tively [24].

The cross-section for different particles without spin
is defined as follows:

σcap
(E,B)l(E)=

π~
2

2µε
(2l+1)T(E,B)l, (16)

where T(E,B)l is the transition probability. Finally, the
total cross section for an arbitrary transition is:

σcap(E)=
∑

l

(σcap
El (E)+σcap

Ml (E)). (17)

The total cross section for an arbitrary transition can
also be written:

σcap(E)=S(E)
1

E
e−2πη. (18)

In this equation the S(E) astrophysical factor and

η=
ZcZαe2

~

√
µ

2E

are Sommerfeld parameters. We use the astrophysical S-
factor because it is a well-defined function which changes
little and is easy to analyze.

3 Results and conclusions

The potential model and the RADCAP computer
code are proper theoretical frameworks to describe the
ground state properties of 16O for the reaction 12C(α,
γ)16O. To evaluate the radiation capture reaction 12C(α,
γ)16O, the Schrödinger equation using the Woods-Saxon
potential and with solved specific parameters and bound
continuum states of the reaction is obtained with very
good accuracy. Using the formulation from Section 2,
the astrophysical S-factor is then calculated for transi-
tion E2.

The set of Woods-Saxon potential parameters, ap-
plied for calculation are given in Table 1. The results for
the astrophysical S-factor of 4He+12C radiative capture
process is presented in Fig. 1, along with the experimen-
tal data [25–28], at solar energies 0.1–2 MeV.

Fig. 1. The astrophysical S-factor for the 12C(α,
γ)16O reaction.

The S-factor (Ecm=300 keV), at 300 keV transition
energy, is found to be 84.97 keV·b, which is in reason-
able agreement with some evaluated values for experi-
mental data, shown in Table 2. Here, no significant dif-
ference has been seen between the results obtained with
the present model and with some evaluated values for
experimental data in other papers which use the poten-
tial model. In the other theoretical approach using the
cluster model, the astrophysical S-factor of 4He+12C has
been calculated to be S(300)=16.0 keV·b [15].

Table 2. Some evaluated astrophysical S-factor
(Ecm=300 keV) values, in keV·b for experimen-
tal data for the 12C(α, γ)16O reaction.

reference year S(E2)

Schürmann et al. [29] 2012 73.4

Oulebsir et al. [30] 2012 50±19

Hammer et al. [31] 2005 81±22

Kunz et al. [32] 2001 85±30

Redder et al. [26] 1987 80±25

this work 2013 84.97

4 Summary and conclusions

The radioactive capture process 12C(α, γ)16O is one
of the most important reactions in nuclear astrophysics.
The reaction cross section determines the relative abun-
dance of most elements in red giant stars, neutron stars
and black holes. In general, the electric dipole radia-
tion E1 is much stronger than the electric quadrupole
radiation E2. Electric dipole transitions between states
with the same isospin are forbidden in the first order.
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State 1+ and 0+ ground state 16O nuclei have isospin
T=0, the electric dipole radiations between the two lev-
els are not at the first order; the electric dipole radiation
is second order, and the electric dipole radiation is the
same order as the electric quadrupole radiation. There-
fore, we must consider the effects of both radiations. In

comparison with other theoretical methods and available
experimental data, good agreement is achieved for the
astrophysical S-factor for this process.

The authors would like to acknowledge C. A. Bertu-

lani, for online RADCAP computer code.
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