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Abstract: In this paper, we calculate the off-shell superpotential of two Calabi-Yau manifolds with three parameters

by integrating the period of the subsystem. We also obtain the Ooguri-Vafa invariants with open mirror symmetry.
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1 Introduction

When Type / string theory compactfying on Calabi-
Yau threefold with D-brane and background flux, the
superpotentials will be generated which in general can
divided into two parts–one originated from D-brane and
the other from flux. The superpotentials also play an im-
portant role in mathematics which generate the Ooguri-
Vafa invariants and count the number of disks and sphere
instantons.

For D5-brane wrapped the whole Calabi-Yau three-
fold, the holomorphic Chern-Simons theory [1]

W=

∫
X

Ω3,0∧Tr

[
A∧∂̄A+

2

3
A∧A∧A

]
(1)

gives the brane superpotential Wbrane, where A is the
gauge field with gauge group U(N) for N D5-branes.
When reduced dimensionally, the low-dimenaional brane
superpotentials can be obtained as [2, 3]

Wbrane=Nν

∫
Γ ν

Ω3,0(z,ẑ)=
∑

ν

NνΠ
ν, (2)

where Γ ν is a special Lagrangian 3-chain and (z,ẑ)
are closed-string complex structure moduli and D-brane
moduli from the open-string sector, respectively.

The background fluxes H (3) = H
(3)
RR +τH

(3)
NS , which

take values in the integer cohomology group H3(X,Z),
also break the supersymmetry N = 2 to N = 1. The
τ=C(0)+ie−ϕ is the complexified Type IIB coupling field.
Its contribution to superpotentials is [4, 5]

Wflux(z)=

∫
X

H
(3)
RR∧Ω3,0=

∑

α

Nα·Πα(z), Nα∈Z. (3)

The contributions of D-brane and background flux

(here the NS-flux is ignored) give together the general
form of superpotential as follow [6, 7]

W(z,ẑ)=Wbrane(z,ẑ)+Wflux(z)=
∑

γi∈H3(Z∗,H)

NiΠi(z,ẑ),

(4)
where Ni = ni+τmσ, τ is the dilaton of type / string
and Πi is a relative period defined in a relative cycle
Γ ∈H3(X,D) whose boundary is wrapped by D-branes
and D is a holomorphic divisor of the Calabi-Yau space.
In fact, the two-cycles wrapped by the D-branes are
holomorphic cycles only, if the moduli are at the crit-
ical points of the superpotentials. Thus, the two-cycles
are generically not holomorphic. However, according to
the arguments of [6–8], the non-holomorphic two-cycles
can be replaced by a holomorphic divisor D of the am-
bient Calabi-Yau space with the divisor D encompassing
the two-cycles.

Geometrically speaking, when varying the complex
structure of Calabi-Yau space, a generic holomorphic
curve will not be holomorphic with the respect to the
new complex structure, and will become obstructed to
the deformation of the bulk moduli. The requirement
for the holomorphy gives rise to a relation between the
closed and open string moduli. Physically speaking, it
turns out that the obstruction generates a superpoten-
tial for the effective theory depending on the closed and
open string moduli.

The off-shell tension of D-branes, T (z,ẑ), is equal to
the relative period [6, 7, 9]

ΠΣ=

∫
ΓΣ

Ω(z,ẑ), (5)

Received 27 April 2013, Revised 30 September 2013

∗ Supported by National Natural Science Foundation of China (11075204) and President Fund of GUCAS (Y05101CY00)

1) E-mail: fzyang@ucas.ac.cn
©2014 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

033103-1



Chinese Physics C Vol. 38, No. 3 (2014) 033103

which measures the difference between the value of on-
shell superpotentials for the two D-brane configurations

T (z,ẑ)=W(C+)−W(C−), (6)

with ∂ΓΣ=C+−C−. The domain wall tension is [10]

T (z)=T (z,ẑ)|ẑ=critic points, (7)

where the critical points correspond to
dW

dẑ
= 0 [9]

and the C± is the holomorphic curves at those critical
points. The critical points are alternatively defined as
the Nother-Lefshetz locus [11]

N={(z,ẑ)|π(z,ẑ;∂Γ (z,ẑ))≡0}, (8)

where

π(z,ẑ;∂Γ (z,ẑ))=

∫
∂Γ

ω
(2,0)
â (z,ẑ), â=1,··· ,dim(H2,0(D)),

(9)
and ω

(2,0)
â is an element of the cohomology group

H(2,0)(D). At those critical points, the domain wall ten-
sions are also known as normal functions giving the Abel-
Jacobi invariants [10–14].

The Superpotential can be calculated by studying the
Hodge variation on the related cohomology group. The
flat Gauss-Manin connection on the Hodge bundle can
give rise to a system of differential equations controlling
the periods which determine the mirror map between the
A-model and the B-model. The Ooguri-Vafa invariants
can be obtained by using the mirror symmetry. See also
[15–28] for related work, where in Refs. [17, 18, 21–23]
they considered another approach which blows up along
the curve C and replaces the pair (X , C) with a non-

Calabi-Yau manifold X̂.
In this note, we will generalize the works [15–28],

which only calculated on-shell superpotential, to the off-
shell superpotential which at the critical point gives the
domain wall tensions (on-shell superpotential).

2 Generalized GKZ system and differen-
tial operators

The period integrals can be written as

Πi=

∫
γi

1

P

4∏

j=1

dXj

Xj

. (10)

Where P is the hypersurface equation defined as

P=

p−1∑

i=1

ai

4∏

k=1

X
µi,k

k , (11)

p is the number of integer points µi of reflexive polyhe-
dron ∆, ai is the moduli determining the complex struc-
ture in the B-model.

See more in Ref. [28]. According to the Refs. [29, 30],
the period integrals can be annihilated by differential op-

erators

L(l)=
∏

li>0

(∂ai
)li−

∏

li<0

(∂ai
)li ,

Zk=

p−1∑

i=0

ν∗
i,kϑi, Z0=

p−1∑

i=0

ϑi−1, (12)

where ϑi=ai∂ai
. As noted in Refs. [19, 31], the equations

ZkΠ(ai)=0 reflex the invariance under the torus action,
defining torus invariant algebraic coordinates za on the
moduli space of the complex structure of X [10]:

za=(−1)la0
∏

i

a
lai
i , (13)

where la, a = 1,··· ,h2,1(X) are generators of the Mori
cone, one can rewrite the differential operators L(l) as
[10, 30, 31]

L(l) =

l0∏

k=1

(ϑ0−k)
∏

li>0

li−1∏

k=0

(ϑi−k)−(−1)l0za

−l0∏

k=1

(ϑ0−k)

×
∏

li<0

li−1∏

k=0

(ϑi−k). (14)

The solution to the GKZ system can be written as
[10, 30, 31]

Bla(za;ρ)

=
∑

n1,···,nN∈Z+
0

Γ (1−∑
a
la0(na+ρa))

Πi>0Γ (1+
∑

a
lai (na+ρa))

∏

a

zna+ρa

a . (15)

In this paper we consider the family of divisors D
with a single open deformation moduli ẑ

xb1
1 +ẑxb2

2 =0, (16)

where b1, b2 are some appropriate integers. The relative
3-form Ω :=(Ω3,0

X ,0) and the relative periods satisfy a set
of differential equations [6–8, 10, 19]

La(θ,θ̂)Ω=dω(2,0) ⇒ La(θ,θ̂)T (z,ẑ)=0, (17)

with some corresponding two-form ω(2,0). The differen-
tial operators La(θ,θ̂) can be expressed as [10]

La(θ,θ̂):=Lb
a−Lbd

a θ̂, (18)

for Lb
a acting only on the bulk part from the closed sec-

tor, Lbd
a on the boundary part from the open-closed sec-

tor and θ̂=ẑ∂ẑ. The explicit form of these operators will
be given in the following model. From the Eq. (9) one
can obtain

2πiθ̂T (z,ẑ)=π(z,ẑ), (19)

for only the family of divisors D depending on the ẑ.
Hence the off-shell superpotential can be obtained by in-
tegrating the period on subsystem π(z,ẑ).
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3 Superpotentials of hypersurfaceX24(1,
1, 2, 8, 12)

The X24(1, 1, 2, 8, 12) is defined as the zero locus of
polynomial P

P = x24
1 +x24

2 +x12
3 +x3

4+x
2
5+ψx1x2x3x4x5+φx

6
1x

6
2x

6
3

+χx12
1 x

12
2 . (20)

The GLSM charge vectors la are the generators of the
Mori cone as follows [31]

0 1 2 3 4 5 6 7

l1 −6 0 0 0 2 3 0 1

l2 0 1 1 0 0 0 −2 0

l3 0 0 0 1 0 0 1 −2

. (21)

The mirror manifolds can be constructed as an orb-
ifold by the Greene-Plesser orbifold group acting as
xi→λ

gk,i

k xi with weights

Z6 : g1 = (1,−1,0,0,0), Z6 : g2=(1,0,−1,0,0),

Z3 : g3 = (1,0,0,−1,0), (22)

where we denote λ6
1,2=1 and λ3

3=1.
By the generalized GKZ system, the period on the

K3 surface has the form

π =
c

2
B{l̂1,l̂2,l̂3}

(
u1,u2,u3;

1

2
,
1

2
,0

)

= − 4c

π
3
2

√
u1u2u3+O((u1u2)

3/2), (23)

which vanishes at the critical locus u2=0. According to
Eq. (19), the off-shell superpotentials can be obtained by
integrating the π:

T ±
a (z1,z2,z3)=

1

2πi

∫
π(ẑ)

dẑ

ẑ
, (24)

with the appropriate integral constants [10], the superpo-
tentials can be chosen as W+=−W−. In this convention,
the off-shell superpotentials can be obtained as

2W+=
1

2πi

∫ẑ

−ẑ

π(ζ)
dζ

ζ
, W±(z1,z2,z3)=W±(z1,z2,z3)|ẑ=1.

(25)
Eventually, the superpotentials are

W±(z1,z2,z3,ẑ) =
∑

n1,n2,n3

∓cz
1
2
+n1

1 z
1
2
+n2

2 zn3

3 ẑ
−1−2n2

2 Γ (6n1+4)

Γ (2+2n2)Γ (2+2n1)Γ

(
5

2
+3n1

)
Γ (1+n3)Γ (n3−2n2)Γ

(
n1−2n3+

3

2

)

{
(1−2n2)2F1

(
−1

2
−n2,−2n2,

1

2
−n2;ẑ

)
+ẑ(1+2n2)2F1

((
1

2
−n2,−2n2,

3

2
−n2;ẑ

))}

4π(−1+4n2
2)

. (26)

For the calculation of instanton corrections, one needs
to know the mirror map. The fundamental period ω0 is
a solution of the Picard-Fuchs equation which we listed
in Ref. [28]. The flat coordinates in the A-model at the
large radius regime are related to the flat coordinates of
the B-model at the large complex structure regime by

the mirror map ti=
ωi

ω0

, ωi :=D
(1)
i ω0(z,ρ)|ρ=0. The open-

string mirror maps are

q1=z1+312z2
1+107604z3

1−z1z3−192z2
1z3−z1z2

3+O(z4),

q2=z2+2z2
2+5z3

2+z2z4+3z2
2z4+z

2
2z

2
4+O(z4),

q3=z3+2z2
3+3z3

3+120z3z1+41580z2
1z3+O(z4),

q4=z4−z2
4+z

3
4+O(z4).

(27)

Here qi =e2πiti and we can obtain the inverse mirror
map

z1 = q1−312q2
1+87084q3

1+q1q3−864q2
1q3+q1q2q3+O(q4),

z2 = q2−2q2
2+3q3

2+O(q4),

z3 = q3−2q2
3+3q3

3−120q1q3+10260q2
1q3+q2q3,

−120q1q2q3+600q1q
2
3−4q2q

2
3+O(q4),

z4 = q4+q
2
4+q

3
4+O(q4). (28)

Using the modified multi-cover formula [2] for this
case

W±(z(q))

w0(z(q))
=

1

(2iπ)2

∑

k odd

∑

d3,d4,d1,2odd>0

n±
d1,d2,d3,d4

×q
kd1/2
1 q

kd2/2
2 qkd3

3 qkd4

4

k2
. (29)

The superpotentials W+ give Ooguri-Vafa invariants
nd1,d2,d3,d4

for the normalization constants c= 1, which
are listed in Table 1.

033103-3



Chinese Physics C Vol. 38, No. 3 (2014) 033103

Table 1. Disc invariants nd1,d2,d3,d4
for the off-shell superpotential W1 of the 3-fold P1,1,2,8,12 [24].

d4=0,d3=1

d1/2\d2/2
1 3 5 7 9

1 1 0 0 0
−5

2

3 −848 0 0 0 2120

5 −270978 0 0 0 677445

7 −4107040 0 0 0 10267600

9 −4859101222 0 0 0 12147753055

d4=0,d3=2

d1/2\d2

1 3 5 7 9

1
−9

16

−9

16
0 0

45

32

3
521

2

521

2
0 0

−2605

4

5
−1397265

8

−2506065

8
167400 −195120

7890645

16

7 100877911 205105111 −118540800 142047360
−553418675

2

9
−160323502433

8

226729748767

8
−64409331600 71920841760

251804856805

16

d4=1,d3=1

d1/2\d2

1 3 5 7 9

1
−29

18
0 0

−7

2

−35

36

3
12296

9
0 0 2968

7420

9

5
1309727

3
0 5130 943293

1611485

6

7
59552080

9
0 −3734640 18109280

2324840

9

9
70456967719

9
0 −1890907740 18897762017

50997932065

18

4 Superpotential of hypersurface X12(1,
1, 1, 3, 6)

The X12 (1, 1, 1, 3, 6) is defined as the zero locus of
P :

P=x12
1 +x12

2 +x12
3 +x4

4+x
2
5+ψx1x2x3x4x5+φx

4
1x

4
2x

4
3. (30)

The GLSM charge vectors in this case are [31]

0 1 2 3 4 5 6

l1 −4 0 0 0 1 2 1

l2 0 1 1 1 0 0 −3

. (31)

On the mirror manifolds, the Greene-Plesser orbifold
group acts as xi→λ

gk,i

k xi with weights

Z6 : g1=(1,−1,0,0,0), Z4 : g2=(0,1,2,1,0), (32)

where we denote λ6
1=1, λ4

2=1.
In Ref. [28], we have obtained the period in the sub-

system as follows

π(u1,u2)=
c

2
B{l̂1,l̂2}

(
u1,u2;0,

1

2

)
, (33)

where c are some normalization constants not de-
termined by the differential operator. According to
Eq. (19), the off-shell superpotentials can be obtained
by integrating the π:

T ±
a (z1,z2,z3)=

1

2πi

∫
π(ẑ)

dẑ

ẑ
, (34)

with the appropriate integral constants [10], the super-
potentials can be chosen as W+=−W−.

Eventually, The superpotential are
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W±(z1,z2,z3,ẑ) =
∑

n1,n2,n3

∓cz
1
2
+n1

1 zn2

2 ẑ
−1−2n1

2 Γ

(
4n1+

5

2

)

Γ (1+2n2)Γ (1+n2)Γ

(
3

2
+n1

)
Γ (2+2n1)Γ

(
n1−3n2+

3

2

)

×

{
(1−2n1)2F1

(
−1

2
−n1,−2n1,

1

2
−n1;ẑ

)
+ẑ(1+2n1)2F1

((
1

2
−n1,−2n1,

3

2
−n1;ẑ

))}

4π(−1+4n2
1)

. (35)

Table 2. Disc invariants nd1,d2,d3
for the off-shell superpotential W+

1 of the 3-fold P1,1,1,3,6[12].

d3=0

d1/2\d2

0 1 2 3 4

1 1
−13

16

2693

1024

19517

9

7703

16384

3
1312

243

68231

1296

−23305385

82944

−3519745

18

−1672979243

3981312

5
63544513

28350

135578197

12960

346285919719

5806080

−9330830923

1944

−1608130586479

92897280

7
172956753731

1389150

5372183267179

3175200

−21892937788889

8128512

32917422417037

136080

−282745996819463

43352064

9
13409490308809711

600112800

216480619417211431

355622400

−19644707820777819881

13655900160

−82475053081873279

7620480

311040357663729110033

93640458240

d3=1

d1/2\d2

0 1 2 3 4

1
−10

9

175

144

−18923

2304

23077

147456

−132267135

2097152

3
3380

81

−82429

432

48484423

41472

1376117443

1327104

601661687053

42467328

5
−1138840

567

403544255

18144

−534921106991

2903040

166478391791

3440640

−20526886980289679

5945425920

7
3400299058

42525

−835235546479

272160

786036635335453

60963840

4714357006892647

650280960

−44180037787516945679

62426972160

9
−121337433752293

33339600

−99152104754391869

152409600

15374804216369862857

8534937600

−62693086142469434527

6242697216

−923658211082431780070641

3995326218240

For the calculation of instanton corrections, one needs
to know the mirror map. The fundamental period ω0 is
the solution of the Picard-Fuchs equation which we listed
in Ref. [28]. The flat coordinates in the A-model at the
large radius regime are related to the flat coordinates of
the B-model at the large complex structure regime by

the mirror map ti=
ωi

ω0

, ωi :=D
(1)
i ω0(z,ρ)|ρ=0. The open-

string mirror maps are

q1=z1+40z2
1+1876z3

1+2z1z2−13z1z
2
2+z1z2z3+O(z4),

q2=z2−6z2
2+63z3

2+z2z3−9z2
2z3+O(z4),

q3=z3−z2
3+z

3
3+O(z4),

(36)

here qi=e2πiti and we can obtain the inverse mirror map

as follows

z1=q1−40q2
1+1324q3

1−2q1q2+268q2
1q2+5q1q

2
2+O(q4),

z2=q2+6q2
2+9q3

2−36q1q2−468q1q
2
2+630q2

1q2+O(q4),

z3=q3+q
2
3+q

3
3+O(q4).

(37)

Using the modified multi-cover formula [2] for this
case

W±(z(q))

w0(z(q))
=

1

(2πi)2

∑

k odd

∑

d1odd,d2,3>0

n±
d1,d2,d3

×q
kd1/2
1 qkd2

2 qkd3

3

k2
. (38)

The superpotentials W+ give Ooguri-Vafa invariants

033103-5



Chinese Physics C Vol. 38, No. 3 (2014) 033103

nd1,d2,d3
for the normalization constants c=1, which are

listed in Table 2.

5 Summary

In this paper, we make a further step of previous
work [28] and calculate the off-shell superpotential. By
open mirror symmetry, we also compute the Ooguri-Vafa
invariants from the A-model expansion.

The superpotentials of Type / string theory are im-
portant in both physics and mathematics. It also relates
to F-theory by open-closed duality [15, 19, 32]. In type

//F-theory compactification, the vacuum structure is
determined by the superpotentials, whose second deriva-
tive gives the chiral ring structure. The quantum co-
homology ring structure comes from the world-sheet in-
stanton corrections and space-time instanton corrections
[6, 7]. In fact, the more general vacuum structure of
type //F-theory/heterotic theory compactification can
be tackled by the Hodge variance approach.

In the next work, we will study D-brane in the gen-
eral case. We also try to calculate the D-brane superpo-
tential with the method of A∞ structure of the derived
category Dcoh(X) and path algebras of quivers.
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