Off－shell superpotentials and Ooguri－Vafa invariants of type II／F theory compactification＊

XU Feng－Jun（徐锋军）YANG Fu－Zhong（杨富中）${ }^{1)}$
College of Physical Sciences，University of Chinese Academy of Sciences，Yuquan Road 19 A，Beijing 100049，China

Abstract

In this paper，we calculate the off－shell superpotential of two Calabi－Yau manifolds with three parameters by integrating the period of the subsystem．We also obtain the Ooguri－Vafa invariants with open mirror symmetry．

Key words：superpotential，mirror symmetry，Ooguri－Vafa invariants
PACS：11．27．＋d，02．40．Sf，11．25．Sq DOI： $10.1088 / 1674-1137 / 38 / 3 / 033103$

1 Introduction

When Type II string theory compactfying on Calabi－ Yau threefold with D－brane and background flux，the superpotentials will be generated which in general can divided into two parts－one originated from D－brane and the other from flux．The superpotentials also play an im－ portant role in mathematics which generate the Ooguri－ Vafa invariants and count the number of disks and sphere instantons．

For $D 5$－brane wrapped the whole Calabi－Yau three－ fold，the holomorphic Chern－Simons theory［1］

$$
\begin{equation*}
\mathcal{W}=\int_{X} \Omega^{3,0} \wedge \operatorname{Tr}\left[A \wedge \bar{\partial} A+\frac{2}{3} A \wedge A \wedge A\right] \tag{1}
\end{equation*}
$$

gives the brane superpotential $\mathcal{W}_{\text {brane }}$ ，where A is the gauge field with gauge group $U(N)$ for $N D 5$－branes． When reduced dimensionally，the low－dimenaional brane superpotentials can be obtained as $[2,3]$

$$
\begin{equation*}
\mathcal{W}_{\text {brane }}=N_{v} \int_{\Gamma^{v}} \Omega^{3,0}(z, \hat{z})=\sum_{v} N_{v} \Pi^{v} \tag{2}
\end{equation*}
$$

where Γ^{v} is a special Lagrangian 3 －chain and (z, \hat{z}) are closed－string complex structure moduli and D－brane moduli from the open－string sector，respectively．

The background fluxes $H^{(3)}=H_{\mathrm{RR}}^{(3)}+\tau H_{\mathrm{NS}}^{(3)}$ ，which take values in the integer cohomology group $H^{3}(X, \mathbb{Z})$ ， also break the supersymmetry $N=2$ to $N=1$ ．The $\tau=C^{(0)}+\mathrm{ie}^{-\varphi}$ is the complexified Type IIB coupling field． Its contribution to superpotentials is $[4,5]$

$$
\begin{equation*}
\mathcal{W}_{\text {flux }}(z)=\int_{X} H_{\mathrm{RR}}^{(3)} \wedge \Omega^{3,0}=\sum_{\alpha} N_{\alpha} \cdot \Pi^{\alpha}(z), \quad N_{\alpha} \in Z \tag{3}
\end{equation*}
$$

The contributions of D－brane and background flux
（here the NS－flux is ignored）give together the general form of superpotential as follow $[6,7]$

$$
\begin{equation*}
\mathcal{W}(z, \hat{z})=\mathcal{W}_{\text {brane }}(z, \hat{z})+\mathcal{W}_{\text {flux }}(z)=\sum_{\gamma_{i} \in H^{3}\left(Z^{*}, \mathcal{H}\right)} N_{i} \Pi_{i}(z, \hat{z}) \tag{4}
\end{equation*}
$$

where $N_{i}=n_{i}+\tau m_{\sigma}, \tau$ is the dilaton of type II string and Π_{i} is a relative period defined in a relative cycle $\Gamma \in H_{3}(X, D)$ whose boundary is wrapped by D－branes and D is a holomorphic divisor of the Calabi－Yau space． In fact，the two－cycles wrapped by the D－branes are holomorphic cycles only，if the moduli are at the crit－ ical points of the superpotentials．Thus，the two－cycles are generically not holomorphic．However，according to the arguments of［6－8］，the non－holomorphic two－cycles can be replaced by a holomorphic divisor D of the am－ bient Calabi－Yau space with the divisor D encompassing the two－cycles．

Geometrically speaking，when varying the complex structure of Calabi－Yau space，a generic holomorphic curve will not be holomorphic with the respect to the new complex structure，and will become obstructed to the deformation of the bulk moduli．The requirement for the holomorphy gives rise to a relation between the closed and open string moduli．Physically speaking，it turns out that the obstruction generates a superpoten－ tial for the effective theory depending on the closed and open string moduli．

The off－shell tension of D－branes， $\mathcal{T}(z, \hat{z})$ ，is equal to the relative period $[6,7,9]$

$$
\begin{equation*}
\Pi_{\Sigma}=\int_{\Gamma_{\Sigma}} \Omega(z, \hat{z}) \tag{5}
\end{equation*}
$$

[^0]which measures the difference between the value of onshell superpotentials for the two D-brane configurations
\[

$$
\begin{equation*}
\mathcal{T}(z, \hat{z})=\mathcal{W}\left(C^{+}\right)-\mathcal{W}\left(C^{-}\right) \tag{6}
\end{equation*}
$$

\]

with $\partial \Gamma_{\Sigma}=C^{+}-C^{-}$. The domain wall tension is [10]

$$
\begin{equation*}
T(z)=\left.\mathcal{T}(z, \hat{z})\right|_{\hat{z}=\text { critic points }} \tag{7}
\end{equation*}
$$

where the critical points correspond to $\frac{\mathrm{d} W}{\mathrm{~d} \hat{z}}=0$ [9] and the $C^{ \pm}$is the holomorphic curves at those critical points. The critical points are alternatively defined as the Nother-Lefshetz locus [11]

$$
\begin{equation*}
\mathcal{N}=\{(z, \hat{z}) \mid \pi(z, \hat{z} ; \partial \Gamma(z, \hat{z})) \equiv 0\} \tag{8}
\end{equation*}
$$

where
$\pi(z, \hat{z} ; \partial \Gamma(z, \hat{z}))=\int_{\partial_{\Gamma}} \omega_{\hat{a}}^{(2,0)}(z, \hat{z}), \quad \hat{a}=1, \cdots, \operatorname{dim}\left(H^{2,0}(D)\right)$,
and $\omega_{\hat{a}}^{(2,0)}$ is an element of the cohomology group $H^{(2,0)}(D)$. At those critical points, the domain wall tensions are also known as normal functions giving the AbelJacobi invariants [10-14].

The Superpotential can be calculated by studying the Hodge variation on the related cohomology group. The flat Gauss-Manin connection on the Hodge bundle can give rise to a system of differential equations controlling the periods which determine the mirror map between the A-model and the B-model. The Ooguri-Vafa invariants can be obtained by using the mirror symmetry. See also [15-28] for related work, where in Refs. [17, 18, 21-23] they considered another approach which blows up along the curve C and replaces the pair (X, C) with a non-Calabi-Yau manifold \widehat{X}.

In this note, we will generalize the works [15-28], which only calculated on-shell superpotential, to the offshell superpotential which at the critical point gives the domain wall tensions (on-shell superpotential).

2 Generalized GKZ system and differential operators

The period integrals can be written as

$$
\begin{equation*}
\Pi_{i}=\int_{\gamma_{i}} \frac{1}{P} \prod_{j=1}^{4} \frac{\mathrm{~d} X_{j}}{X_{j}} \tag{10}
\end{equation*}
$$

Where P is the hypersurface equation defined as

$$
\begin{equation*}
P=\sum_{i=1}^{p-1} a_{i} \prod_{k=1}^{4} X_{k}^{\mu_{i, k}} \tag{11}
\end{equation*}
$$

p is the number of integer points μ_{i} of reflexive polyhedron Δ, a_{i} is the moduli determining the complex structure in the B-model.

See more in Ref. [28]. According to the Refs. [29, 30], the period integrals can be annihilated by differential op-
erators

$$
\begin{align*}
\mathcal{L}(l) & =\prod_{l_{i}>0}\left(\partial_{a_{i}}\right)^{l_{i}}-\prod_{l_{i}<0}\left(\partial_{a_{i}}\right)^{l_{i}}, \\
\mathcal{Z}_{k} & =\sum_{i=0}^{p-1} \nu_{i, k}^{*} \vartheta_{i}, \quad \mathcal{Z}_{0}=\sum_{i=0}^{p-1} \vartheta_{i}-1, \tag{12}
\end{align*}
$$

where $\vartheta_{i}=a_{i} \partial_{a_{i}}$. As noted in Refs. [19, 31], the equations $\mathcal{Z}_{k} \Pi\left(a_{i}\right)=0$ reflex the invariance under the torus action, defining torus invariant algebraic coordinates z_{a} on the moduli space of the complex structure of X [10]:

$$
\begin{equation*}
z_{a}=(-1)^{l_{0}^{a}} \prod_{i} a_{i}^{l_{i}^{a}} \tag{13}
\end{equation*}
$$

where $l_{a}, a=1, \cdots, h^{2,1}(X)$ are generators of the Mori cone, one can rewrite the differential operators $\mathcal{L}(l)$ as [10, 30, 31]

$$
\begin{align*}
\mathcal{L}(l)= & \prod_{k=1}^{l_{0}}\left(\vartheta_{0}-k\right) \prod_{l_{i}>0} \prod_{k=0}^{l_{i}-1}\left(\vartheta_{i}-k\right)-(-1)^{l_{0}} z_{a} \prod_{k=1}^{-l_{0}}\left(\vartheta_{0}-k\right) \\
& \times \prod_{l_{i}<0} \prod_{k=0}^{l_{i}-1}\left(\vartheta_{i}-k\right) \tag{14}
\end{align*}
$$

The solution to the GKZ system can be written as [10, 30, 31]

$$
\begin{align*}
& B_{l^{a}}\left(z^{a} ; \rho\right) \\
= & \sum_{n_{1}, \cdots, n_{N} \in Z_{0}^{+}} \frac{\Gamma\left(1-\sum_{a} l_{0}^{a}\left(n_{a}+\rho_{a}\right)\right)}{\Pi_{i>0} \Gamma\left(1+\sum_{a} l_{i}^{a}\left(n_{a}+\rho_{a}\right)\right)} \prod_{a} z_{a}^{n_{a}+\rho_{a}} . \tag{15}
\end{align*}
$$

In this paper we consider the family of divisors \mathcal{D} with a single open deformation moduli \hat{z}

$$
\begin{equation*}
x_{1}^{b_{1}}+\hat{z} x_{2}^{b_{2}}=0 \tag{16}
\end{equation*}
$$

where b_{1}, b_{2} are some appropriate integers. The relative 3 -form $\underline{\Omega}:=\left(\Omega_{X}^{3,0}, 0\right)$ and the relative periods satisfy a set of differential equations [6-8, 10, 19]

$$
\begin{equation*}
\mathcal{L}_{a}(\theta, \hat{\theta}) \underline{\Omega}=\mathrm{d} \underline{\omega}^{(2,0)} \Rightarrow \mathcal{L}_{a}(\theta, \hat{\theta}) \mathcal{T}(z, \hat{z})=0 \tag{17}
\end{equation*}
$$

with some corresponding two-form $\underline{\omega}^{(2,0)}$. The differential operators $\mathcal{L}_{a}(\theta, \hat{\theta})$ can be expressed as [10]

$$
\begin{equation*}
\mathcal{L}_{a}(\theta, \hat{\theta}):=\mathcal{L}_{a}^{\mathrm{b}}-\mathcal{L}_{a}^{\mathrm{bd}} \hat{\theta} \tag{18}
\end{equation*}
$$

for $\mathcal{L}_{a}^{\mathrm{b}}$ acting only on the bulk part from the closed sector, $\mathcal{L}_{a}^{\text {bd }}$ on the boundary part from the open-closed sector and $\hat{\theta}=\hat{z} \partial_{\hat{z}}$. The explicit form of these operators will be given in the following model. From the Eq. (9) one can obtain

$$
\begin{equation*}
2 \pi \mathrm{i} \hat{\theta} \mathcal{T}(z, \hat{z})=\pi(z, \hat{z}) \tag{19}
\end{equation*}
$$

for only the family of divisors \mathcal{D} depending on the \hat{z}. Hence the off-shell superpotential can be obtained by integrating the period on subsystem $\pi(z, \hat{z})$.

3 Superpotentials of hypersurface \boldsymbol{X}_{24} (1, $1,2,8,12)$

The $X_{24}(1,1,2,8,12)$ is defined as the zero locus of polynomial P

$$
\begin{align*}
P= & x_{1}^{24}+x_{2}^{24}+x_{3}^{12}+x_{4}^{3}+x_{5}^{2}+\psi x_{1} x_{2} x_{3} x_{4} x_{5}+\phi x_{1}^{6} x_{2}^{6} x_{3}^{6} \\
& +\chi x_{1}^{12} x_{2}^{12} . \tag{20}
\end{align*}
$$

The GLSM charge vectors l_{a} are the generators of the Mori cone as follows [31]

$$
\begin{array}{c|cccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \tag{21}\\
\hline l_{1} & -6 & 0 & 0 & 0 & 2 & 3 & 0 & 1 \\
l_{2} & 0 & 1 & 1 & 0 & 0 & 0 & -2 & 0 \\
l_{3} & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2
\end{array} .
$$

The mirror manifolds can be constructed as an orbifold by the Greene-Plesser orbifold group acting as $x_{i} \rightarrow \lambda_{k}^{g_{k, i}} x_{i}$ with weights

$$
\begin{align*}
& \mathbb{Z}_{6}: g_{1}=(1,-1,0,0,0), \quad \mathbb{Z}_{6}: g_{2}=(1,0,-1,0,0) \\
& \mathbb{Z}_{3}: g_{3}=(1,0,0,-1,0) \tag{22}
\end{align*}
$$

where we denote $\lambda_{1,2}^{6}=1$ and $\lambda_{3}^{3}=1$.
By the generalized GKZ system, the period on the K3 surface has the form

$$
\begin{align*}
\pi & =\frac{c}{2} B_{\left\{\hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}\right\}}\left(u_{1}, u_{2}, u_{3} ; \frac{1}{2}, \frac{1}{2}, 0\right) \\
& =-\frac{4 c}{\pi^{\frac{3}{2}}} \sqrt{u_{1} u_{2}} u_{3}+\mathcal{O}\left(\left(u_{1} u_{2}\right)^{3 / 2}\right) \tag{23}
\end{align*}
$$

which vanishes at the critical locus $u_{2}=0$. According to Eq. (19), the off-shell superpotentials can be obtained by integrating the π :

$$
\begin{equation*}
\mathcal{T}_{a}^{ \pm}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{2 \pi \mathrm{i}} \int \pi(\hat{z}) \frac{\mathrm{d} \hat{z}}{\hat{z}} \tag{24}
\end{equation*}
$$

with the appropriate integral constants [10], the superpotentials can be chosen as $\mathcal{W}^{+}=-\mathcal{W}^{-}$. In this convention, the off-shell superpotentials can be obtained as

$$
\begin{equation*}
2 \mathcal{W}^{+}=\frac{1}{2 \pi \mathrm{i}} \int_{-\hat{z}}^{\hat{z}} \pi(\zeta) \frac{\mathrm{d} \zeta}{\zeta}, W^{ \pm}\left(z_{1}, z_{2}, z_{3}\right)=\left.\mathcal{W}^{ \pm}\left(z_{1}, z_{2}, z_{3}\right)\right|_{\hat{z}=1} \tag{25}
\end{equation*}
$$

Eventually, the superpotentials are

$$
\begin{align*}
\mathcal{W}^{ \pm}\left(z_{1}, z_{2}, z_{3}, \hat{z}\right)= & \sum_{n_{1}, n_{2}, n_{3}} \frac{\mp c z_{1}^{\frac{1}{2}+n_{1}} z_{2}^{\frac{1}{2}+n_{2}} z_{3}^{n_{3}} \hat{z}^{\frac{-1-2 n_{2}}{2}} \Gamma\left(6 n_{1}+4\right)}{\Gamma\left(2+2 n_{2}\right) \Gamma\left(2+2 n_{1}\right) \Gamma\left(\frac{5}{2}+3 n_{1}\right) \Gamma\left(1+n_{3}\right) \Gamma\left(n_{3}-2 n_{2}\right) \Gamma\left(n_{1}-2 n_{3}+\frac{3}{2}\right)} \\
& \frac{\left\{\left(1-2 n_{2}\right)_{2} F_{1}\left(-\frac{1}{2}-n_{2},-2 n_{2}, \frac{1}{2}-n_{2} ; \hat{z}\right)+\hat{z}\left(1+2 n_{2}\right)_{2} F_{1}\left(\left(\frac{1}{2}-n_{2},-2 n_{2}, \frac{3}{2}-n_{2} ; \hat{z}\right)\right)\right\}}{4 \pi\left(-1+4 n_{2}^{2}\right)} \tag{26}
\end{align*}
$$

For the calculation of instanton corrections, one needs to know the mirror map. The fundamental period ω_{0} is a solution of the Picard-Fuchs equation which we listed in Ref. [28]. The flat coordinates in the A-model at the large radius regime are related to the flat coordinates of the B-model at the large complex structure regime by the mirror map $t_{i}=\frac{\omega_{i}}{\omega_{0}}, \omega_{i}:=\left.D_{i}^{(1)} \omega_{0}(z, \rho)\right|_{\rho=0}$. The openstring mirror maps are
$q_{1}=z_{1}+312 z_{1}^{2}+107604 z_{1}^{3}-z_{1} z_{3}-192 z_{1}^{2} z_{3}-z_{1} z_{3}^{2}+\mathcal{O}\left(z^{4}\right)$,
$q_{2}=z_{2}+2 z_{2}^{2}+5 z_{2}^{3}+z_{2} z_{4}+3 z_{2}^{2} z_{4}+z_{2}^{2} z_{4}^{2}+\mathcal{O}\left(z^{4}\right)$,
$q_{3}=z_{3}+2 z_{3}^{2}+3 z_{3}^{3}+120 z_{3} z_{1}+41580 z_{1}^{2} z_{3}+\mathcal{O}\left(z^{4}\right)$,
$q_{4}=z_{4}-z_{4}^{2}+z_{4}^{3}+\mathcal{O}\left(z^{4}\right)$.
Here $q_{i}=\mathrm{e}^{2 \pi \mathrm{i} t_{i}}$ and we can obtain the inverse mirror map
$z_{1}=q_{1}-312 q_{1}^{2}+87084 q_{1}^{3}+q_{1} q_{3}-864 q_{1}^{2} q_{3}+q_{1} q_{2} q_{3}+\mathcal{O}\left(q^{4}\right)$,

$$
\begin{align*}
z_{2}= & q_{2}-2 q_{2}^{2}+3 q_{2}^{3}+\mathcal{O}\left(q^{4}\right) \\
z_{3}= & q_{3}-2 q_{3}^{2}+3 q_{3}^{3}-120 q_{1} q_{3}+10260 q_{1}^{2} q_{3}+q_{2} q_{3} \\
& -120 q_{1} q_{2} q_{3}+600 q_{1} q_{3}^{2}-4 q_{2} q_{3}^{2}+\mathcal{O}\left(q^{4}\right) \\
z_{4}= & q_{4}+q_{4}^{2}+q_{4}^{3}+\mathcal{O}\left(q^{4}\right) \tag{28}
\end{align*}
$$

Using the modified multi-cover formula [2] for this case

$$
\begin{align*}
\frac{\mathcal{W}^{ \pm}(z(q))}{w_{0}(z(q))}= & \frac{1}{(2 \mathrm{i} \pi)^{2}} \sum_{k \text { odd } d_{3}, d_{4}, d_{1,2} \text { odd } \geqslant 0} n_{d_{1}, d_{2}, d_{3}, d_{4}}^{ \pm} \\
& \times \frac{q_{1}^{k d_{1} / 2} q_{2}^{k d_{2} / 2} q_{3}^{k d_{3}} q_{4}^{k d_{4}}}{k^{2}} \tag{29}
\end{align*}
$$

The superpotentials \mathcal{W}^{+}give Ooguri-Vafa invariants $n_{d_{1}, d_{2}, d_{3}, d_{4}}$ for the normalization constants $c=1$, which are listed in Table 1.

Table 1. Disc invariants $n_{d_{1}, d_{2}, d_{3}, d_{4}}$ for the off-shell superpotential W_{1} of the 3 -fold $\mathbb{P}_{1,1,2,8,12}$ [24].

$d_{4}=0, d_{3}=1$					
$d_{1} / 2 \backslash d_{2} / 2$	1	3	5	7	9
1	1	0	0	0	$\frac{-5}{2}$
3	-848	0	0	0	2120
5	-270978	0	0	0	677445
7	-4107040	0	0	0	10267600
9	-4859101222	0	0	0	12147753055
$d_{4}=0, d_{3}=2$					
$d_{1} / 2 \backslash d_{2}$					
1	$\frac{-9}{16}$	$\frac{-9}{16}$	0	0	$\frac{45}{32}$
3	521	521	0	0	-2605
5	$\begin{array}{r} \overline{2} \\ -1397265 \\ \hline \end{array}$	$\begin{array}{r} \overline{2} \\ -2506065 \\ \hline \end{array}$	167400	-195120	$\begin{gathered} \hline 4 \\ 7890645 \\ \hline \end{gathered}$
79	8 100877911	8 205105111	-118540800	142047360	$\begin{gathered} \hline 16 \\ -553418675 \\ \hline \end{gathered}$
	$\begin{array}{r}160877011 \\ -160323502433 \\ \hline 8\end{array}$	$\underline{226729748767}$	-64409331600	71920841760	$\begin{gathered} \hline 2 \\ 251804856805 \end{gathered}$
	8	8	-64409331600	71920841760	16
$d_{4}=1, d_{3}=1$					
$d_{1} / 2 \backslash d_{2}$	1	3	5	7	9
1	$\frac{-29}{18}$	0	0	$\frac{-7}{2}$	$\frac{-35}{36}$
	18 12296	0	0	2 2968	36 7420 9
3				2968	9
5	$\underline{1309727}$	0	5130	943293	$\underline{1611485}$
	$\frac{3}{59552080}$				$\begin{gathered} \frac{6}{2324840} \end{gathered}$
7	$\frac{5952080}{9}$	0	-3734640	18109280	$\frac{2324840}{9}$
9	$\underline{70456967719}$	0	-1890907740	18897762017	$\underline{50997932065}$
	9				18

4 Superpotential of hypersurface $X_{12}(1$, $1,1,3,6$)

The $X_{12}(1,1,1,3,6)$ is defined as the zero locus of P :
$P=x_{1}^{12}+x_{2}^{12}+x_{3}^{12}+x_{4}^{4}+x_{5}^{2}+\psi x_{1} x_{2} x_{3} x_{4} x_{5}+\phi x_{1}^{4} x_{2}^{4} x_{3}^{4}$.
The GLSM charge vectors in this case are [31]

$$
\begin{array}{c|ccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 \tag{31}\\
\hline l_{1} & -4 & 0 & 0 & 0 & 1 & 2 & 1 \\
l_{2} & 0 & 1 & 1 & 1 & 0 & 0 & -3
\end{array} .
$$

On the mirror manifolds, the Greene-Plesser orbifold group acts as $x_{i} \rightarrow \lambda_{k}^{g_{k, i}} x_{i}$ with weights

$$
\begin{equation*}
\mathbb{Z}_{6}: g_{1}=(1,-1,0,0,0), \mathbb{Z}_{4}: g_{2}=(0,1,2,1,0) \tag{32}
\end{equation*}
$$

where we denote $\lambda_{1}^{6}=1, \lambda_{2}^{4}=1$.
In Ref. [28], we have obtained the period in the subsystem as follows

$$
\begin{equation*}
\pi\left(u_{1}, u_{2}\right)=\frac{c}{2} B_{\left\{\hat{l_{1}}, \hat{l_{2}}\right\}}\left(u_{1}, u_{2} ; 0, \frac{1}{2}\right), \tag{33}
\end{equation*}
$$

where c are some normalization constants not determined by the differential operator. According to Eq. (19), the off-shell superpotentials can be obtained by integrating the π :

$$
\begin{equation*}
\mathcal{T}_{a}^{ \pm}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{2 \pi \mathrm{i}} \int \pi(\hat{z}) \frac{\mathrm{d} \hat{z}}{\hat{z}} \tag{34}
\end{equation*}
$$

with the appropriate integral constants [10], the superpotentials can be chosen as $\mathcal{W}^{+}=-\mathcal{W}^{-}$.

Eventually, The superpotential are

$$
\begin{align*}
\mathcal{W}^{ \pm}\left(z_{1}, z_{2}, z_{3}, \hat{z}\right)= & \sum_{n_{1}, n_{2}, n_{3}} \frac{\mp c z_{1}^{\frac{1}{2}+n_{1}} z_{2}^{n_{2}} \hat{z}^{\frac{-1-2 n_{1}}{2}} \Gamma\left(4 n_{1}+\frac{5}{2}\right)}{\Gamma\left(1+2 n_{2}\right) \Gamma\left(1+n_{2}\right) \Gamma\left(\frac{3}{2}+n_{1}\right) \Gamma\left(2+2 n_{1}\right) \Gamma\left(n_{1}-3 n_{2}+\frac{3}{2}\right)} \\
& \times \frac{\left\{\left(1-2 n_{1}\right)_{2} F_{1}\left(-\frac{1}{2}-n_{1},-2 n_{1}, \frac{1}{2}-n_{1} ; \hat{z}\right)+\hat{z}\left(1+2 n_{1}\right)_{2} F_{1}\left(\left(\frac{1}{2}-n_{1},-2 n_{1}, \frac{3}{2}-n_{1} ; \hat{z}\right)\right)\right\}}{4 \pi\left(-1+4 n_{1}^{2}\right)} \tag{35}
\end{align*}
$$

Table 2. Disc invariants $n_{d_{1}, d_{2}, d_{3}}$ for the off-shell superpotential \mathcal{W}_{1}^{+}of the 3 -fold $\mathbb{P}_{1,1,1,3,6}[12]$.

$d_{3}=0$					
$d_{1} / 2 \backslash d_{2}$					
1	1	$\underline{-13}$	$\underline{2693}$	19517	7703
		16	1024	9	16384
3	$\underline{1312}$	68231	$\underline{-23305385}$	$\underline{-3519745}$	$\underline{-1672979243}$
	243	1296	82944	18	3981312
5	$\underline{63544513}$	$\underline{135578197}$	346285919719	$\underline{-9330830923}$	$\underline{-1608130586479}$
	28350	12960	5806080	1944	92897280
7	$\underline{172956753731}$	5372183267179	$\underline{-21892937788889}$	32917422417037	$\underline{-282745996819463}$
	1389150	3175200	8128512	136080	43352064
9	$\underline{13409490308809711}$	$\underline{216480619417211431}$	$\underline{-19644707820777819881}$	-82475053081873279	311040357663729110033
	600112800	355622400	13655900160	7620480	93640458240
$d_{3}=1$					
$d_{1} / 2 \backslash d_{2}$	0	1	2	3	4
1	-10	175	-18923	23077	$\underline{-132267135}$
	9	144	2304	147456	2097152
3	3380	-82429	48484423	1376117443	601661687053
	81	432	41472	1327104	42467328
5	$\underline{-1138840}$	$\underline{403544255}$	$\underline{-534921106991}$	166478391791	$\underline{-20526886980289679}$
	567	18144	2903040	3440640	5945425920
7	3400299058	-835235546479	786036635335453	4714357006892647	-44180037787516945679
	42525	272160	60963840	650280960	62426972160
9	$\underline{-121337433752293}$	$\underline{-99152104754391869}$	$\underline{15374804216369862857}$	$\underline{-62693086142469434527}$	$\underline{-923658211082431780070641}$
	33339600	152409600	8534937600	6242697216	3995326218240

For the calculation of instanton corrections, one needs to know the mirror map. The fundamental period ω_{0} is the solution of the Picard-Fuchs equation which we listed in Ref. [28]. The flat coordinates in the A-model at the large radius regime are related to the flat coordinates of the B-model at the large complex structure regime by the mirror map $t_{i}=\frac{\omega_{i}}{\omega_{0}}, \omega_{i}:=\left.D_{i}^{(1)} \omega_{0}(z, \rho)\right|_{\rho=0}$. The openstring mirror maps are

$$
\begin{align*}
& q_{1}=z_{1}+40 z_{1}^{2}+1876 z_{1}^{3}+2 z_{1} z_{2}-13 z_{1} z_{2}^{2}+z_{1} z_{2} z_{3}+\mathcal{O}\left(z^{4}\right) \\
& q_{2}=z_{2}-6 z_{2}^{2}+63 z_{2}^{3}+z_{2} z_{3}-9 z_{2}^{2} z_{3}+\mathcal{O}\left(z^{4}\right) \tag{36}\\
& q_{3}=z_{3}-z_{3}^{2}+z_{3}^{3}+\mathcal{O}\left(z^{4}\right)
\end{align*}
$$

here $q_{i}=\mathrm{e}^{2 \pi \mathrm{i} t_{i}}$ and we can obtain the inverse mirror map
as follows

$$
\begin{aligned}
& z_{1}=q_{1}-40 q_{1}^{2}+1324 q_{1}^{3}-2 q_{1} q_{2}+268 q_{1}^{2} q_{2}+5 q_{1} q_{2}^{2}+\mathcal{O}\left(q^{4}\right), \\
& z_{2}=q_{2}+6 q_{2}^{2}+9 q_{2}^{3}-36 q_{1} q_{2}-468 q_{1} q_{2}^{2}+630 q_{1}^{2} q_{2}+\mathcal{O}\left(q^{4}\right), \\
& z_{3}=q_{3}+q_{3}^{2}+q_{3}^{3}+\mathcal{O}\left(q^{4}\right) .
\end{aligned}
$$

Using the modified multi-cover formula [2] for this case

$$
\begin{align*}
\frac{\mathcal{W}^{ \pm}(z(q))}{w_{0}(z(q))}= & \frac{1}{(2 \pi \mathrm{i})^{2}} \sum_{k \text { odd } d_{d_{1}} \text { odd }, d_{2,3} \geqslant 0} n_{d_{1}, d_{2}, d_{3}}^{ \pm} \\
& \times \frac{q_{1}^{k d_{1} / 2} q_{2}^{k d_{2}} q_{3}^{k d_{3}}}{k^{2}} . \tag{38}
\end{align*}
$$

The superpotentials \mathcal{W}^{+}give Ooguri-Vafa invariants
$n_{d_{1}, d_{2}, d_{3}}$ for the normalization constants $c=1$, which are listed in Table 2.

5 Summary

In this paper, we make a further step of previous work [28] and calculate the off-shell superpotential. By open mirror symmetry, we also compute the Ooguri-Vafa invariants from the A-model expansion.

The superpotentials of Type II string theory are important in both physics and mathematics. It also relates to F-theory by open-closed duality $[15,19,32]$. In type

II /F-theory compactification, the vacuum structure is determined by the superpotentials, whose second derivative gives the chiral ring structure. The quantum cohomology ring structure comes from the world-sheet instanton corrections and space-time instanton corrections $[6,7]$. In fact, the more general vacuum structure of type II /F-theory/heterotic theory compactification can be tackled by the Hodge variance approach.

In the next work, we will study D-brane in the general case. We also try to calculate the D-brane superpotential with the method of A_{∞} structure of the derived category $D_{\text {coh }}(X)$ and path algebras of quivers.

References

1 Witten E. Prog. Math., 1995, 133: 637-678
2 Aganagic M, Vafa C. arXiv: hepth/0012041
3 Lerche W. arXiv: hepth/0312326
4 Mayr P. Nucl. Phys. B, 2001, 593: 99-126
5 Taylor T R, Vafa C. Phys. Lett. B, 2000, 474: 130-137
6 Lerche W, Mayr P, Warner N. arXiv: hepth/0208039
7 Lerche W, Mayr P, Warner N. arXiv: hepth/0207259
8 Jockers H, Soroush M. Commun. Math. Phys., 2009, 290: 249290
9 Witten E. Nucl. Phys. B, 1997, 507: 658-690
10 Alim M, Hecht M, Jockers H et al. JHEP, 2011, 1106: 103
11 Clemens H. arXiv: mathAG/0206219
12 LI S, LIAN B H, Yau S T. arXiv: mathAG/0910.4215
13 Morrison D R, Walcher J. arXiv: hepth/0709.4028
14 Griffiths P. Am. J. Math., 1979, 101: 96
15 Jockers H, Mayr P, Walcher J. Adv. Theor. Math. Phys., 2010, 14: 1433-1514
16 Alim M, Hecht M, Mayr P et al. JHEP, 2009, 0909: 126
17 Grimm T W, Ha T W, Klemm A et al. Nucl. Phys. B, 2009,

816: 139-184

18 Grimm T W, Ha T W, Klemm A et al. Nucl. Phys. B, 2010, 838: 458-491
19 Alim M, Hecht M, Jockers H et al. Nucl. Phys. B, 2010, 841: 303-338
20 Aganagic M, Beem C. JHEP, 2011, 1112: 060
21 Grimm T W, Ha T W, Klemm A et al. JHEP, 2010, 1004: 015
22 Grimm T W, Klemm A, Klevers D. JHEP, 2011, 1105: 113
23 Klevers D. Fortsch. Phys., 2012, 60: 3-213
24 Fuji H, Nakayama S, Shimizu M et al. J. Phys. A, 2011, 44: 465401
25 Shimizu M, Suzuki H. JHEP, 2011, 1103: 083
26 Alim M, Hecht M et al. arXiv: hepth/1110.6522
27 Walcher J. arXiv: hepth/1201.6427
28 XU Feng-Jun, YANG Fu-Zhong. arXiv: hepth/1206.0445
29 Batyrev V V, van Straten D. Commun. Math. Phys., 1995, 168: 493-534
30 Batyrev V V. J. Alg. Geom., 1994, 3: 493-545
31 Hosono S, Klemm A, Theisen S et al. Commun. Math. Phys., 1995, 167: 301-350
32 Mayr P. Adv. Theor. Math. Phys., 2002, 5: 213-242

[^0]: Received 27 April 2013，Revised 30 September 2013
 ＊Supported by National Natural Science Foundation of China（11075204）and President Fund of GUCAS（Y05101CY00）
 1）E－mail：fzyang＠ucas．ac．cn
 © 2014 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

