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Abstract: An appropriate density dependence of hyperon potentials is important for the stiffening of the equation

of state and massive neutron stars. To persist in covariance and thermodynamic consistency, the rearrangement

term is indispensable. In this work, we derive the rearrangement term for hyperon potentials with arbitrary density-

dependence. The importance of the rearrangement term is also exhibited in numerical instances.
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1 Introduction

Baryon-baryon interactions are fundamentally im-
portant to study the nuclear equation of state and ac-
cordingly the nuclear phenomenology. The nucleon-
nucleon interactions have been extensively investigated
in free space by the phase shift experiments, and a vari-
ety of theoretical potential models reproduced the low-
momentum physics consistently [1]. In nuclear medium,
the nucleon-nucleon interactions can be studied success-
fully by using many-body approaches such as the Brueck-
ner theory [2]. However, knowledge about in-medium
hyperon-baryon interactions is still rather limited due
to the fact that direct hyperon-baryon scattering exper-
iments are not readily available. This turns out to be
evident in astrophysical applications. For instance, it
was found that hyperonization may reduce the maximum
mass of neutron stars by as much as 3/4M� [3, 4]. A re-
cent study of the in-medium hyperon potentials in the
Brueckner approach indicates that the resulting hyperon
equation of state (EOS) can just produce the maximum
mass of neutron stars below 1.4M�, which is inconsistent
with the observation of the massive neutron stars with
2M� [5–7]. In particular, the 2M� pulsar J1614-2230,
measured rather accurately with the Shapiro delay [8],
sets a stringent constraint on the theoretical models.
Provided the hyperons are included, the conventional
consideration that previously assumes similar in-medium
hyperon potentials to those of nucleons is thus mendable
so as to obtain a stiff EOS for more massive neutron
stars.

The starting point of this work is the relativistic

density-dependent model where the density-dependence
is induced by the Brown-Rho (BR) scaling [9–11]. For
the strange sector, we assume various density dependen-
cies of the hyperon potentials with the aim of stiffening
the hyperon EOS. To persist in the covariance and ther-
modynamic consistency, we first derive the rearrange-
ment term for arbitrary density-dependencies of hyperon
potentials. This derivation also provides a complemen-
tary note to the rearrangement term used in Ref. [12].
Then, the numerical instances are carried out to show
the importance of the rearrangement term in the pres-
sure of isospin-asymmetric matter and the mass-radius
relation of neutron stars.

2 Rearrangement term with inclusion of

hyperons

The derivation of the rearrangement term is first
performed in the model without hyperons. With this
primer, the formula is extended to include the hyper-
ons with arbitrary density-dependent coupling with non-
strange mesons.

2.1 A simple model without hyperons

The model Lagrangian with the density-dependent
parameters is written as [9]
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where ψB, σ, ω, and b0 are the fields of the baryons,
scalar, vector, and isovector-vector mesons, with their
masses M∗

B, m∗

σ, m∗

ω, and m∗

ρ, respectively. Fµν and Bµν

are the strength tensors of the ω and ρ mesons, respec-
tively. The meson coupling constants and masses with
asterisks denote the density dependence, given by the
BR scaling [9, 13, 14]. The energy density and pressure
read, respectively,

E =
1

2
m∗2

ωω
2
0+

1

2
m∗2

ρ b
2
0+

1

2
m2

φφ
2
0+

1

2
m∗2

σ σ
2

+
1

2
m2

σ∗σ∗2+
∑

i

2

(2π)3

∫kFi

0

d3k E∗

i , (2)

p =
1

2
m∗2

ωω
2
0+

1

2
m∗2

ρ b
2
0+

1

2
m2

φφ
2
0

−
1

2
m∗2

σ σ
2
−

1

2
m2

σ∗σ∗2
−ΣR

0 ρ

+
1

3

∑

i

2

(2π)3

∫kFi

0

d3k
k

2

E∗
i

(3)

where i stands for the species of protons and neutrons.
The rearrangement term ΣR,0, caused by the density-
dependent parameters, is first induced in the Dirac equa-
tion by assuming the field amplitude dependence of the
parameters. In the RMF, this dependence turns out to
be the density dependence [15]. In the evaluation of the
derivatives over the density, the rearrangement term thus
come up inevitably, for instance, in the expression of
the pressure. Next, we calculate the chemical potential,
which is a derivative of the energy density over the den-
sity. For the chemical potential of protons, it reads

µp=
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where ρ3 = ρn−ρp, CωN = g∗ω/m
∗

ω, CρN = g∗ρ/m
∗

ρ, and

C̃σN=m∗

σ/g
∗

σ with m∗

N=M∗

N−g
∗

σσ being the nucleon effec-
tive mass. The last two terms in Eq. (5) merge into the
term −ρs∂M∗

N/∂ρp according to the equation of motion
of the σ meson, and it disappears in models without the
BR scaling. For neutrons, the chemical potential can be
given similarly as,
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Because the proton and neutron densities can be ex-
pressed as a function of the total density and the isospin
asymmetry parameter, namely

ρn= ρn(ρ,δ)=ρ(1+δ)/2,

ρp= ρp(ρ,δ)=ρ(1−δ)/2,
(8)

the derivative of the energy density over the total density
is given as
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With this relation, we thus give the rearrangement term
as
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The rearrangement term is usually regarded to be in-
dependent of isospin asymmetry, and Eq. (10) gives the
rearrangement term in nucleonic matter.

2.2 Inclusion of hyperons

The Lagrangian (1) can be extended to include hy-
perons. The coupling of mesons with hyperons can gen-
erally be given as the parameters XσY, XωY, and XρY,
which are ratios of the meson coupling with hyperons to
that with nucleons. In this work, their ratio parameters
are regarded to be density-dependent. In the following,
we derive the rearrangement term with these additional
parameters. For hyperons, we include additionally the
LY that is characterized by the strange meson exchange:

LY = ψY[gσ∗Yσ
∗
−gφYγµφ

µ]ψY−
1

4
ΦµνΦµν

+
1

2
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−m2
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where Φµν is the strength tensor of the φ field, and
the parameters are assumed to be density independent.
Here, σ∗ (i.e., f0, 975 MeV) and φ (1020 MeV) are
the scalar and vector strange mesons, respectively. The
strange mesons σ∗ and φ are essential to describe the
strong ΛΛ attraction [16, 17].
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We start with the energy density provided by the ω

meson, termed Eω:
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where the first equality accords to the equation of mo-
tion for the ω meson. We may define the parameter
Cωi=g

∗

ωi/m
∗

ω where the subscript i runs over all species
of baryons and g∗ωi = g∗ω for nucleons. The derivative
with respect to the respective density contributes to the
chemical potential of baryon, similar to the derivation of
Eqs. (4), (6), whereas the rearrangement term just needs
the derivative over the total density in the following
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where the second term contributes to the rearrangement
term:
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For the ρ meson, the expression is similar
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Now, we write down the terms concerning the σ and σ∗
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where the last term comes from the derivative of the ki-
netic term, and we take the mass and coupling constant
of the strange meson to be density independent. Using
the definition of the nucleon effective mass and hyperon
effective mass (m∗

Y=M∗
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∗), it arrives at
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With results in Eqs. (14), (15), (17) and (18), we give
the final expression of the rearrangement term including
the contributions from hyperons
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The parameters of the model are assumed to be only
dependent on the density rather than the isospin asym-
metry. This leads to the equality of the total and all
individual rearrangement terms, and the chemical equi-
librium is not affected by the rearrangement term. With
this rearrangement term and the summation of kinetic
terms over all species in Eqs. (2) and (3), one obtains
the energy density and pressure of isospin-asymmetric
hyperonized matter.

2.3 Numerics

Here, we manifest numerically the role of the term
∆σ in Eq. (19) based on the RMF models SLC and
SLCd [18]. The unique difference between the SLC and
SLCd is the isospin-dependent interactions provided by
the ρ meson, which produce different density depen-
dencies of nuclear symmetry energy. Quantitatively, the
slope parameter L at saturation density is L=92.3 MeV
and 61.5 MeV for the SLC and SLCd, respectively. After
the RMF models SLC and SLCd are extended to include
the hyperonizations, we need first of all to determine the
parameters for hyperons. Apart from the usual case that
the ratios of the meson-hyperon couplings to the meson-
nucleon ones are taken to be constant, we consider here a
scheme that the meson-hyperon coupling constant is sep-
arated to be density-dependent and density-independent
parts. Nevertheless, the hyperon potentials [19–21]

U (N)
Λ =−30 MeV, U (N)

Ξ =−18 MeV, (20)

in nuclear matter at saturation density are used to pre-
serve the relation between the vector and scalar me-
son coupling constants. For the strange mesons, we
adopt the density-independent coupling constants for
simplicity and follow the determination of parameters
in Ref. [17] by fitting the potentials for the Λ and Ξ hy-
perons in Ξ matter U (Ξ)

Λ =U (Ξ)
Ξ =−40 MeV.

The density dependence of parameters is described by
the scaling functions that are the ratios of the in-medium
parameters to those in the free space. For the nucleonic
sector, we take the scaling functions ΦiN(ρ) with i denot-
ing the meson species [18]. For the hyperonic sector, we
consider the following scaling functions for the meson-
hyperon coupling constants that consist of two terms:

ΦωΛ(ρ)=
1

3
ΦωN(ρ0)+

2

3
ΦωN(ρ),

ΦωΞ(ρ)=
2

3
ΦωN(ρ0)+

1

3
ΦωN(ρ),

ΦσΛ(ρ)=(1−fσΛ)ΦσN(ρ0)+fσΛΦσN(ρ),

ΦσΞ(ρ)=(1−fσΞ)ΦσN(ρ0)+fσΞΦσN(ρ),

(21)
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Table 1. Meson-hyperon coupling constants in various cases with models SLC and SLCd. The coupling constants
in the medium are obtained as g∗

iY=g0
iYΦiY(ρ). The parameters listed here are free of the parameter fσY. For the

vector meson-hyperon couplings, we take in the calculation the relations: g0
ωΣ=g0

ωΛ, g0
ρΣ=2g0

ρΞ and g0
ρΛ=0.

model X0
ωΛ gσ∗Λ gσ∗Σ gσ∗Ξ g0

σΛ g0
σΣ g0

σΞ g0
ωΛ g0

ωΞ g0
ρΞ ρo

Λ/ρ0

SLC 1/3 5.998 7.545 9.713 3.475 1.416 3.132 3.442 3.442 3.802 2.3

2/3 6.146 7.651 9.764 5.920 3.861 3.063 6.884 3.442 3.802 2.7

0.8 6.548 9.595 10.320 6.689 4.840 6.555 8.261 8.261 3.802 3.0

SLCd 1/3 5.998 7.545 9.713 3.475 1.416 3.132 3.442 3.442 5.776 2.4

2/3 6.146 7.651 9.764 5.920 3.861 3.063 6.884 3.442 5.776 2.9

0.8 6.548 9.595 10.320 6.689 4.840 6.555 8.261 8.261 5.776 3.0

where ρ0 is the saturation density, fσY is an adjustable
constant, and the scaling function ΦρΞ for the ρ meson
is taken as the same as that of the ω meson. The fac-
tors 1/3 and 2/3 are taken in the vector meson scal-
ing functions according to constituent quark composi-
tions and assuming the density-independent strange sec-
tor in hyperons. The above relation leads to the density-
dependent coupling ratios

XiY=X0
iYΦiY(ρ)/ΦiN(ρ), i=σ,ω,ρ, (22)

with the X0
iY being given at zero density. Eq. (21) pro-

duces the relation ΦiY≡ΦiN at saturation density. Thus,
we do not need to readjust the parameter gσY(ρ0) as fσY

changes. Though other parameters are free of choices of
fσY, large values of fσY are preferred in the calculation

Fig. 1. The pressure of hyperonized matter as a
function of density with and without the term ∆σ.

to keep the monotonously rising trend of the pressure
with the increase of the density. The ratio XσY changes
with the parameter fσY, giving rise to the nonzero con-
tribution to the rearrangement term, see Eq. (19). The
parameters are tabulated in Table 1.

In Fig. 1, the pressure of asymmetric matter with
hyperonization is shown as a function of density. The
term ∆σ starts to contribute to the pressure with the
appearance of hyperons at the density about 2.5ρ0. The
magnitude of the ∆σ term goes up with the descending
fσY. With the value 0.7 shown in Fig. 1, the ∆σ term has
a contribution as large as 20% to the total pressure. This
indicates that a correct derivation of the rearrangement
term in hyperonized matter is rather important.

Shown in Fig. 2 is the mass-radius (M-R) relations of
neutron stars obtained from solving the standard TOV
equation. The ∆σ term contributes significantly to the
M-R relations, while it decreases with the increase of
fσY. On the other hand, the role of the ∆σ is small in
affecting the maximum mass of neutron stars. This is
attributed to the modelling that suppresses the hyperon
fractions at high densities.

Fig. 2. (color online) The mass-radius relation of
neutron stars. The curves are obtained with the
parameter fσY =0.7 (black) and 0.8 (blue). The
full (dashed) line stands for the result with (with-
out) the term ∆σ.
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3 Summary

In this work, different density dependencies for the
nucleon and hyperon potentials are considered to be con-
sistent with the stiff EOS, which is suggested by the

recent observation of massive neutron stars. The rear-
rangement term is derived for hyperonized asymmetric
matter with arbitrary density-dependence of the hyperon
potential. The importance of the rearrangement term is
exhibited numerically in the pressure of asymmetric mat-
ter and the mass-radius relation of neutron stars.
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