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Anomalous spin of the Chern-Simons-Georgi-Glashow model *
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Abstract: With the Coulomb gauge, the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac

formalism for the constrained system. Combining the Gauss law and Coulomb gauge consistency condition, the

difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be

an anomalous spin. The reason for this result lies in the fact that the Schwinger energy momentum tensor and the

canonical one have different symmetry properties in the presence of the Chern-Simons term.
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1 Introduction

The Chern-Simons (C-S) field has applications in
many branches of physics. It is a topological term which
does not contribute to the dynamics of the gauge field,
but it gives a topological mass to the gauge field [1, 2]. It
only exists in the odd dimension of the space time, and
can lead to fractional spin and fractional charge [3, 4].
In the Maxwell-Chern-Simons-Higgs (MCSH) theories,
both Abrikosov-Nielsen-Olesen (ANO) vortices and C-S
vortices can be constructed [5, 6]. C-S vortices have ring-
shaped magnetic flux, different from that of the ANO
vortices with a Gauss-like shape [7]. Many C-S models
are used to explain the quantum Hall effects and high
temperature superconductors [8, 9], since C-S vortices
carry fractional spin and behave as anyons-like objects.

The fractional spin in many C-S theories has struc-
tural similarity, this is a remarkable feature. When the
theory involves the Maxwell term, or the non-Abelian
Yang-Mill piece, the calculation of the spin becomes sub-
tle. A novel method to calculate the fractional spin was
invented to overcome these difficulties [10–12], by cal-
culating the difference between the Schwinger angular
momentum and the canonical angular momentum. The
difference is a compact form and can be interpreted as
the spin of the vortex. When the asymptotic form of the
gauge form in a vortex configuration is used, the differ-

ence becomes the common fractional spin. A question
arises naturally: Why does this method succeed? In this
letter, this method will be used to calculate the anoma-
lous spin of the CSGG model. Since the scalar field in
the Chern-Simons-Georgi-Glashow (CSGG) model is in
the adjoint representation, no vortex configurations can
be constructed. Combining the Gauss law and Coulomb
gauge consistency condition, the solution of the gauge
field is given. With this solution, the anomalous spin
term is still obtained, and this method is valid in the
presence of the C-S term. The reason lies in the fact
that the Schwinger energy momentum tensor has dif-
ferent symmetry properties from the canonical one. In
Section 3§we are going to explain this with more detail.

The advantage of the Coulomb gauge is that there is
no time derivative term in the gauge fixed action. The in-
frared divergence in the Maxwell-Chern-Simons (MCS)
theory occurs when the Coulomb gauge is applied [1].
There are also some ambiguities in the Yang-Mills Feyn-
man integrals due to the absence of the time derivatives
in the action [13]. The consistency of the non-Abelian
C-S theory in the Coulomb gauge at any perturbation or-
der was investigated by Ferrai and Lazzizzera [14]. With
the pure non-Abelian C-S term, the Hamilton is zero
because the C-S term contributes nothing to the dynam-
ics. However, taking account of the Gauss law and the
Coulomb gauge, the communication relation between the
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gauge fields vanish identically at any perturbative order
[14]. In Section 2, we exploit the quantization of the non-
Abelian C-S theory with matter field, i.e. the CSGG
model, by the Dirac quantization formalism. We will
show that even with the matter field, the combination of
Gauss law and the Coulomb gauge also leads to the dis-
appearance of the communication relation between the
gauge fields. This is helpful for studying the perturba-
tion at any order, for example the quantum scattering
amplitudes.

2 Canonical quantization

The 2+1 dimensional Lagrangian of the CSGG model
in the component form is written as [15]

L = −1

4
F a

µνF µν,a+
κ

4
εµνρ

[

F a
µνAa

ρ−
g

3
fabcAa

µAb
νAc

ρ

]

+
1

2
(Dµφa)(Dµφa)−m2

2
φaφa−λ

4
(φaφa)2, (1)

where the a, b, c denote the group indices, the Greek
indices µ,ν,ρ,... = 0,1,2 denote the space-time. Un-
der the gauge transformation, the variation of the La-
grangian has a variation term proportional to κ. Thus,
κ = g2n/(4π) (n ∈ Z) must be a quantized constant in
order to leave the quantum amplitude gauge invariant.
The φa carries the index of the gauge group, so it be-
longs to the adjoint representation. This gauge group
is not fixed in the present discussion, it can be SU(N),
SO(N), USp(2N), etc. If we take it to be SO(3), the
well-known ’t Hooft-Polyakov monopole solution exists
in this model. fabc is an antisymmetric tensor. g and λ
are the coupling constants for Aµ and φa, respectively.
The gauge field strength and the covariant derivative Dµ

are written as

F a
µν = ∂µAa

ν−∂ν Aa
µ+gfabcAb

µAc
ν , (2)

Dµφa = ∂µφa+gfabcAb
µφc. (3)

The Euler-Lagrangian equation can be calculated

DνF
νµ,a+

κ

2
εµνρF a

νρ+gfabcDµφbφc= 0, (4)

[

DνD
ν−m2+λ(φbφb)

]

φa= 0. (5)

The canonical momentum of the field is defined to be
πX ≡ ∂L/∂Ẋ, where X denotes any field. With this
definition, the canonical momenta of the gauge and the
matter fields are

π
µ,a=−F 0µ,a+

κ

2
ε0µρAa

ρ, (6)

π
a
φ=D0φa. (7)

For µ=0, π0,a =0 gives a constraint. For µ= i, one has

π
i,a=−F 0i,a+

κ

2
ε0ijAa

j , which contains a time derivative

term. Therefore, the gauge field Aa
µ has dynamics in the

CSGG model. The canonical Hamiltonian is written as

HC=−1

2
π

a
i π

i,a−Aa
0 ∂i

π
a
i −gfabc

π
a
i A

b
0A

i,c+
κ

2
εij

π
a
i A

a
j

+
1

2
π

a
φπ

a
φ−gfabc

π
a
φAb

0φ
c−κ2

8
Ai,aAa

i +
1

4
F a

ijF
ij,a

+
κg

12
εµνρfabcAa

µAb
νAc

ρ−
κ

4
εijAa

0F
a
ij

−1

2
Diφ

aDiφa+
m2

2
φaφa+

λ

4
(φaφa)2. (8)

The definition of π
a
µ gives that

Λa
1=π

a
0≈0, (9)

which is called the primary constraint by Dirac [16]. The
total Hamiltonian is given by

HT=HC+ηaΛa
1 , (10)

where ηa is the Lagrangian multiplier. The consistency
condition requires that

Λ̇a
1=

{

π
0,a,

∫
d2xHT

}

=∂i
π

a
i +

κ

2
εij ∂iA

a
j +gfabcAi,b

π
c
i+gfabc

π
b
φφc

≡Λa
2≈0. (11)

This new constraint Λa
2 is the secondary constraint,

which is the Gauss law. No further constraint is pro-
duced when Λ̇a

2 is considered. One can verify that
{Λa

1 ,Λ
a
2}≈ 0, this means both Λa

1 and Λa
2 are first class

constraints. Dirac conjectured that all the first class con-
straints can be added to the Hamiltonian and the dynam-
ics of the system do not change [16]. Costa et al. proved
that Dirac conjecture is valid when all the constraints are
first class [17]. π

a
0 is not the physical degree of freedom,

since a photon has only two physical degrees. Thus, Λa
1

can be eliminated without changing the dynamics, i.e.,
the Hamiltonian equations. The constraint Λa

2 is the gen-
erator of the gauge transformation [18].

In order to quantize the system, two gauge fixing con-
ditions should be introduced in order to fix the gauge.
First we consider the Coulomb gauge

Ωb
1≡∂iA

i,b≈0. (12)

This gauge has advantages when we consider the static
configuration of the soliton system, since it has no time
derivative. In Dirac’s procedure, the extended Hamilto-
nian can be obtained by adding the secondary first class
constraint, which is written as

HE=HC+ηa
1Λa

1+ηa
2Λa

2
∼=HT. (13)

The sign “∼=” means that the Lagrangian multiplier ηa
2

can be absorbed to Aa
0 by redefining Aa

0
′=Aa

0+ηa
2 . This
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is evident support for the Dirac conjecture. Another
condition Ωb

2 should be consistent with Ωb
1, Requiring

{Ωb
1,HT}≈0, one obtains

Ωb
2={Ωb

1,HT}=−∂iπ
i,a+

κ

2
εij ∂iA

a
j +∂i

DiA
a
0 . (14)

The non-trivial communication relations are listed as

{Λa
1(x),Ωb

2(y)}=−∂i

yDab
i (y)δ(x−y), (15)

{Λa
2(x),Ωb

1(y)}=−∂i

yDab
i (x)δ(x−y), (16)

where Dab
i ≡∂iδ

ab+gfabcAc
i . Now Λa

i , Ωb
j can be consid-

ered to be the secondary class constraints, which form a
non-singular matrix Cab(x,y)

Cab(x,y)=

(

0 −∂i

yDab
i (y)

−∂i

yDab
i (x) 0

)

δ(x−y). (17)

The inverse matrix of the constraint Cab(x,y) can be
solved by introducing a Green function Gcb(x,y) [14, 19],

Dac
i (x)∂i

xGcb(x,y)=δabδ(x−y). (18)

Supposing Gab(x,y) has a good behavior at infinity, one
obtains

(C−1)ab(x,y)=

(

0 Gab(x,y)

−Gab(x,y) 0

)

. (19)

The quantized communication relation (QCR) should be
realized by the Dirac bracket, which is defined as

{F a(x),Db(y)}∗={F a(x),Db(y)}−
∫
dzdw

×{F a(x),Λc
i (z)}·(C−1)cd

ij (z,w)

·{Ωd
j (w),Db(y)}, (20)

where Cab
ij (x,y)≡{Λa

i (x),Ωb
j (y)}. To quantize the theory,

we need to replace the Dirac brackets with the commuta-
tors. The QCR of the gauge field Aa

i and π
b
j is calculated

to be
[

Aa
i (x),πb

j(y)
]

=δijδ
abδ(x−y). (21)

One can also verify that [Aa
i (x),Ab

j(y)] = 0. This gives
the correct quantization result for the CSGG model. In
a pure non-Abelian C-S theory, the C-S field theories are
shown to be finite and free in the Coulomb gauge [14]. It
was questioned whether such commutation relationship
(CR) vanishes at all perturbative orders in the presence
of the matter field. Our analysis above shows that the
CR of the gauge fields vanishes identically by taking into
account the Gauss law and the Coulomb gauge fixing in
the CSGG model.

3 Anomalous spin

Banerjee and Mukherjee proposed a novel method to
calculate the fractional spin term in the C-S system [11].

This spin is interpreted as the difference between the
angular momentum obtained by modifying Schwinger’s
energy-momentum tensor with Gauss constraint, and the
canonical (Noether) angular momentum. The fractional
spin term can also be calculated by the canonical angular
momentum in the quantized system [20, 21]. Here, we
make use of this method to calculate the spin of CSGG
model, and obtain an anomalous spin term. The suc-
cess of this method is that the symmetric properties of
the modified Schwinger’s energy momentum tensor are
different from that of the canonical energy momentum.

The Schwinger’s energy-momentum tensor is given by
[19]

Θµν =
2√−g

δS

δgµν
=F a

µρF
ρ,a
ν

+
1

2
(DµφaDνφ

a+Dνφ
aDµφa)−gµνL. (22)

It is evident that this tensor is symmetric, i.e., T µν=T νµ.
The is because the metric of the system is symmetric,
gµν = gνµ. However, the C-S term does not contain the
metric. Thus, the C-S term has no contribution to the
Schwinger energy momentum tensor. In the presence of
constraints, a more general expression for Θµν can be
given by

ΘT
µν =Θµν+Γ a

µνGa, (23)

where Γ a
µν is the Lagrangian multiplier. Since Ga is the

generator of gauge transformations, ΘT
µν is the gauge in-

variant on the constraint surface [11], i.e.,

{ΘT
µν ,Ga}≈0. (24)

In order to keep the correct spatial translation, a suit-
able choice for Γ a

0i is Γ a
0i=−Aa

i [11]. Thus, the Schwinger
energy momentum conserves both the gauge and Lorentz
symmetry.

The angular momentum operator is defined as

L=

∫
d2xε0ijxiΘ

T
0j . (25)

Considering Eq. (22) and Eq. (23), ΘT
0j is calculated to

be

ΘT
0j≈π

a
kF

k,a
j −κ

2
ε0klA

l,aF k,a
j +Djφ

a
π

a
φ. (26)

Here, we use the Dirac weak equality condition. Substi-
tuting Eq. (26) into Eq. (25), one obtains

LS=

∫
d2xεijxiΘ

T
0j

=

∫
d2xεij

(

xiπkF
k,a
j +xiDjφ

a
π

a
φ

)

+
κ

2

∫
d2xxiA

j,aF i,a
j . (27)

Notice that only the canonical variables are used.
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The canonical energy-momentum tensor is defined as
[11]

Tµν =
∂L

∂(∂µ
φa)

∂ν φa+
∂L

∂(∂µ
Aa

ρ)
∂ν Aa

ρ−gµνL, (28)

and T0i is calculated to be

T0i≈π
a
φ∂iφ

a+π
a
k∂iA

a
k, (29)

where the term proportional to primary constraint Λa
0

is ignored. Notice that, T0i 6= Ti0, since Ti0 has a time
derivative term π

a
i ∂0Aa

i , which should be converted into
the canonical variables. The asymmetry of the canoni-
cal tensor originates from the C-S term. The canonical
angular momentum tensor is defined as

Mµν =

∫
d2x

[

xµT0ν−xνT0µ+π
a
ρΣ

ρλ
µνAa

λ

]

. (30)

For the scalar field, Σρλ
µν = 0, while for the vector field,

Σρλ
µν = δρ

µδλ
ν −δρ

νδ
λ
µ . Thus, the angular momentum L can

be written as

LC=
1

2
εijMij

=εij

∫
d2x

[

xiπ
a
φ∂j φ

a+xiπ
a
k ∂j A

a
k+π

a
i A

a
j

]

. (31)

Comparing the Schwinger angular momentum LS in
Eq. (27) and the canonical angular momentum LC in
Eq. (31), it seems that LS contains the C-S contribution
while LC does not. This is an illusion because the defi-
nition of π

a
i includes the C-S related term. In Eq. (27),

the last term
κ

2

∫
d2xxiA

j,aF i,a
j diminishes with the C-S

contribution in π
a
i . Thus, LS is equivalent to the angu-

lar momentum in the Maxwell-Georgi-Glashow (MGG)
theory.

The difference between the Schwinger angular mo-
mentum and the canonical angular momentum is written
as

K=LS−LC≈−
∫
d2x∂k

[

π
a
kε

ijxiA
a
j

]

, (32)

which is a total boundary term. In the process of cal-
culation, the constraint Λa

2 is considered. The matter
component φa contributes the same gradient to LS and
LC, and then disappears in K. For singular configura-
tions, i.e., in the presence of C-S vortices, K does not
vanish [11]. In the following, we will show that K is
an anomalous spin term even without the existence of
singular configurations.

Combining the secondary constraint Λa
2 (Gauss law)

in Eq. (11) and the gauge fixing condition Ωa
2 in Eq. (14),

one obtains

κεij ∂iA
a
j =−∂iD

iAa
0+gfabc

(

π
b
φφc+π

i,bAc
i

)

≡Ja. (33)

Integrating over the 2-dimensional spatial surface on
both sides of Eq. (33), one obtains the non-Abelian flux

of the system,

Φa≡
∫
d2xεij ∂iA

a
j =

Qa

κ
, (34)

where Qa =

∫
d2xJa. Eq. (33) contains no time deriva-

tive term, one can construct a solution for Aa
i , which is

written as

Aa
i =−εij xj

|x2|
Qa

2πκ
. (35)

Here the soliton configuration is not referred. Substitut-
ing Eq. (35) into K, one obtains

K=−QaQa

4πκ
. (36)

Up to now, the analysis is general in a sense that no
soliton Ansatz is accounted, no specific gauge group is
specified. The formula of K can be called the anomalous
spin term.

In the CSGG model, no vortex solutions can be con-
structed, because φa is in the adjoint representation.
Thus, whether K stands for a fractional spin term is
in doubt. If there are three spatial dimensions, the ’t
Hooft-Polyakov monopole solution really exists in this
model, namely the complex monopoles [15]. Since we
work in only 2 spatial dimensions, the topological excita-
tions forbid the existence of monopoles. In order to keep
the gauge invariance, κ should be quantized as mentioned
before, otherwise, the action changes under gauge trans-
formation . For κ=g2n/(4π), one has K=−QaQa/(g2n).
One can interpret such K as the fractional spin, it can
be arbitrarily smaller if n→∞. Our analysis does not
depend on the matter components, thus it also holds for
the vortex system. For instance, if one replaces the ad-
joint scalar φa with a fundamental complex field ϕ, one
can construct a non-Abelian C-S vortex [7]. In the vor-
tex configuration, the asymptotic behavior of Diϕ leads
to QaQa = m2. Thus, K = − m2

g2n
, where m stands for

the winding number of vortices, and n is an arbitrary
integer.

4 Conclusion

In this letter, we investigate the 2+1 dimension
CSGG theories with an arbitrary gauge group. By the
Dirac formalism for the constrained system, we obtain
two constraints, which are all first class. Taking the
coulomb gauge and its consistency as gauge fixing condi-
tions, the Dirac brackets of the gauge fields are deduced.
Replacing the Dirac brackets with the commutators, the
system is quantized in the canonical quantization for-
malism. The Schwinger angular momentum and Noether
angular momentum of the system are calculated respec-
tively. Their difference is found to be a compact form.
Combining the Gauss law and Coulomb gauge consis-
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tency condition, the solution of the gauge field is given.
With this solution, the difference of the two angular mo-
menta is converted to be an anomalous spin term.

In our analysis, the reason for the difference between
the Schwinger and the canonical angular momentum is
given. The C-S term disappears when the action is var-
ied with the metric, thus the Schwinger energy momen-
tum tensor is symmetric about the indices. Meanwhile,
the C-S term does contribute to the canonical energy
momentum tensor, which is asymmetric when permut-
ing the indices. Therefore, the difference originates from
the C-S term in the Lagrangian. The matter fields and
the Maxwell term contribute the same for both angular
momentum, thus they do not appear in K. The anoma-
lous spin term is also found in the canonical angular mo-
mentum of the C-S system at the quantum level[20, 21],
which supports the analysis here.

Previously, the fractional spin of C-S systems is real-
ized with the vortex configurations [1, 3–6, 11]. In this

letter, no vortex configuration is used to deduce K. The
Gauss law together with the Coulomb gauge are sufficient
to guarantee the existence of the anomalous spin. Thus,
the anomalous spin exists no matter whether there are
soliton solutions or not. C-S vortices have broken axial
symmetry, multi-fractional vortex-centers, ring-like flux
structure, etc [7]. When the Ansatz of the vortex config-
uration is considered, the conserved charge Qa is related
to the winding number of the vortices. In this way, K can
be explained as the fractional spin. In the 3+1 dimen-
sion, the C-S term violates both the Lorentz and parity
invariance [22], but does not violate the gauge invariance
up to a total derivative term. Therefore, the Lorentz
symmetry holds for LS but is broken in LC in 3+1 di-
mension. In 3+1 dimension, also the ’t Hooft-Polyakov
monopole configuration exists in the CSGG model. In-
teresting future work will be to make use of the explicit
Ansatz of monopoles to calculate K, which may be re-
lated to the winding number of monopoles.
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