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Abstract: In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity.

Multibunch instabilities can severely limit light source performance with a variety of negative impacts, including beam

loss, low injection efficiency, and overall degradation of the beam quality. Instabilities of a multibunch beam can be

mitigated using certain techniques including increasing natural damping (operating at a higher energy), lowering the

beam current, and increasing Landau damping. However, these methods are not adequate to stabilize a multibunch

electron beam at a low energy and with a high current. In order to combat beam instabilities in the HLS storage ring,

active feedback systems including a longitudinal feedback system (LFB) and a transverse feedback system (TFB)

will be developed as part of the HLS upgrade project, the HLS-/ storage ring project. As a key component of the

longitudinal bunch-by-bunch feedback system, an LFB kicker cavity with a wide bandwidth and high shunt impedance

is required. In this paper we report our work on the design of the LFB kicker cavity for the HLS-/ storage ring and

present the new tuning and optimization techniques developed in designing this high performance LFB kicker.
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1 Introduction

The Hefei Light Source (HLS) is currently undergoing
a major upgrade which will greatly improve its perfor-
mance [1]. In order to maintain a highly stable electron
beam in the storage ring with a high current, active feed-
back systems, both longitudinal and transverse, are re-
quired to help suppress the coupled bunch instabilities
(CBIs) [2]. A bunch-by-bunch electron beam feedback
system is composed of three subsystems. The first one is
the signal detection system which picks up the bunch sig-
nal using a beam position monitor (BPM) and generates
the bunch phase signal using the front-end processing
unit. The second system, the digital signal processing
system, which is implemented using digital signal proces-
sors (DSPs) or a field-programmable gate array (FPGA),
processes the bunch signal and computes the correction
signal for each bunch. The third system is the actuator
in which the correction signal is first amplified by an RF
power amplifier and then applied to the electron beam
through a feedback kicker [3, 4]. In this work, our fo-
cus is the development of a longitudinal bunch-by-bunch
feedback system for the HLS-/ storage ring.

The basic physical design of a longitudinal feedback
kicker for the HLS-/ storage ring was presented in a
previous paper [5]. This LFB kicker is a DAΦNE type
LFB kicker with two ridged waveguides on each side of
a pillbox cavity [6]. The kicker has two input ports and
two output ports specially arranged so that the input
ports and output ports are azimuthally separated by 90◦.
Since the cross-section shape of the vacuum chamber of
the storage ring is an octagon, the design of the kicker
cavity is realized in two steps. We first design an LFB
kicker cavity with round beam pipes at both ends. Later,
the design of the kicker cavity is retuned with a set of
specially designed beam pipes to allow smooth transi-
tion from a round cross-section to an octagonal cross-
section. The preliminary design with round beam pipes
is used to determine the dependency between the kicker
performance and kicker geometric parameters. The final
design of the LFB kicker with transition parts is opti-
mized with the Newton’s method using the dependency
obtained from the preliminary design.

The performance of the LFB kicker cavity can be
enhanced by using nose cones. In this paper, we first
discuss the effect of using nose cones, in particular, its
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impact on the resonant frequency and the shunt
impedance. Next, we report the method of using the de-
pendency relations between the cavity performance and
geometric parameters to find the optimal design for the
kicker cavity with round beam pipes. Finally we present
the process of tuning the final design of the LFB kicker
with transition beam pipes using the same dependency
relations.

2 The effect of using nose cones

For a typical RF cavity built for accelerators, special
tuners are usually used to fine tune its performance by
inserting the tuner heads into the cavity. The tuning or
optimization of the cavity performance can also be re-
alized using some fixed addons inside the RF cavity. A
nose cone is such an addon which can be used conve-
niently to alter the RF performance parameters without
changing the main structure of the cavity. In the design
of an LFB kicker cavity, the nose cones are introduced to
improve the shunt impedance of the cavity, as used in the
PLS LFB kicker and Duke LFB kicker [7, 8], and provide
a means of shifting the resonant frequency in optimizing
the cavity design.

2.1 Shunt impedance with nose cones

The LFB kicker cavity for the HLS-/ storage ring
employs nose cones. Fig. 1 shows the schematic of a pill-
box cavity with nose cones and one of the nose cones in
the LFB kicker. The nose cone is a half torus attached
to the entrance and exit of the beam pipes which are
connected to the pillbox. The radius of the torus tube is
6 mm. The nose cones can increase the efficiency of en-
ergy gain by charged particles passing through the cavity
by concentrating the electric field inside the kicker cavity
and reduce its leakage to the adjacent beam pipes.

The energy gain of a relativistic particle passing
through the LFB kicker with charge q is

∆E=qV0T, (1)

where V0 is the gap voltage of the cavity and T is the
transient time factor. The transient time factor can be
calculated as

T =

∫l

0

Ezcos
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where leff is the effective accelerating gap or the effective
cavity length [9]. After the nose cones are attached to the
inside of the pillbox, the path of the particles traversing
the cavity does not change but the effective accelerating
gap is reduced. This leads to an increase of the transient

Fig. 1. The RF cavity with nose cones. (a) A 2D
schematic of a pillbox cavity with nose cones. l

is the gap of the pillbox. (b)The nose cone in the
LFB kicker cavity for the HLS-/ storage ring.

Fig. 2. The simulated electric fields along the beam
axis of the LFB kicker. With nose cones, assum-
ing the same input power, the electric field has
larger amplitude inside the pillbox cavity and the
cavity effective length is reduced from 105.9 mm
(without nose cones) to 101.2 mm (with nose
cones).

time factor from T =0.70 without nose cones to T =0.73
with nose cones for the HLS LFB kicker. The increase of
the transient time factor is consistent with the observed
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reduction of the effective cavity length from 105.9 mm
(without nose cones) to 101.2 mm (with nose cones), a
reduction of 4.4% (see Fig. 2).

In addition, the calculated shunt impedance is in-
creased by 11% from 1561 Ω (without nose cones) to
1740 Ω (with nose cones). This is the direct evidence
that nose cones help to improve the efficiency of provid-
ing acceleration to charged particles.

2.2 Cavity perturbation

During the operation of an RF cavity with beams, the
cavity performance, especially the resonant frequency,
may change from time to time due to various reasons,
e.g. the deformation caused by the change of temper-
ature. In order to make the cavity work properly we
need to tune the cavity. This is often done by inserting
a metallic piston (a tuner) into the cavity. It is useful to
predict the effect of such modifications to the cavity per-
formance. If the tuning is small, i.e., the original fields do
not change significantly after the modification, the cavity
can be analyzed using the perturbation method. There
are two kinds of cavity perturbations. The material per-
turbation treats the small change in the permittivity or
permeability of all or part of the material filling in the
cavity. The shape perturbation treats the small changes
of the cavity shape or volume which can be accomplished
by using a tuner.

The nose cones in the LFB kicker change the vol-
ume of the cavity so a frequency change is expected.
This change can be analyzed using the shape perturba-
tion method. Unlike the RF tuners which can be used
to provide tuning of the cavity dynamically during its
operation, the nose cone is useful in the design stage to
fine-tune the cavity resonant frequency.

The perturbation method can be used to predict the
change of the resonant frequency. Let us consider a cav-
ity with an arbitrary shape and a volume V0. The ma-
terial filling in the cavity has the permittivity of ε and
permeability of µ. The original fields in the cavity are Ē0

and H̄0, and the resonant frequency of the cavity is ω0.
After perturbation, the resonant frequency becomes ω.
Suppose that the volume of the cavity is reduced by ∆V
which is part of the original volume, and ∆V is small
enough, the fields after the perturbation can be repre-
sented using the original fields. The fractional change in
resonant frequency can be approximated as [10]
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This formula can be expressed in the form of the electric

and magnetic energies stored in the cavity

∆ω

ω0

'∆Wm−∆We

W0

, (4)

where ∆Wm and ∆We are the magnetic and electric en-
ergy stored in ∆V , respectively. This result shows that
the resonant frequency change due to the perturbation
depends on the difference between the magnetic energy
and electric energy in volume ∆V .

In the LFB kicker, the nose cones are small enough
compared with the cavity itself. Therefore, we can as-
sume that the electromagnetic fields in the area of the
nose cone are constant and can be represented by the
fields at the center of the torus tube before perturbation.
The distance between the center of the tube and the cen-
ter of the torus is R′=44 mm. The field components of
the fundamental mode of an ideal pillbox cavity can be
written as (assuming that the cavity is under vacuum):

Ez (r,t) = E0J0

(ν01

a
r
)

cos(ωt), (5)

Hφ(r,t) = −E0

η
J1

(ν01

a
r
)

sin(ωt), (6)

Er = Eφ=Hr=Hz=0, (7)

where a is the radius of the pillbox, η is the wave
impedance and ω = cν01/a

√
εrµr is the resonant fre-

quency of the pillbox cavity, c is the speed of light,
and ν01 is the first root of Bessel function J0(x). Us-
ing Eqs. (5) and (6), we find the amplitude of the fields
in the location of the nose cone:
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, (9)

where η0 =
√

µ0/ε0 = 377 Ω is the wave impedance in
free-space. Using these fields the difference of the energy
changes in the magnetic and electric forms is

∆Wm−∆We =
1
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With the geometric parameters of the LFB kicker, we
have ∆Wm−∆We=−0.12ε0E

2
0∆V . The volume of these

two nose cones is 6.25×10−5 m3 so we have ∆Wm−∆We=
−7.50×10−6ε0E

2
0 . The “−” sign indicates a reduction of

the resonant frequency by attaching the nose cones and
this frequency decrement is proportional to the volume
of the nose cones.

With the electric field in Eq. (5), the total energy can
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be calculated as follows:

W0 = Wm+We=2We
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For the HLS LFB cavity, we have W0 = 3.3×10−4ε0E
2
0 .

Therefore, the projected fractional change of the reso-
nant frequency is ∆ω/ω'−2.3%. In order to compen-
sate for this reduction of the resonant frequency, we need
to reduce the radius of the pillbox by 2.3% accordingly.
This is good because it makes the LFB kicker somewhat
more compact by shrinking its size.

We can also calculate the central (or resonant) fre-
quency change with a fixed cavity geometry using the
simulation method. The resonant frequency of the LFB
kicker is reduced from 1000 MHz (without nose cones)
to 971.7 MHz (with nose cones), a reduction of 2.8% in
frequency. This is rather consistent with the result from
the estimate (−2.3%) using an ideal pillbox cavity.

3 Dependency calculation for LFB

kicker cavity

Although an RF cavity can be tuned using tuners
after it is made, the use of tuners greatly increases the
complexity of the cavity. Furthermore, the tuners can
only provide a limited tuning of the cavity performance.
In order to obtain an LFB cavity with specific perfor-

mance, we need to tune the main structure of the cavity
during the design process. The LFB kicker cavity has a
complicated structure which consists of many geometric
parameters. To allow optimization of the kicker cavity
design, it is very useful to develop dependency relations
between the cavity performance parameters and a set of
cavity geometric parameters. To simplify this process,
we have carefully chosen several important geometric pa-
rameters for the dependency calculation. The Duke LFB
kicker is used as the starting point for the calculation [8].
Some geometric parameters are fixed such as the beam
pipe radius and the pillbox gap. Some geometric pa-
rameters do not have much flexibility due to the space
limitation such as the cavity length. Finally the three
geometric parameters which are selected to calculate the
dependency are R1, R2 and g, shown in Fig. 3. R1 is
the pillbox radius which directly determines the reso-
nant frequency of the kicker. R2 and g are the main
geometric parameters of the ridged waveguide which de-
termine the inductance and capacitance, i.e., the input
impedance of the waveguide [11]. So these two param-
eters affect the coupling factor between the input and
output coaxial lines and the ridged waveguides. To save
the computation time, only a quarter structure of the
kicker is simulated during the dependency calculation
because the boundary condition of the kicker cavity and
the electromagnetic fields are symmetric. In fact for the
TM010 mode of an ideal pillbox cavity, the electric fields
are tangential and the magnetic fields are perpendicular
to the symmetry planes of the kicker cavity. This al-
lows us to assign a perfect magnetic conductor surface
at these symmetry planes.

Fig. 3. The cross-sections of the LFB kicker cavity model. Important geometric parameters include the following:
the radius of the beam pipe R is 38 mm, R1 is the pillbox radius, R2 is the height of the back cavity and R3 is the
ridge height, d is the pillbox gap and g is the waveguide gap, α is the angle between the waveguide barriers and l

is the cavity length excluding the outer beam pipes. The input and output ports are not in the same plane. The
dashed part in the side cut-view indicates a rotation of 90◦ along the direction of the beam pipes.
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After simulating a set of the LFB kicker structures
with different geometric parameters, we obtain the de-
pendent relations of a set of key performance parameters,
such as the central frequency (fcf), the cavity bandwidth
(BW ), the shunt impedance (Rs) and the geometric pa-
rameters (R1, R2, g). Fig. 4 shows the dependency of
the kicker central frequency. The fcf dependency curves
are grouped into 4 sets by different values of R1. With
a larger R1, we have lower central frequencies. This
is reasonable because the resonant frequency of TM010

mode is inversely proportional to the pillbox radius. If
the central frequencies located within 969±5 MHz are
considered as good results, we have many solutions that
satisfy this design goal. Fig. 5 shows the dependency
of the kicker bandwidth (BW ). The BW dependency
curves are grouped into 3 sets using different values of
R2. Bandwidths are locally maximized when the waveg-
uide gap is in the range of 8 mm to 10 mm. A set of
solutions with the bandwidth higher than 102 MHz are
found through the bandwidth dependency calculation.
Among these solutions, two solutions satisfy both cen-
tral frequency and bandwidth requirements, which are
(R1, R2, g) = (115 mm, 74 mm, 9 mm) and (115 mm,
68 mm, 10 mm). The corresponding performance pa-
rameters are (fcf , BW ) = (971.4 MHz, 102.6 MHz) and
(969.1 MHz, 109.5 MHz), respectively. Fig. 6 shows the
dependency of the kicker shunt impedance. Comparing
Fig. 5 with Fig. 6, we can see that the shunt impedance is
almost inversely proportional to the bandwidth. This is
reasonable because the shunt impedance for a waveguide
overloaded pillbox cavity can be approximated as

Rs≈2
R

Q
·QL=2

R

Q
· fcf

BW
, (11)

where R/Q is the R over Q factor which depends only on
the kicker geometry and QL is the loaded quality factor
[6]. As expected, a wider bandwidth is usually accompa-

Fig. 4. The simulated central frequency depen-
dency on the kicker geometric parameters.

nied with a decreased shunt impedance. The shunt
impedances of these two solutions are 1793 Ω and 1699 Ω,
respectively. The LFB kicker with the geometric param-
eters of (115 mm, 74 mm, 9 mm) is finally selected be-
cause it has adequately high shunt impedance and more
importantly, a shorter waveguide gap, which makes the
assembly of the RF feedthroughs easier.

Fig. 5. The simulated bandwidth dependency on
the kicker geometric parameters.

Fig. 6. The simulated shunt impedance depen-
dency on the kicker geometric parameters.

4 Optimization of the LFB kicker with

transition parts

The preliminary design of the LFB kicker with round
beam pipes is obtained through the dependency calcu-
lation. In order to save time the calculation is carried
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out using the quarter structure of the LFB kicker. Af-
ter the transition part is added, we need to fine-tune the
kicker to bring its performance back to our design spec-
ifications. We could do this by recalculating the cav-
ity dependency as we do during the preliminary design.
But the dependency calculation would take a lot of time
even using a quarter kicker model. More importantly, the
kicker with transition beam pipes is no longer symmetric
so we would have to simulate the full kicker cavity.

Now we have three models of the LFB kicker with
small differences, (1) the quarter structure of the kicker
with round beam pipes, (2) the full structure of the kicker
with round beam pipes, and (3) the full structure of the
kicker with transition from round beam pipes to octag-
onal vacuum chambers. For the full LFB kicker model,
the electric and magnetic fields could not be exactly the
same as the quarter cavity model, an idealized cavity

with imposed symmetry, especially when higher order
modes are present. Therefore, the calculated kicker cav-
ity performance parameters are slightly different between
a quarter cavity model and a full cavity model. Some dif-
ferences can be attributed to the underlining simulation
model as the mesh structure changes when the full cavity
is simulated. The difference between the preliminary de-
sign and the final design is the shape of the beam pipes.
This difference of the boundary condition of the kicker
can also causes small changes in the cavity performance
even though the beam pipes are outside the pillbox cav-
ity. Therefore, these three structures should have very
similar performance. The simulation results confirm this.
The main performance parameters of these three struc-
tures with the same geometric parameters are listed in
Table 1.

Table 1. Main performance parameters (simulation results) of the LFB kicker with different structures.

quarter structure full structure kicker with transition from
parameter

with round beam pipes with round beam pipes round to octagonal beam pipes

fcf/MHz 971.4 971.7 971.2

BW/MHz 102.7 100 100.1

Rs/Ω 1800 1740 1750

Nevertheless, the dependency relations computed us-
ing the quarter cavity model is still useful for the other
two cavity models. This important observation is made
as we realize that the difference in the electric and mag-
netic fields among the three models is small. Let us
consider a performance parameter for two similar cavity
models. This parameter can be expressed as functions
A(x) and B(x) for these two models, with x being the ge-
ometric variable to be varied. If |(A(x)−B(x))/A(x)|�
1, then we expect, ∂A/∂xw∂B/∂x, as long as A and B
are well behaved smooth functions with smooth slopes
with respect to x. In this case if the dependency of the
first model is known (∂A(x)/∂x), this dependency can
be used to estimate the necessary changes of B(x),

B(x2)=B(x1)+
∂A

∂x
(x1)(x2−x1).

In fact, this is the idea used in the Newton’s method
to solve differential equations [12]. Therefore we can re-
alize the final design of the kicker cavity with transition
beam pipes by using the same dependencies calculated
from the quarter kicker model with round beam pipes.

4.1 Fitting of the dependencies between the

kicker geometry and performance

Before we start to use the dependencies, we need to
express them in analytical forms. In the following, the
dependency function is constructed for the kicker cavity
resonant frequency (or the central frequency) and band-

width. The shunt impedance is not optimized further as
it is a less critical parameter, and it already has a large
value more than adequate for this cavity. Since the de-
pendency curves of the central frequency and bandwidth
may not be linear, we can fit a second degree polyno-
mial to the data that we obtained from the dependency
calculation. The model function with three independent
variables has 9 coefficients, which can be expressed as

f (x,y,z) = a0+a1x+a2y+a3z+a4x
2+a5y

2

+a6z
2+a7xy+a8xz+a9yz, (12)

where x, y, and z represent the kicker geometric parame-
ters R1, R2 and g, respectively. Each of the dependency
curves (fcf , BW ) has 36 data points; this means that
the constrains for data fitting are more than the number
of fitting parameters. A good fitting method for deal-
ing with this overdetermined problem is the least square
fitting. The method of least square finds the best fit
by minimizing the sum of the squares of the difference
between the fitted function and data.

The fitting result of the central frequency as a func-
tion of the pillbox radius (x = R1), back cavity height
(y=R2) and the waveguide gap (z=g) is

fcf (x,y,z) = 2736.75−14.75x−6.12y−34.71z

+0.0167x2−0.0014y2+0.3375z2+0.0331xy

+0.0775xz+0.1427yz, (13)

where x, y, and z are in millimeters and the frequency
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is in megahertz. The rms value of the squared residuals
is 0.84 MHz. The residual associated with a data point
refers to the difference between the observed value and
fitted value provided by the model function. The relative
error between the simulated central frequencies and the
fitted values is only 8.7×10−4. The polynomial function
describes the central frequency dependency very well, as
shown in Fig. 7.

Fig. 7. Fitting results of the central frequency dependency.

The fitting result of the cavity bandwidth depen-
dency is

fbw (x,y,z) = −938.23+9.07x+5.61y+83.64z

−0.1493x2−0.1459y2−3.7042z2+0.2440xy

+0.8225xz−1.5406yz, (14)

where x = R1, y =R2, and z = g are also in millimeters
and the bandwidth is in megahertz. We can see that the
coefficients of the terms with z are larger than others.
This means that the bandwidth is more sensitive to the
waveguide gap than other geometric parameters. The
rms value of the squared residuals is 1.34 MHz. There-
fore, the relative error between the simulated bandwidths
and the fitted ones is 1.4%. The fitting results are shown
in Fig. 8.

4.2 Cavity tuning using Newton’s method

We cannot directly use the solutions of Eqs. (13) and
(14) to determine the kicker geometric parameters be-
cause the dependencies are based on the quarter struc-
ture of the LFB kicker with round beam pipes. A better

way to do this is to use the iterative procedure to ap-
proach the solution step by step. In numerical analysis,
the Newton’s method is commonly used to find the ap-
proximations to the roots of a real-valued function [12].
The functions of the central frequency and bandwidth
have three variables so we can fix one geometric parame-
ter and find the solution using the other two parameters.
Considering the assembly of the feedthroughs, the waveg-
uide gap is fixed at 9 mm. The design requirements of
the central frequency and the bandwidth are '969 MHz
and >102 MHz, respectively. The two functions we are
going to solve are

f (x,y)=fcf (x,y,9)−969,

g(x,y)=fbw(x,y,9)−102.
(15)

Fig. 8. Fitting results of the bandwidth dependency.

The Newton’s method can be generalized to two or
more dimensions. If we pick (x0,y0) as the initial guess,
(x1,y1) is the next solution which will lead function f
and g closer to zero:

f (x1,y1) = f (x0,y0)+fx(x0,y0)(x1−x0)

+fy(x0,y0)(y1−y0)≈0,

g(x1,y1) = g(x0,y0)+gx(x0,y0)(x1−x0)

+gy(x0,y0)(y1−y0)≈0, (16)

where fx = ∂f/∂x, fy = ∂f/∂y, gx = ∂g/∂x, gy = ∂g/∂y.
(x1,y1) can be solved numerically if the slopes fx, fy, gx,
gy are known at (x0,y0). With simple algebra we can
find solutions for f (x,y) = 0 and g(x,y) = 0 using the
following iteration procedure:

xn=xn−1−
f (xn−1,yn−1)gy (xn−1,yn−1)−fy(xn−1,yn−1)g(xn−1,yn−1)

fx(xn−1,yn−1)gy (xn−1,yn−1)−fy(xn−1,yn−1)gx(xn−1,yn−1)
,

yn=yn−1−
fx(xn−1,yn−1)g(xn−1,yn−1)−f (xn−1,yn−1)gx(xn−1,yn−1)

fx(xn−1,yn−1)gy (xn−1,yn−1)−fy (xn−1,yn−1)gx(xn−1,yn−1)
.

(17)
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Table 2. Iterative results for optimizing the LFB kicker cavity using Newton’s method.

function values/MHz simulated values/MHz
sequences R1/mm R2/mm

fcf fbw fcf fbw

initial 115.0 74.0 971.60 100.10 971.2 100.1

1 115.4 73.0 969.75 102.53 970.0 101.6

2 115.6 72.7 968.56 102.88 967.9 100.7

3 115.6 71.7 969.77 104.00 970.2 102.6

4 115.8 71.6 968.32 103.98 969.2 102.8

The fitted functions cannot represent the dependency
of the kicker performance very accurately because the
dependency calculation is carried out using a differ-
ent structure from the final design of the kicker cavity
and the fitting itself has finite accuracy. To deal with
these effects, for each step of iteration, the errors are
computed using Eqs. (15) with the cavity central fre-
quency and bandwidth obtained from cavity design sim-
ulation using the geometric parameters from the previ-
ous step. The simulation is implemented using the full
kicker cavity with transition beam pipes. When eval-
uating Eq. (16), the slopes of functions f and g, i.e.,
fx, fy, gx, gy, are those from the fitted dependency re-
sults (Eqs. (13) and (14)) obtained using a quarter cavity
model. The initial guess in our case is the geometric pa-
rameters of the preliminary design. The pillbox radius
R1 (x0) is 115 mm and the back cavity height R2 (y0) is
74 mm. The initial central frequency and bandwidth are
971.2 MHz and 100.1 MHz, respectively which leads to
f (x0,y0)=2.2 MHz and g(x0,y0)=−1.9 MHz according
to Eqs. (15). The results for four consecutive iteration
steps are listed in Table 2. After four iterations, a suf-
ficiently accurate solution for R1 and R2 is obtained for
the final design of the LFB kicker with transition beam
pipes. Finally, we list the main performance parameters
(simulated results) of the HLS-/ LFB kicker cavity in
Table 3. This cavity has two specially designed transi-
tion beam pipes on the sides to allow a smooth vacuum
transition from a round cross-section in the LFB cavity
to an octagonal cross-section of the storage ring vacuum
chambers.

4.3 Mechanical tolerance

The dependency relations can also be used to make
specifications for the mechanical tolerance for certain
critical geometric parameters. For R1, R2 and g, the
mechanical tolerance is specified as ±0.12 mm. These
tolerances are specified to make sure that the changes
of the center frequency and bandwidth will be less than
±2 MHz and ±0.5 MHz, respectively, in the worst case
scenario. These tolerances are reasonably easy to meet
using modern computer numerical control (CNC) ma-

chines. If CNC machines are not available, these tol-
erance specifications can be further relaxed by a factor
of two without significantly reducing the performance of
the cavity.

Table 3. Cavity performance parameters (simu-
lated results) of the HLS-II LFB kicker with tran-
sition beam pipes (round to octagonal).

parameter value

central frequency fcf/MHz 969.2

bandwidth BW/MHz 102.8

shunt impedance Rs/Ω 1684

quality factor Q 9.4

R/Q factor/Ω 89.6

filling time τ/ns 3.01

transit time factor T 0.835

5 Conclusion

During the design of the LFB kicker for the HLS-
/ storage ring, three methods are applied to optimize
the kicker performances. The nose cones are used suc-
cessfully to increase the shunt impedance of the kicker
cavity. The analysis based on the cavity perturbation
method also shows that the nose cones can somewhat
lower the resonant frequency of the kicker. The depen-
dency calculation is a good way to allow us to produce a
preliminary design of an LFB kicker starting from some
known cavity designs. And finally the Newton’s method
is used to bring the kicker cavity performance precisely
back to the design goals for the final cavity design with
complex transition beam pipes without rotational sym-
metry. With this staged development strategy we have
completed the physics design of a broadband and high
shunt impedance kicker cavity with the desirable central
frequency for the HLS-/ longitudinal feedback system.
We have reached and in some aspects surpassed the de-
sign specifications. In fact the realized shunt impedance
of 1684 Ω (BW =102.8 MHz) is 10% higher than that of
the Duke LFB kicker (BW =92 MHz), representing a fur-
ther optimization of the kicker cavity design, compared
with the Duke LFB kicker which is a high performance
cavity.

037003-8



Chinese Physics C Vol. 37, No. 3 (2013) 037003

References

1 WANG Lin, LI Wei-Min, FENG Guang-Yao, XU Hong-Liang,
ZHANG Shan-Cai, GAO Wei-Wei, FAN Wei. The Upgrade
Project of Hefei Light Source (HLS). In Proceedings of the
IPAC’10. Kyto, Japan. 2588–2590

2 Serio M, Boni R, Drago A, Gallo A, Ghigo A, Marcellini F,
Migliorati M, Zobov M, Claus R, Fox J, et al. Multi-Bunch In-
stabilities and Cures. In Proc. European Particle Accelerator
Conference. 1996

3 Oxoby G, Claus R, Fox J, Hindi H, Hoejlich J, Linscott I,
Olsen J, Perbhakal S, Sapozhnikov L, Corlett J, et al. Bunch-
by-Bunch Longitudinal Feedback System for PEP-/. In EPAC
94: proceedings. 1994, 1616–1618

4 Teytelman D, Rivetta C, Van Winkle D, Akre R, Fox J, Kras-
nykh A, Drago A, Flanagan J, Naito T, Tobiyama M. Design
and Testing of Gproto Bunch-by-Bunch Signal Processor. TH-
PCH103, EPAC. 2006, 6

5 XU W, WU W, HE D, WU Y K. Design of Longitudinal Feed-
back Kicker for HLS Storage Ring. In Particle Accelerator Con-
ference. New York, NY, USA, IEEE. 2011

6 Gallo A, Boni R, Ghigo A, Marcellini F, Serio M, Zobov M. A
Waveguide Overloaded Cavity as Longitudinal Kicker for the
DAΦNE Bunch-by-Bunch Feedback System. Part. Accel., 1996,
52: 95–113

7 Kim Y, Kwon M, Huang J, Namkung W, Ko I. Longitudinal
Feedback System Kicker for the PLS Storage Ring. Nuclear
Science, IEEE Transactions on, 2000, 47(2): 452–467

8 WU W, Kim Y, LI J, Teytelman D, Busch M,d WANG P, Swift
G, Park I, Ko I. Development of a Bunch-by-Bunch Longitu-
dinal Feedback System with a Wide Dynamic Range for the
HIGS Facility. Nuclear Instruments & Methods in Physics Re-
search. Section A. Accelerators, Spectrometers, Detectors, and
Associated Equipment, 2011, 632(1): 32–42

9 Wiedemann H. Particle Accelerator Physics. Vol. 1. Springer
Verlag, 2003

10 Pozer D. Microwave Engineering. John Wiley & Sons, 2005.
298–302

11 Cohn S. Properties of Ridge Wave Guide. Proceedings of the
IRE, 1947, 35(8): 783–788

12 Kelley C. Solving Nonlinear Equations with Newton’s Method.
Vol. 1. Society for Industrial Mathematics, 2003

037003-9


