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Mixing of two-quasineutron and two-quasiproton K
π=6+

configurations in the vicinity of 174Yb *
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Abstract: In the framework of the projected shell model, we investigate the competition between the two-quasineutron

and two-quasiproton Kπ=6+ states in the ytterbium isotopes and N=104 isotones adjacent to 174Yb. The 174Yb re-

sults are compared with the experimental data. The Kπ=6+ isomer observed in 174Yb is assigned as an admixture of

the ν7/2−[514]⊗ν5/2− [512] and π7/2+[404]⊗π5/2+ [402] intrinsic structure, which explains the experimental |gK−gR|

value. Similar mixing would appear in 172Yb, 176Hf, and 178W. The low-lying Kπ =6+ states are also predicted in
170-178Yb.
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1 Introduction

Research on multi-quasiparticle (multi-qp) metasta-
ble states provides a unique opportunity to understand
the interplay between collective and quasiparticle excit-
ing degrees of freedom in nuclear systems. In particular,
an abundance of long-lived high-K isomers (where K is
the total angular momentum projection onto the sym-
metry axis) was found in the A∼170–180 mass region of
prolate-deformed nuclei, which has attracted intensive
interest both experimentally and theoretically [1–5]. K
isomers are of great importance for enhancing the stabil-
ity of unstable nuclei [6] and novel energy-storage appli-
cations [1]. More fundamentally, they offer an insight
into the underlying single-particle structure and their
pairing strength around the Fermi surface.

In order to study the underlying structural informa-
tion, a confirmation of the intrinsic structures for K iso-
mers is needed. The gyromagnetic ratio (or g factor)
is essential for determining quasiparticle configurations.
Recently, a rotational band built on the 830 µs 6+ iso-
mer in 174Yb has been observed, which makes the g factor
measurement accessible for this Kπ = 6+ intrinsic state
[7]. Although the Kπ =6+ state in 174Yb is commonly
associated with the ν7/2−[514]⊗ν5/2−[512] configura-
tion [8], the newly measured g factor shows deviation
from the expected value for the two-quasineutron state
[7]. This implies that the Kπ = 6+ isomer observed in
174Yb is unlikely to be a “pure” two-quasineutron state.

In addition, the existence of both two-quasineutron [9]
and two-quasiproton Kπ = 6+ isomers [10] in neighbor-
ing nuclei indicates the complexity of the configuration
assignment for the 6+ isomer in this mass region.

The present work aims at a thorough analysis of the
two-quasineutron and two-quasiproton Kπ=6+ states in
the Z = 70 isotopes and N = 104 isotones adjacent to
174Yb by using the projected shell model (PSM) [11]. As
a shell-model-type calculation truncated in the angular-
momentum-projected multi-qp basis, the PSM is ideal
for studying high-K isomers and the associated rota-
tional bands [5]. Such calculations may shed light on the
microscopic origin of high-K multi-qp states by analyz-
ing the wave functions generated in the PSM. Moreover,
the well-defined wave functions allow us to compute the
g factor, which provides direct indication of dominant
multi-qp configurations.

2 The model

In the present calculations, single-particle energies
are given by the axially symmetric Nilsson model [12],
in which the κ and µ parameters are empirically fitted
[13]. The Lipkin-Nogami (LN) pairing [14] has been used
in the present PSM calculation. In the PSM, the many-
body wave function can be written as a superposition of
projected multi-qp states [11, 15]

|ΨIM〉=
∑

Kκ

fIKκ
P̂ I

MK |Φκ〉, (1)
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where P̂ I
MK is the angular-momentum-projection opera-

tor, |Φκ〉 denotes the multi-qp states as a basis set, and
fIKκ

is their weight factor. For even-even nuclei, |Φκ〉
consists of the multi-qp states (up to four-qp states) as-
sociated with the Nilsson-LN vacuum |φ〉:

{|φ〉,a†
ν1

a†
ν2
|φ〉,a†

π1
a†

π2
|φ〉,a†

ν1
a†

ν2
a†

π1
a†

π2
|φ〉}, (2)

where a†
ν

and a†
π

are the creation operators for neutrons
and protons, respectively.

The deformed Nilsson-LN states are created with ax-
ial symmetry in the present work. Thus each multi-qp
state |Φκ〉 has a definite K as a good quantum number.
The state of Eq. (1) is a linear combination of various
K states, which represents the mixing among different
K components. Hence the calculation takes K-mixing
effects into account. The energies and wave functions
(expressed in terms of fIKκ

) are determined by a vari-
ational procedure, i.e., solving the following variational
equation [11]

∑

K′κ′

{HI
KκK′κ′−EIN

I
KκK′κ′}fIK′

κ
′
=0, (3)

where HI
KκK′κ′ and N I

KκK′κ′ are the Hamiltonian and
norm matrix elements, respectively.

We employ the total Hamiltonian, which is defined
as [11, 16]

Ĥ=Ĥ0−
χ

2

∑

µ

Q̂†
2µQ̂2µ−GMP̂ †P̂−GQ

∑

µ

P̂ †
2µP̂2µ, (4)

where Ĥ0 is the spherical Nilsson Hamiltonian. The
other terms are standard, i.e., for the quadrupole-
quadrupole, monopole-pairing, and quadrupole-pairing
interactions, respectively. The strength χ of the
quadrupole-quadrupole force is determined by compar-
ison with the deformed Nilsson potential [11]. The
monopole-pairing strength GM is determined by the av-
erage gap method [17]. The quadrupole-pairing strength
GQ is taken to be proportional to GM with a constant of
0.20, which is consistent with the previous PSM calcula-
tions [11].

The g factor is ideal for identifying the multi-qp con-
tribution to the wave function. It is defined by

g(I)=gν(I)+gπ(I), (5)

with gτ(I) (π for protons and ν for neutrons) given by

gτ(I) =
1

µN

√

I(I+1)
[gτ

l 〈ΨIM ||ĵτ ||ΨIM〉

+(gτ
s −gτ

l )〈ΨIM ||ŝτ||ΨIM〉], (6)

where |ΨIM 〉 is the wave function of Eq. (1). In the
present work, we use the standard values for gl and
gs (i.e., gπ

l = 1, gν

l = 0, gπ

s = 5.586×0.75, and gν

s =
−3.826×0.75). gπ

s and gν

s are both reduced by a quenching
factor of 0.75 from the free-nucleon values to account for

the core-polarization and meson-exchange current cor-
rections [18].

3 Calculations and discussions

To determine the deformation first, which is needed
in the PSM calculations, we calculate the ground-state
(g.s.) potential energy surfaces (PESs) by using the
Strutinsky method [19], in which the energy is decom-
posed into macroscopic, quantal shell-correction, and
residual pairing energies. The macroscopic energy can
be approximated by the standard liquid-drop model [20].
The g.s. deformation can be determined by minimizing
the PES. Table 1 lists the calculated quadrupole (ε2) and
hexadecapole (ε4) deformations for the Z = 70 isotopes
and N =104 isotones in the vicinity of 174Yb. The calcu-
lated quadrupole deformations ε2 are in good agreement
with the experimentally adopted values [21]. In the fol-
lowing PSM calculations, we thus construct the multi-qp
basis at the deformations that are listed in Table 1.

Table 1. The quadrupole and hexadecapole de-
formation parameters for Z = 70 isotopes and
N=104 isotones.

Z=70 170Yb 172Yb 174Yb 176Yb 178Yb

ε2 0.284 0.287 0.286 0.279 0.274

ε4 0.034 0.043 0.055 0.064 0.074

N=104 172Er 174Yb 176Hf 178W 180Os

ε2 0.289 0.286 0.271 0.248 0.233

ε4 0.049 0.055 0.049 0.039 0.040

Figure 1 shows the calculated level spectra for 174Yb,
including rotational bands built on different intrinsic
structures. It can be seen that the calculated ground-
state band, Kπ = 6+ band, and Kπ = 14+ band re-
produce the experimental data well. Ref. [7] associates
the observed Kπ = 6+ isomer with a two-quasineutron
(ν7/2−[514]⊗ν5/2−[512]) configuration. However, our
calculation gives two Kπ=6+ bands with nearly degener-
ate energies. One is based on the ν7/2−[514]⊗ν5/2−[512]
configuration, and the other is built on a two-quasiproton
(π7/2+[404]⊗π5/2+[402]) configuration which lies only 26
keV higher than the two-quasineutron one. Both bands
have equivalent rotational behaviors, which are in accord
with the experimental Kπ=6+ band. Nearly degenerate
energies would reinforce the mixing between these two
bands. Indeed, mixing of the two-quasiproton and two-
quasineutron Kπ = 6+ bands has been found in neigh-
boring nuclei, 176Hf [22] and 174Hf [10]. However, the
extent of the mixing between high-K two-quasineutron
and two-quasiproton states is very small in our calcula-
tions as well as in previous PSM calculations [23]. This
may be related to the model space and the QQ interac-
tion employed in the Hamiltonian of the PSM [23].
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Fig. 1. The calculated level spectra sorted by bands built on different intrinsic structures for 174Yb. The dominant
configurations of the prolate high-K bands are Kπ=6+(#1): ν7/2−[514]⊗ν5/2− [512]; Kπ=6+(#2): π7/2+[404]⊗
π5/2+[402]; Kπ =14+: ν7/2−[514]⊗ν5/2− [512]⊗π9/2− [514]⊗π7/2− [523]. The experimental data are taken from
Ref. [7].

Table 2 lists the calculated g factors for the Kπ=6+

states. Our calculation gives g factor values of 0.07 for
the two-quasineutron Kπ = 6+ state and 0.89 for the
two-quasiproton Kπ = 6+ state, respectively. We use

g = gR+(gK−gR) ·
K2

I(I+1)
and assume gR = 0.35 [7] to

obtain |gK−gR| = 0.33(0.63) for the two-quasineutron
(two-quasiproton) configuration. Experimentally, the
observed branching ratios for the Kπ = 6+ band in
174Yb give a weighted mean of |gK−gR| = 0.437(6) [7],
which is higher than the calculated value for the two-
quasineutron configuration and is lower than that for the
two-quasiproton configuration. The intermediate value
of the measured |gK−gR| indicates the mixing of the two
Kπ=6+ bands. As a consequence of this mixing, one may
expect to observe interband transitions between mem-
bers of the two mixed bands. Further experimental data
are needed to clarify this.

Table 2. The calculated g factors for the two-
quasineutron and two-quasiproton Kπ=6+ states
in 174Yb. gR is assumed to be 0.35 [7]. The ex-
perimental data are from Ref. [7].

configuration g factor |gK−gR| |gK−gR|
Kπ

(Calc.) (Calc.) (Expt.)

two-quasineutron 0.07 0.33
6+ or 0.437(6)

two-quasiproton 0.89 0.63

Systematic observations of the Kπ =6+ isomers can
be found in 172-178Hf [10, 22]. Most of them are domi-
nated by the π7/2+[404]⊗π5/2+[402] configuration, ex-
cept for 176Hf (N =104), in which the Kπ=6+ isomer is
an admixture of two-quasiproton and two-quasineutron

states [22]. On the contrary, in the N = 104 isotones
(except 176Hf), the Kπ = 6+ isomers which have been
observed from 172Er to 180Os are associated with the
ν7/2−[514]⊗ν5/2−[512] intrinsic structure [9]. This
implies that the two-quasineutron and two-quasiproton
structures would compete with each other in this mass
region. The competition between these different multi-
qp excitations provides useful information about the shell
structure of nucleon orbits.

We therefore make a thorough investigation on both
two-quasineutron and two-quasiproton Kπ = 6+ states
in the N = 104 isotones and Z = 70 isotopes. Fig. 2
displays the comparison between the calculated and ex-
perimental energies in the N = 104 isotones close to
174Yb. Good agreement between the calculations and
experiments is obtained for the known Kπ = 6+ states.
Since the ν7/2−[514] and ν5/2−[512] orbits are located
around the N = 104 neutron Fermi surface, the calcu-
lated energies for the two-quasineutron configurations
are low and nearly constant. The calculated energies for
the two-quasiproton configurations decease rapidly from
Z = 68 to 72 and increase remarkably from Z = 72 to
76. In the range of Z = 70−74, the two-quasiproton
Kπ = 6+ state is predicted to be at an energy sim-
ilar to the two-quasineutron one. This is because of
the proton Fermi surfaces of 70 6 Z 6 74 near the
π7/2+[404] and π5/2+[402] orbits. Small energy dif-
ferences may lead to the mixing of the two Kπ = 6+

states. Accordingly, the Kπ = 6+ isomers in 174Yb,
176Hf, and 178W would be based on an admixture of
the two-quasineutron ν7/2−[514]⊗ν5/2−[512] and two-
quasiproton π7/2+[404]⊗π5/2+[402] intrinsic states.
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Fig. 2. The energies for the ν7/2−[514]⊗ν5/2− [512]
(K = 6+) and π7/2+[404]⊗ π5/2+[402] (K =
6+) states in the N = 104 isotones adjacent to
174Yb. The experimental data are taken from
Refs. [7, 9, 24].

The experimental information concerning the Kπ =
6+ isomers in ytterbium isotopes is relatively scarce. Our
calculations predict the systematic existence of the low-
lying Kπ=6+ states in 170-178Yb. As can be seen in Fig. 3,
the calculated energies for the Kπ = 6+, π7/2+[404]⊗
π5/2+[402] states lie at similar energies in 170−178Yb,
whereas the energies for the ν7/2−[514]⊗ν5/2−[512]
states change significantly along with the increasing neu-
tron number. In 172Yb and 174Yb, the two-quasineutron
configuration is at a comparable energy to the two-
quasiproton one. This may result in serious mixing of
these two Kπ = 6+ states, and a corresponding experi-
mental search is needed.

Fig. 3. Similar to Fig. 3, but for the K=6+ states
in the ytterbium isotopes adjacent to 174Yb. The
experimental data are taken from Ref. [7].

4 Summary

In summary, we investigated the competition between
the two-quasineutron and two-quasiproton Kπ = 6+

states in the Z = 72 isotopes and N = 104 isotones
in the vicinity of 174Yb by using the projected shell
model. The present calculations reproduce the experi-
mental observations well. Our calculation associated the
Kπ=6+ isomer observed in 174Yb with an admixture of
the ν7/2−[514]⊗ν5/2−[512] and π7/2+[404]⊗π5/2+[402]
intrinsic structure, which is supported by the experimen-
tal |gK−gR| value. Similar mixing would also occur in
172Yb, 176Hf, and 178W. In addition, the systematic ex-
istence of the low-lying Kπ = 6+ states is predicted for
170-178Yb.
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