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Vacuum fluctuation effects on hyperonic neutron star matter *
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Abstract: The vacuum fluctuation (VF) effects on the properties of the hyperonic neutron star matter are in-

vestigated in the framework of the relativistic mean field (RMF) theory. The VF corrections result in the density

dependence of in-medium baryon and meson masses. We compare our results obtained by adopting three kinds of

meson-hyperon couplings. The introduction of both hyperons and VF corrections softens the equation of state (EoS)

for the hyperonic neutron star matter and hence reduces hyperonic neutron star masses. The presence of the δ field

enlarges the masses and radii of hyperonic neutron stars. Taking into account the uncertainty of meson-hyperon

couplings, the obtained maximum masses of hyperonic neutron stars are in the range of 1.33M�–1.55M� .
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1 Introduction

The nonlinear Walecka model (NLWM), based on the
relativistic mean field (RMF) theory, has been success-
fully used in the study of nuclear matter and neutron
stars [1–7]. Neutron stars are composed of highly com-
pressed matter. Nuclear matter at high densities ex-
hibits a new degree of freedom: strangeness. Hyper-
ons, kaon condensation, and quarks may appear in neu-
tron stars, and these complicated compositions of neu-
tron stars have attracted much attention. The impor-
tant property of a neutron star is characterized by its
mass and radius, which can be obtained from the ap-
propriate equation of state (EoS) at high densities. The
RMF model was first used to investigate the properties
of hyperonic neutron stars (npeµH) (H denotes hyperons
throughout this paper) in the 1980s [8, 9]. Recently, in
some studies based on the RMF model, it has been indi-
cated that the strangeness is a new degree of freedom in
neutron star matter [10–12]. In recent years it has been
stressed that the inclusion of the δ field is important in
the study of the asymmetric nuclear matter [6, 7, 12–
14]. The inclusion of the δ field leads to the structure of
relativistic interactions, where a balance between an at-
tractive (scalar) and a repulsive (vector) potential exists.

The δ field plays a role in the isospin channel and mainly
affects the behavior of the system in the high density re-
gions and so is of great interest in nuclear astrophysics.
The influence of the δ field on the properties of hyperonic
neutron stars has been investigated based on the RMF
model [12, 15, 16].

In Ref. [17], the vacuum fluctuation (VF) corrections
were taken into account to study the properties of nuclear
matter. Recently, the VF-RMF model was developed by
including the isovector mesons (ρ and δ) to investigate
the properties of the asymmetric nuclear matter and neu-
tron stars [18]. The VF effects lead to the dependence of
in-medium hadron masses on the total baryon density. In
this work, we will extend the VF-RMF model to hyperon-
rich matter in neutron stars by including the hyperons
and leptons in the relativistic Lagrangian density. The
VF effects will be introduced by considering loop cor-
rections in the self-energies of in-medium baryons and
mesons as in Ref. [18]. The VF effects on the properties
of the hyperonic neutron star matter will be studied.

This article is organized as follows. In Section 2, we
derive the in-medium masses of baryons and mesons and
the EoS for the hyperonic neutron star matter in the
VF-RMF model. Section 3 is devoted to our results and
discussions. In Section 4, a brief summary is presented.
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2 The baryon octet VF-RMF model

The relativistic Lagrangian density with the baryon
octet and free leptons used in this work reads

L =
∑

B

ψ̄B[iγµ∂µ
−(MB−gσBφ−gδB

~tB·~δ)−gωBγµω
µ

−gρBγ
µ~tB·~bµ]ψB+

1

2
(∂µφ∂µ

φ−m2
σφ

2)−U(φ)

+
1

2
m2

ωωµω
µ+

1

2
m2

ρ
~bµ·~b

µ+
1

2
(∂µ

~δ·∂µ~δ−m2
δ
~δ2)

−
1

4
FµνF

µν−
1

4
~Gµν

~Gµν+
∑

l

ψ̄l(iγµ ∂µ
−ml)ψl+δL,

(1)

where the sum on B is over all the states of the lowest
baryon octet (with mass MB) (B=n, p, Λ, Σ−, Σ0, Σ+,
Ξ−, Ξ0) and the sum on l is over the free leptons (with

mass ml) (l=e−, µ−); φ, ωµ, ~bµ, and ~δ (with masses
mσ, mω, mρ, mδ, respectively) represent σ, ω, ρ, and δ

meson fields, respectively; ~tB represents the isospin gen-

erator matrix for the baryon B; U(φ) =
1

3
aφ3+

1

4
bφ4 is

the nonlinear potential of the σ meson, Fµν≡∂µων−∂νωµ

and ~Gµν≡∂µ
~bν−∂ν

~bµ; the counterterm for the Lagrangian
density, δL, has the same form as that in Ref. [18].

The field equation for the baryon B in the RMF ap-
proximation is given by

[iγµ∂µ
−(MB−gσBφ−gδBt3Bδ3)

−gωBγ
0ω0−gρBγ

0t3Bb0]ψB = 0, (2)

with

φ=
1

m2
σ

(

∑

B

gσBρsB−aφ
2−bφ3

)

,

ω0=
1

m2
ω

∑

B

gωBρB,

b0=
1

m2
ρ

∑

B

gρBt3BρB,

δ3=
1

m2
δ

∑

B

gδBt3Bρ
s
B,

(3)

where t3B is the third direction projection of the ~tB for
the baryon B. ρB and ρs

B are the number and scalar den-
sities of the baryon B, which are given in the following
respectively,

ρB =
k3

FB

3π2
, (4)

and

ρs
B = −i

∫
d4k

(2π)4
TrGB(k), (5)

where kFB
is the Fermi momentum of the baryon B and

GB(k) is the propagator of the baryon B in the VF-RMF
model:

GB(k) = (γµk
µ+M?

B)

[

1

k2−M?2
B +iη

+
iπ

E?
FB

δ(k0−EFB
)θ(kFB

−|~k|)

]

≡ GB
F(k)+GB

D(k), (6)

where M?
B is the effective mass of the baryon B, E(?)

FB
=

√

k2
FB

+M (?)2
B and η is infinitesimal.

In the present work, we only consider the dominant
VF contributions from the tadpole diagrams to the self-
energies of baryon octet states. Thus, when the VF cor-
rections are introduced through Fig. 1(a), the effective
mass of the baryon B can be written as:

M?
B = MB+igσB

∑

B′

gσB′

m?2
σ

∫
d4k

(2π)4
TrGB′

(k)

+igδBt3B
∑

B′

gδB′

m?2
δ

t3B′

∫
d4k

(2π)4
TrGB′

(k)

+
gσB

m?2
σ

(aφ2+bφ3), (7)

where m?
j (j=σ, ω, ρ, δ throughout this paper) are the

off-shell in-medium meson masses.

Fig. 1. Loop-diagram corrections to the self-energy
of baryon octet states (a) and mesons (b) in
medium, where B′ denotes baryons and k is the
four momentum of the meson.

The introduction of the density dependence of the
in-medium meson masses is the critical effect of VF cor-
rections. Because the meson propagators in the baryon
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self-energies carry zero four-momenta, we must use the
off-shell (qµ = 0) meson masses in the tadpole loop
calculations for self consistency. We calculate the in-
medium meson masses in the random-phase approxima-
tion (RPA) [17, 19], see Fig. 1(b). The obtained off-shell
effective mass of the σ meson is given by

m?2
σ =m2

σ+Πσ(qµ=0), (8)

where

Πσ(qµ=0)=−i
∑

B

g2
σB

∫
d4k

(2π)4
Tr[GB(k+q)GB(k)]. (9)

The off-shell effective mass of the δ meson is obtained
as follows:

m?2
δ =m2

δ+Πδ(q
µ=0), (10)

where

Πδ(q
µ=0)=−i

∑

B

g2
δBt

2
3B

∫
d4k

(2π)4
Tr[GB(k+q)GB(k)].

(11)
The off-shell effective mass of the ω meson is given

by

m?2
ω =m2

ω+ΠωT(qµ=0), (12)

where ΠωT is the transverse part of the following polar-
ization tensor:

Πµν
ω (qµ=0)=−i

∑

B

g2
ωB

∫
d4k

(2π)4
Tr[γµGB(k+q)γνGB(k)].

(13)
The off-shell effective mass of the ρ meson is given by

m?2
ρ =m2

ρ+ΠρT(qµ=0), (14)

where ΠρT is the transverse part of the following polar-
ization tensor:

Πµν
ρ (qµ=0) = −i

∑

B

g2
ρBt

2
3B

∫
d4k

(2π)4

×Tr[γµGB(k+q)γνGB(k)]. (15)

Obviously, the modification of the in-medium hadron
masses will affect the properties of the hyperonic neu-
tron star matter. The meson masses appearing in the
Lagrangian density should be replaced by the off-shell
in-medium meson masses in our calculations. Therefore,
the energy-momentum tensor in the VF-RMF model can
be expressed as

Tµν =
∑

B

iψ̄Bγµ∂νψB+
∑

l
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[
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2
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δ
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]

.

(16)

The EoS for the hyperonic neutron star matter
is given by the diagonal components of the energy-
momentum tensor. Thus we have the energy density as
follows:
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(17)

and the pressure is given by

P = −
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where the sum on i is over the space components of γ
and k, kFl

is the Fermion momentum of free leptons and
EFl

=
√

m2
l +k

2
Fl

.
Hyperonic neutron stars are neutral charged objects

in β equilibrium. For the hyperonic neutron star matter,
the chemical potential of baryon octet states and leptons
are constrained by the baryon number and electric charge
conservation:

µµ = µe, (19)

µp = µn−µe, (20)

µΛ = µΣ0 =µΞ0 =µn, (21)

µΣ− = µΞ− =µn+µe, (22)

µΣ+ = µp=µn−µe, (23)

where µn and µe are the independent neutron and elec-
tron chemical potentials, respectively, where the chemi-
cal potentials of the baryon B and the lepton l are given
by, respectively,

µB =
√

k2
B+M?2

B +gωBω0+gρBt3Bb0, (24)

µl =
√

k2
Fl

+ml
2. (25)

The neutral charged condition of the hyperonic neu-
tron star matter can be expressed as:

ρp+ρΣ+−ρΣ−−ρΞ− =ρe−+ρµ− . (26)

The properties of hyperonic neutron stars can be ob-
tained by solving Tolmann-Oppenheimer-Volkov (TOV)
equations [20] with the derived EoS as the input.
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3 Results and discussions

In this work, the meson-nucleon coupling constants
are fixed by the same saturation properties of the nu-
clear matter as in Ref. [18]. In general, the interactions
between different meson and hyperon states should be
different. We prefer to adopt the hyperon potentials to
determine the σ meson-hyperon coupling constants with
the vector and isovector meson-hyperon couplings fixed
by SU(6) quark symmetry. For the meson-hyperon cou-
pling constants, it is convenient to define xjH = gjH/gjN

(N=n, p throughout this paper). The σ meson-hyperon
coupling constants are fixed by the corresponding hy-
peron potentials, UH=xωHV−xσHS, where V =gωNω0 and
S=gσNφ are the ω and σ field strengths at the saturation
density [21, 22]. As discussed in Ref. [23], Λ is known
to experience an attractive potential, UΛ=−28 MeV, in
hypernuclear matter. Recently, some authors suggested
that Σ− may feel repulsive potential at high densities
[24–26], which was supported by the absence of bound
states in a recent Σ hypernuclear search [27]. Therefore,
the repulsive potential of Σ, UΣ=30 MeV, is adopted in
our calculations as in [28]. The attractive potential of
Ξ, UΞ=−18 MeV, is adopted from Ξ-N interaction [15].
The obtained σ meson-hyperon coupling constants are
listed in Table 1. As mentioned before, the vector and
isovector meson-hyperon couplings are fixed by SU(6)
quark symmetry [29]:

gωΛ = gωΣ=2gωΞ=
2

3
gωN, (27)

gρΛ = 0, (28)

gρΣ = 2gρΞ=2gρN, (29)

gδΛ = 0, (30)

gδΣ = 2gδΞ=2gδN. (31)

Table 1. The σ meson-hyperon coupling constants
obtained from hyperon potentials in the VF-RMF
and NL-RMF models.

VF-RMF model NL-RMF model
parameters

VFρ VFρδ NLρ NLρδ

xσΛ 0.62 0.64 0.61 0.62

xσΣ 0.37 0.38 0.36 0.37

xσΞ 0.33 0.34 0.32 0.33

The in-medium masses of baryons and mesons can
be obtained by calculating the loop corrections to their
self-energies, see Fig. 1. As discussed before, because
the meson propagators appearing in the baryon self-
energies are calculated at zero four-momentum transfer
(see Fig. 1(a)), we have to use the off-shell in-medium
meson masses in the tadpole loop calculations for self

consistency. The off-shell in-medium meson masses in
the hyperonic neutron star matter are shown in Fig. 2.
It is found that the off-shell in-medium meson masses in-
crease with the increase of the total baryon density (the
sum of the densities of n, p, Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0). The
introduction of the density dependence of in-medium me-
son masses is the critical effect of VF corrections.

Fig. 2. Off-shell in-medium meson masses (m?
j ) in

the hyperonic neutron star matter as a function of
the total baryon density with the meson-hyperon
couplings fixed by hyperon potentials and SU(6)
quark symmetry in the VF-RMF model.

Fig. 3. The in-medium masses of hyperons, M?
H

(H = Λ, Ξ−), as a function of the total baryon
density with the meson-hyperon couplings fixed
by hyperon potentials and SU(6) quark symme-
try in different models.

In this work, hyperons are included in the VF-RMF
model. The in-medium masses of hyperons play an im-
portant role in the calculations of EoS. Fig. 3 shows the
in-medium masses of Λ and Ξ− as a function of the total
baryon density in different models for a comparison. It
is found that the VF corrections soften the decrease of
the in-medium hyperon masses at high densities. This
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implies the softer EoS for the hyperonic neutron star
matter obtained in the VF-RMF model than that in the
NL-RMF model.

Now we define the relative population of the baryon
B as the ratio of the density of B and the total baryon
density. Fig. 4 and Fig. 5 show the relative populations
as a function of the total baryon density with the meson-
hyperon couplings fixed by hyperon potentials and SU(6)
quark symmetry in the NL-RMF model and the VF-
RMF model, respectively. Comparing these two figures,
we find that the VF corrections lead to later emergence
of all hyperons. Meanwhile, the VF corrections reduce
the population of Ξ0 while they enlarge the population of
leptons. We can see that Σ(±,0) experience such a strong
repulsion that they do not appear at all in the density
range found in the neutron stars. This is consistent with
the fact that Σ− is hardly stabilized in the hypernuclear
matter [28]. In the VF-RMF model, the δ field effects
shift the thresholds of all the hyperons to lower densities.
On the other hand, the δ field effects shift the thresholds
of Λ and Ξ− to lower densities while shifting the thresh-
old of Ξ0 to higher density in the NL-RMF model. The
δ field effects on the population of baryons and leptons
are not apparent in both models.

Fig. 4. The relative populations as a function of
the total baryon density with the meson-hyperon
couplings fixed by hyperon potentials and SU(6)
quark symmetry in the NL-RMF model.

Figure 6 shows the EoS, pressure vs. the total baryon
density, for the hyperonic neutron star matter with the
meson-hyperon couplings fixed by hyperon potentials

and SU(6) quark symmetry in different models. The in-
sert of Fig. 6 presents the EoS for the nucleonic (npeµ)
neutron star matter for a comparison. We can see that
the introduction of hyperons and VF corrections soften
the EoS greatly. Unlike the case of the nucleonic neu-
tron star matter, the presence of the δ field stiffens the
EoS at first, and then from the appearance of Λ and
Ξ− till higher densities softens the EoS for the hyper-
onic neutron star matter. This is because the attractive

Fig. 5. The relative populations as a function of
the total baryon density with the meson-hyperon
couplings fixed by hyperon potentials and SU(6)
quark symmetry in the VF-RMF model.

Fig. 6. The EoS for the hyperonic neutron star
matter with the meson-hyperon couplings fixed
by hyperon potentials and SU(6) quark symme-
try. The insert is the EoS for the nucleonic neu-
tron star matter.
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Table 2. The maximum masses (MS in units of M⊙), the corresponding radii and the central densities of hyperonic
neutron stars and nucleonic neutron stars. The meson-hyperon couplings are fixed by hyperon potentials and
SU(6) quark symmetry.

VF-RMF model NL-RMF model
neutron star properties

VFρ VFρδ NLρ NLρδ

hyperonic neutron star MS/M⊙ 1.33 1.43 1.57 1.59

npeµH R/km 12.37 13.13 12.02 13.036

ρc/ρ0 4.91 4.89 5.76 4.63

nucleonic neutron star MS/M⊙ 1.52 1.66 2.09 2.12

npeµ R/km 10.85 11.82 10.93 11.37

ρc/ρ0 7.58 6.36 6.66 6.29

effects of Λ and Ξ− are larger than the repulsive effects of
the δ field. Such effects of the δ field reflect the compli-
cated nature of interactions between mesons and hyper-
ons in the hyperonic neutron star matter, which needs
in depth study in the future.

The properties of neutron stars can be calculated by
solving TOV equations. Fig. 7 shows the correlation
between the neutron star masses and the correspond-
ing radii for hyperonic and nucleonic neutron stars with
meson-hyperon couplings obtained by hyperon potentials
and SU(6) quark symmetry in different models. The ob-
tained maximum masses, the corresponding radii and the
central densities are presented in Table 2. As pointed out
in Ref. [30], the introduction of hyperons leads to the re-
duction of the maximum neutron star masses due to the
Pauli principle effects. We can see from Table 2 that our
results are consistent with this statement. Furthermore,
we can see that the VF corrections also result in the re-
duction of the maximum masses of neutron stars. The
presence of the δ field enlarges the maximum masses and
radii of neutron stars.

Fig. 7. The masses of neutron stars as a function of
the radii of neutron stars in the VF-RMF model.
The meson-hyperon couplings are fixed by hy-
peron potentials and SU(6) quark symmetry.

In the literature, there are various approaches to de-
termine the meson-hyperon couplings [9, 29, 31]. In or-
der to see the dependence of our results on the meson-

hyperon couplings, we also compare our results by adopt-
ing the meson-hyperon couplings derived from the quark
counting method, xjH =

√

2/3 [31], and the universal
meson-hyperon couplings, xjH=1 [9].

Fig. 8. The relative populations as a function of
the total baryon density with quark counting
meson-hyperon couplings in the VF-RMF model.

Figure 8 and Fig. 9 show the relative populations as
a function of the total baryon density with the quark
counting and universal meson-hyperon coupling choices,
respectively. We can see that Σ− is the first hyperon
to appear due to its low mass and favored charge [32].
For both kinds of meson-hyperon couplings, the pres-
ence of δ field leads to earlier emergence of hyperons.
For both the quark counting and the universal meson-
hyperon coupling choices, the populations of nucleons
dominate in the whole density region. However, as can
be seen from Fig. 5, the population of Λ exceeds that of
the proton at high densities when we adopt the meson-
hyperon couplings fixed by hyperon potentials and SU(6)

125101-6
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quark symmetry. Comparing Fig. 8 and Fig. 9 with
Fig. 5, we can see that the onset of Ξ− is greatly reduced
in Fig. 5 to compensate the absence of Σ− in order to
keep charge neutrality [9]. We note that Ξ0 and Σ+ will
appear beyond the maximum density considered here,
9ρ0, when we adopt the quark counting and universal
meson-hyperon coupling choices.

Fig. 9. The relative populations as a function of
the total baryon density with the universal meson-
hyperon coupling choice in the VF-RMF model.

Figure 10 shows the masses of hyperonic neutron
stars as a function of the neutron star radii with the
quark counting and universal meson-hyperon couplings
in the VF-RMF model. Comparing Fig. 10 with Fig. 7, it
is obvious that the properties of hyperonic neutron stars
are sensitive to the meson-hyperon couplings. We can see
that the weaker the meson-hyperon couplings the lower
the masses and radii of hyperonic neutron stars obtained.
As in Fig. 7, the presence of the δ field also increases the
masses and radii of hyperonic neutron stars.

Table 3 displays the properties of hyperonic neu-
tron stars with the quark counting and universal meson-
hyperon couplings in the VF-RMF model. Comparing
Table 3 with Table 2, we can see that the influence
of meson-hyperon couplings on our results are distinct.
With the adoption of the universal meson-hyperon cou-
plings, the obtained maximum hyperonic neutron star
masses are higher than those obtained by adopting the
other two kinds of meson-hyperon couplings and even
higher than the maximum masses obtained in the case
of nucleonic neutron stars. As discussed in Refs. [21, 30],
the conversion of nucleons to hyperons are energetically
favored. The inclusion of hyperons softens the EoS and

consequently reduces the maximum masses of neutron
stars because the Pauli principle minimizes the total en-
ergy at a given density. Based on the above discussion,
the choice of universal hyperon couplings is not appropri-
ate for our model. It is found that the weaker the meson-
hyperon couplings the lower maximum masses and the
corresponding radii of hyperonic neutron stars are ob-
tained. The adoption of meson-hyperon couplings fixed
by hyperon potentials and SU(6) quark symmetry results
in the softest EoS of the hyperonic neutron matter and
hence leads to the lowest maximum masses of hyperonic
neutron stars. We also find that the maximum masses
and radii of hyperonic neutron stars increase when the δ

field presents in the VF-RMF model.

Fig. 10. The masses of hyperonic neutron stars as
a function of the radii of hyperonic neutron stars
with the quark counting and universal meson-
hyperon couplings in the VF-RMF model.

Table 3. The maximum mass (MS in units of M⊙),
the corresponding radii and the central densities
of hyperonic neutron stars with the quark count-
ing and universal meson-hyperon coupling choices
in the VF-RMF model.

VF-RMF model
meson-hyperon couplings properties

VFρ VFρδ

MS/M⊙ 1.43 1.55

xjH=
√

2/3 R/km 12.98 13.98

ρc/ρ0 4.71 3.98

MS/M⊙ 1.69 1.80

xjH=1 R/km 13.59 14.50

ρc/ρ0 4.48 3.89

4 Summary

In this work, we investigate the properties of the hy-
peronic neutron star matter in the extended VF-RMF
model. The interactive hyperons and free leptons are
introduced into the relativistic Lagrangian density. The
VF effects are included by taking into account the loop
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corrections in the hadron self-energies. In our calcula-
tions, we replace all the meson masses by the off-shell in-
medium meson masses since the propagators of mesons
in the tadpole diagrams of baryon self-energies carry
zero-momenta. With the VF corrections the in-medium
baryon and meson masses are dependent on the total
baryon density.

In general, the interactions between different mesons
and hyperons should be different. We prefer to adopt
the σ meson-hyperon couplings derived from the hy-
peron potentials with the vector and isovector meson-
hyperon couplings fixed by the SU(6) quark symmetry.
We find that the off-shell in-medium meson masses in-
crease with the increase of total baryon density. The
in-medium masses of hyperons decrease slower at high
densities when the VF corrections are introduced. The
density dependence of off-shell in-medium meson masses
and in-medium hyperon masses influences the behavior
of the EoS for the hyperonic neutron star matter directly.
The introduction of hyperons softens the EoS since the
Pauli principle minimizes the total energy at a given den-
sity. The results obtained in the VF-RMF model are
compared with those obtained in the NL-RMF model. It
is found that the VF corrections soften the EoS for the
hyperonic neutron star matter and hence the maximum
masses of hyperonic neutron stars are reduced. Σ(±,0) are
absent in the range of densities found in neutron stars be-
cause they feel a strong repulsion in this meson-hyperon
couplings choice.

Then, the dependence of our results on the meson-
hyperon couplings is studied. We use another two choices
for meson-hyperon couplings for a comparison: one is
derived from the quark counting method, the other is
the so-called universal couplings. It is found that the
properties of hyperonic neutron stars are sensitive to
the meson-hyperon couplings. The weaker the meson-
hyperon couplings the lower the maximum masses of hy-
peronic neutron stars are obtained. For the quark count-
ing and universal coupling choices, Σ(±,0) are present and
the populations of nucleons dominant in the whole region
of total baryon densities. The maximum masses of hy-
peronic neutron stars obtained with the universal meson-
hyperon couplings exceed the maximum masses of nucle-
onic neutron stars. Because the Pauli principle assures
that the appearance of hyperons will lower the Fermi
energy of baryons and hence will lower the total energy
at a given baryon density, the universal meson-hyperon
couplings is not appropriate for our model. Taking into
account the uncertainty of meson-hyperon couplings, the
obtained maximum hyperonic neutron star masses are in
the range of 1.33M�–1.55M� (M� denotes the mass of
the sun) in the VF-RMF model.

The effects of the δ field on hyperonic neutron stars
are investigated in the VF-RMF model. Unlike the case

of the nucleonic neutron star matter, we find that the
presence of the δ field stiffens the EoS at first and then
softens the EoS from the appearance of Λ and Ξ− till
higher densities for the hyperonic neutron star matter.
Such effects of the δ field on the EoS reflect the compli-
cated interactions in the hyperonic neutron star matter.
In addition, the presence of the δ field enlarges the max-
imum masses and radii of hyperonic neutron stars. The
effects of the δ field on neutron stars are more apparent
when the VF corrections are included.

As discussed in Ref. [2], the exchange diagram con-
tributions only provide small corrections to the EoS for
nuclear matter in the RMF approach at high densities.
We simply extend this statement to the case of the hy-
peronic neutron star matter as the first step to study the
VF effects by including hyperons in our model. Conse-
quently, we only consider the contributions from tadpole
diagrams to the baryon self-energies in the present work.

Quantum Hadrodynamics (QHD) was proposed as a
renormalizable theory. Calculations at one-loop level,
especially the relativistic Hartree approximation, have
been widely used and yielded reasonable descriptions of
nuclear ground state properties with a few phenomeno-
logical parameters [1, 2, 33–38]. However, two-loop cor-
rections were explicitly calculated with bare vertices and
found to be large [39]. This indicated that the loop ex-
pansion may not be convergent. Afterwards some au-
thors argued that the internal substructure of hadrons
should be taken into account since the loop momen-
tum higher than 5 GeV gives sizable contributions to
the energy density (the nucleon radius corresponds to
0.4 GeV in momentum space) [40–42]. They found
that the two-loop results with on-shell vertex form fac-
tors were significantly smaller than those computed with
bare vertices. However, calculations with off-shell ver-
tices have never been carried out and whether one can
solve the convergence problem of the loop expansion with
the introduction of such form factors is still open to
investigation[43, 44].

In recent years, QHD has been evolved into a low en-
ergy effective theory which includes πN coupling through
the consideration of chiral symmetry and chiral symme-
try breaking [45–48]. The loop expansion is applied with
the technique of Infrared Regularization, which has the
advantage to separate the self energy contribution into
soft and hard parts. The hard part can be absorbed
into counterterms already present in the effective La-
grangian, and can be removed either by field redefini-
tions or by fitting the empirical data. The soft part is
nonlocal and must be calculated explicitly. Calculations
at one- to three-loop levels were carried out to verify
that the coupling parameters remain natural when fitted
to the empirical properties of equilibrium nuclear matter
[45–48]. It is found that while two-loop and three-loop
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contributions are not large, they are not negligible ei-
ther. The energy contributions decrease order by order
in loops when a reasonable cutoff is chosen. However,
whether the loop expansion of the effective theory is in-
deed practical is still uncertain [46–48].

Calculations at one-loop level are phenomenologically

successful and may be a viable starting point for the de-
scription of high density nuclear matter at present. It
will be very interesting to study the VF effects at one-
loop level on the properties of hyperon-hyperon inter-
action, kaon condensation and unconfined quarks in the
core of neutron stars in the future.
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4 Müeller H, Serot B D. Phys. Rev. C, 1995, 52: 2072
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