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Abstract: In this work the mass spectra for some of the baryon resonances of the particle data group with three

and four star status are obtained, and a unified description of the ground states and excitation spectra of baryons are

provided in the framework of a non-relativistic potential model. For this goal we have analytically solved the radial

Schrödinger equation for three identical interacting particles with the anharmonic potential by using the Ansatz

method and then we have calculated the baryon resonances spectrum by using the Gürsey Radicati mass formula

(GR) and with generalized Gürsey Radicati mass formula (GGR). The results of our model show that the calculated

masses of baryon resonances by using the generalized Gürsey Radicati mass formula are found to be in good agreement

with the tabulations of the Particle Data Group. The overall good description of the spectrum which we obtain shows

that our model can also be used to give a fair description of the energies of the excited multiples up to 3 GeV mass and

negative-parity resonance. Moreover, we have shown that our model reproduces the position of the Roper resonance

of the nucleon.
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1 Introduction

Several papers based on the non-relativistic quark
models have appeared in the literature [1–7] in connec-
tion with the study of the mass spectra of light and
strange baryons. The baryon spectrum is usually de-
scribed well, although the various models are quite dif-
ferent. The three Quark interaction can be divided in
two parts: the first one, containing the confinement in-
teraction, is spin and flavor independent and it is there-
fore SU (6) invariant, while the second violates the SU (6)
symmetry [8–10]. One of the most popular ways to vi-
olate the SU (6) invariance was the introduction of a
hyperfine interaction [11, 12], however in many stud-
ies a spin and isospin [1, 13, 14] or a spin and flavor
dependent interaction [1, 13] has been considered. It
is well known that the Gürsey Radicati mass formula
[15] describes quite well the way SU (6) symmetry is
broken, at least in the lower part of the baryon spec-
trum. In this paper we applied the generalized Gürsey
Radicati (GR) mass formula which is presented by Gi-
annini et al. [16] to obtain the best description of the
baryons spectrum. The model we used is a simple Con-

stituent Quark Model where the SU (6) invariant part of
the Hamiltonian is the same as in the hypercentral Con-
stituent Quark Model (hCQM) [17, 18] and where the
SU (6) symmetry is broken by a generalized GR mass
formula. This paper is organized as follows. In Section 2
we review the hypercentral coordinates and introduce the
interaction potentials between three quarks in baryons
and then we present the analytical solution of the ra-
dial Schrödinger equation with the anharmonic potential
by using the Ansatz method. In the Ansatz approach,
which is followed here, we introduce a solution consis-
tent with the requirements of quantum mechanics and
thereby the differential equation under study is solved
[19, 20]. In the third section in order to describe the split-
ting within the SU (3) and SU (6) multiples we introduce
the Gell-Mann-Okubo (GMO) mass formula [21], the
Gürsey Radicati mass formula and the generalized GR
mass formula in the hCQM. Then we give the results ob-
tained by fitting the Gürsey Radicati mass formula and
generalized GR mass formula parameters to the baryons
energies and we compare the spectra with the experimen-
tal data. Finally, we give a summary and a conclusion in
Section 4.
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2 Exact analytical solution of the
Schrödinger equation with the anhar-
monic potential

We consider baryons as bound states of three quarks,
the Hamiltonian of this system is:

H=

3
∑

i,j=1

i<j

{

P 2
i

2mi

+V (~rij)

}

. (1)

By introducing the Jacobi vectors as

~R =
~r1+~r2+~r3

3
, ~ρ=

~r1−~r2√
2
, ~λ=

~r1+~r2−2~r3√
6

. (2)

After removing the center of mass coordinate R, the
Hamiltonian will be

H=
P 2

ρ

2m
+
P 2

λ

2m
+V (ρ,λ). (3)

In order to describe the three-quark dynamics, it is con-
venient to introduce the hypercentral coordinates, which
are obtained by substituting the absolute values of the
Jacobi coordinates ρ and λ, by:

r=
√

ρ2+λ2, ξ=arctan
(ρ

λ

)

, (4)

where r is the hyper-radius and ξ is the hyper-angle. The
quark dynamics has a dominant SU (6) invariant part,
which accounts for the average multiple energies; in the
hypercentral Constituent Quark Model it is assumed to
be given by the hypercentral potential.

The exact solutions to the fundamental dynamical
equations play crucial roles in physics. It is well-known
that the exact solutions to the Schrödinger equation
are possible only for several potentials and some ap-
proximation methods are frequently applied to arrive
at the solutions. On the other hand, the higher order
anharmonic potentials have attracted much more atten-
tion from physicists and mathematicians [22–24]. Inter-
est in anharmonic oscillator-like interactions stems from
the fact that, in many cases, the study of the relevant
Schrödinger equation, for example in atomic and molec-
ular physics, provides us with insight into the physical
problem in question. In our model the interaction po-
tential is assumed as follows:

V (r)=a1r
2+b1r

−4+c1r
−6, (5)

where the parameters a1, b1, and c1 in the potential sat-
isfy some constraints. This potential has been investi-
gated recently for the one-particle problem. We mention
that a simplified version of a more general form of the
Ansatz for the eigenfunction, with the anharmonic po-
tential like Eq. (5), offers a short-cut and simpler method
and also provides an exact closed form solution to the

Schrödinger equation for both the ground and the ex-
cited states. The quark potential V (r) is in general a
three-body potential, since the hyper-radius depends on
the coordinates of all three quarks. First we have solved
the Schrödinger equation exactly and find eigenvalue and
eigenfunction of the potential, then by using the GR
mass formula and the generalized GR mass formula we
can try to find the baryons spectrum.

For hypercentral potential, the Schrödinger equation,
in the hyperspherical coordinates, is simply reduced to a
single hyper-radial equation (Eq. (6)), while the angular
and hyperangular parts of the 3q-states are the known
hyperspherical harmonics [24].

(

d2

dr2
+

(

5

r

)

d

dr
−γ(γ+4)

r2

)

ψνγ(r)

= (−2m)[E−V (r)]ψνγ(r), (6)

wherem is the reduced mass [25–27], γ is the grand angu-
lar quantum number (given by γ=2n+lρ+lλ, n=0,1,···;lρ
and lλ are the angular momenta associated with the ~ρ
and ~λ variables) and ν denotes the number of nodes of
the space three quark wave functions. The transforma-

tion ψνγ(r) = r
−(D−1)

2 Rνγ(r) = r
−5
2 Rνγ(r) (D represents

the dimension) reduces Eq. (6) to the following form:

− d2

dr2
Rνγ(r)+

[

(2γ−3)(2γ+5)

4r2

]

Rνγ (r)

+

(

ar2+
b

r4
+
c

r6

)

Rνγ (r)=2mERνγ(r). (7)

Let

a=2ma1, b=2mb1 and c=2mc1. (8)

Let us assume

(2γ−3)(2γ+5)

4
=η(η+1)→η=γ+

3

2
, η=−γ−5

2
. (9)

The form of Eq. (7) is symmetric with respect to the

coordinate inversion x→ 1

x
and the elementary bound

state will be given of course with grand angular momen-
tum. Then from Eqs. (5) and (7) the reduced hyper-
radial Schrödinger equation for three identical particles
in six dimensions, Eq. (7), can be written as:

d2

dr2
Rνγ(r)+

[

2mE−2mV (r)−η(η+1)

r2

]

Rνγ (r)=0. (10)

For the fixed grand-angular quantum number γ, there
are different solutions, which can be labeled by υ, υ+1.
For the state solution of Eq. (10), we make an Ansatz
[28–35] for the radial wave function:

Rνγ(r)=exp[P (r)]×power series=eP (r)K (r). (11)
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From Eq. (11),

d2

dr2
Rνγ(r)−

(

P
′′

(r)+P ′2(r)+
K

′′

(r)+2P
′

(r)K
′

(r)

K(r)

)

×Rνγ(r)=0. (12)

Comparing Eqs. (10) and (11) we can write:

2mV (r)+
η(η+1)

r2
−2mE

= P
′′

(r)+P ′2(r)+
K

′′

(r)+2P
′

(r)K
′

(r)

K(r)
. (13)

First of all, let us take K(r) = 1 for ground state and
P (r) as:

P (r)=
1

2
αr2+

1

2
βr−2+κlnr. (14)

If we insert P (r) in Eq. (11), it is clear that Rνγ (r) is
not singular. Substituting Eq. (14) into Eq. (13) for the
ground state we obtain:

2mV (r)+
η(η+1)

r2
−2mE

= α2r2+α(1+2κ)+
κ(κ+1)−2αβ

r2
+
β(3+2κ)

r4
+
β2

r6
. (15)

On comparing both sides of Eq. (15) we find the follow-
ing corresponding energy and potential parameter rela-
tions:

2mE = −(1+2κ)α, α2=a. (16a)

κ2−κ−2αβ = η(η+1). (16b)

3β−2βκ = b, β2=c. (16c)

Equation (16) immediately yields:

α=±
√
a, β=±

√
c, κ=

1

2
±
[

(

η+
1

2

)2

+2
√
ac

] 1
2

. (17)

From Eq. (9) η=γ+
3

2
, then by substituting η into Eq. (17)

we can obtain the following equation:

κ=
1

2
±
[

(γ+2)
2
+2

√
ac
]

1
2 . (18)

Further, for physical restrictions we choose the positive
sign in κ and negative sign in α and β to retain the
well-behaved solution at the origin and at infinity. From
Eq. (16) the ground state energy is given by:

E0=
√
a

(

4+
b√
c

)

, (19)

while equation (16c) leads to a constraint,
(

2
√
c+b

)2
=4c

[

(γ+2)
2
+2

√
ac
]

. (20)

Let us assume:

ω1=

√

a1

m
, ω2=

√

b1

m
, ω3=

√

c1

m
. (21)

Equations (16a), (18), and (20) provide the eigenvalues
as:

E0γ =
[√

2+
[

2(γ+2)2+8m2ω1ω3

]
1
2

]

ω1. (22)

Finally, by doing some calculations, the total wave func-
tion for υ=0 is obtained as follows:

ψ0γ = Nγr

[

−2+[(γ+2)2+4m2ω1ω2]
1
2

]

×exp

[−(mω1r
2+mω3r

−2)√
2

]

, (23)

where the normalization constant for three particles in a
6-dimensional hypersphere is:∫

∞

0

r5 |ψ0γ(r)|2dr=1. (24)

By using the standard integral tables [36], when Re
β1>0, Re β2>0, Re ν>0,∫

∞

0

rν−1exp[−(β1r
2+β2r

−2)]dr

=

(

β1

β2

) ν

4

K ν

2

(

2
√

β1+β2

)

. (25)

In this problem we have β1=
√
a, β2=

√
c, and

ν

2
=κ+3.

In a similar manner we can continue for other modes,
ν=1, 2, 3,···.

3 The spin- and flavor- dependent SU(6)
violations in the baryon resonances

The spin and isospin dependent interactions are not
the only source of SU (6) violation. In order to study
the strange baryon spectrum one has to consider the
SU (3) violation produced by the differences in the quark
masses. The Gell-Mann-Okubo (GMO) mass formula
[21] made use of a λ8 violation of SU (3) in order to ex-
plain the mass splitting within the various SU (3) mul-
tiples; according to this formula the mass of a baryon
belonging to a given SU (3) multiple can be expressed
as:

M (GMO)
Baryon

=χY+ξ

[

I (I+1)−1

4
Y 2

]

+M, (26)

where Y is the hypercharge, I is the isospin of the baryon,
χ and ξ are parameters to be fitted and M is the aver-
age energy value of the SU (3) multiple. A simple way
to interpret the origin of such a violation is just to at-
tribute to the strange quark a mass different from the
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up and down quark ones. The unknown parameters χ
and ξ in the SU (3) violating terms can be in principle
fitted to the experimental masses, thereby providing a
phenomenological way to describe the spectrum. A sim-
ilar approach for description of the splitting within the
SU (6) baryon multiples is supplied by the Gürsey Rad-
icati mass formula [15]:

M(GR)
Baryon

=χY+τS(S+1)+ξ

[

I (I+1)−1

4
Y 2

]

+M,

(27)
where S is the total spin, τ is the parameter to be fitted
and M is the average energy value of the SU (6) multiple.
Eq. (27) can be rewritten in terms of Casimir operators
in the following way:

M(GR)
Baryon

= χC1 [UY (1)]+τC2 [SUS(2)]

+ξ

[

C2 [SU I(2)]−1

4
(C1 [UY(1)])

2

]

+M,

(28)

where C2[SUS(2)] and C2[SUI(2)] are the SU(2)
(quadratic) Casimir operators for spin and isospin, re-
spectively, and C1[UY(1)] is the Casimir for the U(1)
subgroup generated by the hypercharge Y . This mass
formula has tested to be successful in the description of
the ground state baryon masses, however, as stated by
the authors themselves, Eq. (28) is not the most general
mass formula that can be written on the basis of a broken
SU (6) symmetry.

Table 1. Eigenvalues of the C2 [SUSF(6)] and
C2 [SUF(3)] Casimir operators.

dimension dimension

(SU(6))
C2 [SUSF(6)]

(SU(3))
C2 [SUF(3)]

56
45

4
8 3

70
33

4
10 6

20
21

4
1 0

In order to generalize Eq. (28), Giannini et al. con-
sidered a dynamical spin-flavor symmetry SU SF(6) [16]
and described the SU SF(6) symmetry breaking mecha-
nism by generalizing Eq. (28) as:

M(GGR)
Baryon

= δC2 [SUSF(6)]+ϑC2 [SUF(3)]

+τC2 [SUS(2)]+χC1 [UY(1)]

+ξ

[

C2 [SU I(2)]−1

4
(C1 [UY(1)])2

]

+M.

(29)

The parameters δ and ϑ in the SU (6) violating terms can
in principle be fitted to the experimental masses. The
first two terms represent the quadratic Casimir operators
of the SU SF(6) spin-flavor and the SU F(3) flavor groups.
For the definition of the Casimir operators in Eq. (29),
we have followed the same convention as in Ref. [37].
The eigenvalues of the Casimirs are given by:

C2 [SUSF(n)]=
1

2

[

n
∑

i=1

fi(fi+n+1−2i)− 1

n

(

n
∑

i=1

fi

)2]

.

(30)
Where fi denotes the number of boxes in the i-th row of
the Young tableau. In Table 1, we give the expectation
values of the Casimir operators SU SF(6) and SU F(3) for
the allowed three-quark configurations.

In many studies of multiquark configurations, effec-
tive spin-flavor hyperfine interactions have been used
in CQM which schematically represents the Goldstone
Boson Exchange (GBE) interaction between constituent
quarks [38–41]. An analysis of the strange and non-
strange qqq baryon resonances in the collective string-
like model [1] and the hypercentral CQM [26] also showed
evidence for the need of such type of interaction terms.
The generalized Gürsey Radicati mass formula (GGR)
Eq. (29) can be used to describe the baryons spectrum,
provided that two conditions are fulfilled. The first con-
dition is the feasibility of using the same splitting coeffi-
cients for different SU (6) multiples. This seems actually
to be the case, as shown by the algebraic approach to the
baryon spectrum [1], where a formula similar to Eq. (29)
has been applied. The second condition is given by the
feasibility of getting reliable values for the unperturbed
mass values M [16]. For this goal we regarded the SU (6)
invariant part of the hCQM, which provides a good de-
scription of the baryons spectrum and used the Gürsey
Radicati inspired SU (6) breaking interaction to describe
the splitting within each SU (6) multiple. Therefore, the
baryons masses are obtained by three quark masses and
the eigenenergies (Eνγ) of the radial Schrödinger equa-
tion with the expectation values of HGGR as follows:

MBaryon = 3mq+Eνγ+δ〈C2[SUSF(6)]〉+ϑ〈C2[SUF(3)]〉

+τ〈C2[SUS(2)]〉+χ〈C1[UY(1)]〉

+ξ

[

〈C2[SUI(2)]〉−1

4
〈C1[UY(1)]〉2

]

. (31)

In order to simplify the solving procedure, the con-
stituent quarks masses are assumed to be the same for all
the quark flavors. Therefore, within this approximation,
the SU (3) symmetry is only broken dynamically by the
spin and flavor dependent terms in the Hamiltonian. In
the previous section we determined eigenenergies (E

νγ
)

by exact solution of the Schrödinger radial equation for
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the hypercentral Potential (Eq. (5)). The expectation
values of the Casimir operators are identified in Ref. [42].
In this study we do not consider interaction terms that
mix the spatial and internal degrees of freedom. There-
fore, the model is expected to be unsuccessful at the
description of all those observables where an excellent
description of the three quark wave function is crucial.
For calculating the baryons mass according to Eq. (31),
we need to find the unknown parameters. In the case
of the qqq system, the coefficients τ , χ and ξ can be
obtained from the mass differences of selected pairs of
baryon resonances:

N(1650)P11−N(1535)P11 = 3τ

Σ(1193)P11−Λ(1116)P01 = 2ξ (32)

4N (938)P11−Σ(1193)P11−3Λ(1116)P01 = 4χ.

leading to the numerical values: τ = 38.3, χ =
−197.3 MeV and ξ = 38.5 MeV. We determined mq,
ω1, ω3 (in Eq. (22)) and the two coefficients (δ, ϑ) of
Eq. (31) in a simultaneous fit to the 3 and 4 star reso-
nances of Table 3 which have been assigned as octet and
decupled states. The fitted parameters are reported in
Table 2, while the resulting spectra are shown in Figs. 1
and 2. The corresponding numerical values are given
in Table 3, column MOur Calc (GGR). In Table 3, column
MOur Calc (GR), we also reported the numerical values of
our calculations with Gürsey Radicati mass formula for
baryon masses (Eq. (28)). The percentage of relative er-
ror for the spectrum of each of the baryon resonances
in our model by using generalized Gürsey Radicati mass
formula is shown in Table 4. The values reported in
Table 4, column 6 indicate that the percentage of rela-
tive error for our calculations are between 0 and 8 per-
cent and the maximum amount is about 8.94 percent
for Λ*(1520) D01. Comparison between our results for
spectrum of baryon resonances by using Gürsey Radicati
mass formula (Table 3, column MOur Calc (GR)) and the
results for baryon masses based on generalized Gürsey
Radicati mass formula (Table 3, column MOur Calc (GGR))
show that using generalized GR mass formula has cer-
tainly improved reproduction of the spectrum of strange
and nonstrange baryon resonances. Comparison between
results in Table 3, columnsMOur Calc (GGR) andMExp [43]
show that our results are very close to the ones obtained
in experiments. These improvements in reproduction of

baryon resonances masses are obtained by choosing a
suitable form for confinement potential, exact analytical
solution of the Schrödinger equation for our proposed
potential and choosing the generalized Gürsey Radicati
mass formula for studying the spin- and flavor-dependent
SU (6) violations in the baryon spectrum.

Fig. 1. Comparison between the experimental
mass spectrum of three and four star N and ∆
resonances [43] (boxes) and our calculated masses
(+) which were obtained with the equation (31)
fixing the mass relation parameters by a fitting
procedure.

Fig. 2. Comparison between the experimental
mass spectrum of three and four star Λ, Σ and Ξ
resonances [43] (boxes) and our calculated masses
(+) which were obtained with the equation (31)
fixing the mass relation parameters by a fitting
procedure.

Table 2. The fitted values of the parameters of the Eq. (31), obtained with resonances mass differences and global
fit to the experimental resonance masses [43].

parameter mq ω1 ω3 δ ϑ τ χ ξ

value 323 MeV 0.32 fm−1 0.15 fm−1
−18.94 MeV 17.17 MeV 38.3 −197.3 MeV 38.5 MeV
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Table 3. Masses of baryon resonances (all values expressed in MeV) calculated with the mass formulas. The column
MOurcalc(GGR) contains our calculations with the parameters of Table 2 and according to Eq. (31), while the column
MOurCalc(GR) shows our calculations according to Gürsey Radicati mass formula.

baryon status MExp[43] state MOur Calc(GR) MOur Calc(GGR)

N(938) P11 **** 938 281/2 [56, 0+] 1099.5 938

N(1440) P11 **** 1420–1470 281/2 [56, 0+] 1628.9 1467.4

N(1520) D13 **** 1515–1525 283/2[70, 1−] 1718.2 1541.5

N(1535) S11 **** 1525–1545 281/2[70, 1−] 1718.2 1541.5

N(1650) S11 **** 1645–1670 481/2[70, 1−] 1833.1 1668.4

N(1675) D15 **** 1670–1680 485/2[70, 1−] 1833.1 1668.4

N(1680) F15 *** 1680–1690 285/2 [56, 2+] 1807.6 1660.4

N(1700) D13 *** 1650–1750 483/2[70, 1−] 1833.1 1668.4

N(1710) P11 *** 1680–1740 281/2 [70, 0+] 1897 1735.4

N(1720) P13 **** 1700–1750 283/2 [56, 2+] 1807.6 1660.4

N(2190) G17 **** 2100–2200 287/2[70, 3−] 2254.8 2150.1

N(2220) H19 **** 2200–2300 289/2 [56, 4+] 2344.3 2182.8

N(2250) G19 **** 2170–2310 489/2[70, 3−] 2369.7 2265

N(2600) I1,11 *** 2550–2750 2811/2[70, 5−] 2792 2687.3

∆ (1232) P33 **** 1231–1233 4103/2[56, 0+] 1329.9 1232

∆ (1600) P33 *** 1550–1700 4103/2[56, 0+] 1681.1 1571

∆ (1620) S31 **** 1600–1660 2101/2 [70, 1−] 1655.2 1602

∆ (1905) F35 **** 1865–1915 4105/2[56, 2+] 2038 1927.9

∆ (1910) P31 **** 1870–1920 4101/2[56, 2+] 2038 1927.9

∆ (1950) F37 **** 1915–1950 4107/2[56, 2+] 2038 1927.9

∆ (2420) H3, 11 **** 2300–2500 41011/2[56, 4+] 2574.7 2464.7

Λ (1116)P01 **** 1116 281/2 [56, 0+] 1277.6 1116

Λ (1600)P01 *** 1560–1700 281/2 [56, 0+] 1807 1645.4

Λ (1670)S01 **** 1660–1680 281/2[70, 1−] 1717.8 1620

Λ (1800)S01 *** 1720–1850 481/2[70, 1−] 1985.6 1727.9

Λ (1810)P01 *** 1750–1850 281/2 [70, 0+] 1985.6 1880.9

Λ (1820)F05 **** 1815–1825 285/2 [56, 2+] 1985.6 1824

Λ (1890)P03 **** 1850–1910 283/2 [56, 2+] 1985.6 1824

Λ (2110)F05 **** 2090–2140 485/2 [70, 2+] 2279.3 2174.6

Λ∗(1405) S01 **** 1402–1410 211/2[70, 1−] 1539.9 1384

Λ∗(1520)D01 **** 1518–1520 213/2 [70,1−] 1539.9 1384

Σ (1193) P11 **** 1193 281/2 [56, 0+] 1354.6 1193

Σ(1670)D13 **** 1665–1685 283/2[70, 1−] 1794.8 1680.1

Σ(1750)S11 *** 1730–1800 281/2[70, 1−] 1794.8 1680.1

Σ(1775) D15 **** 1770–1780 485/2[70, 1−] 1909.7 1804.9

Σ(1915)F15 **** 1900–1935 285/2 [56, 2+] 2062.6 1901

Σ(1940)D13 *** 1900–1950 283/2[56, 1−] 2152 1940.4

Σ∗(2030)F17 **** 2025–2040 4107/2[56, 2+] 2177.5 2067.5

Ξ (1318) P11 **** 1314–1316 281/2 [56, 0+] 1494.1 1331.6

Ξ (1820) D13 *** 1818–1828 283/2[70, 1−] 1934.3 1827.6
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Table 4. Percentage of relative error for mass spectrum of baryon resonances calculated in our model (according to
Eq. (31)).

baryon status MExp[43] state MOur Calc(GGR) percent of relative error

N(938) P11 **** 938 281/2[56, 0+] 938 0

N(1440) P11 **** 1420–1470 281/2[56, 0+] 1467.4 3.33%–0.17%

N(1520) D13 **** 1515–1525 283/2[70, 1−] 1541.5 1.74%–1.08%

N(1535) S11 **** 1525–1545 281/2[70, 1−] 1541.5 1.08%–0.22%

N(1650) S11 **** 1645–1670 481/2[70, 1−] 1668.4 1.42%–0.09%

N(1675) D15 **** 1670–1680 485/2[70, 1−] 1668.4 0.09%–0.69%

N(1680) F15 *** 1680–1690 285/2[56, 2+] 1660.4 1.16%–1.75%

N(1700) D13 *** 1650–1750 483/2[70, 1−] 1668.4 1.11%–4.66%

N(1710) P11 *** 1680–1740 281/2[70, 0+] 1735.4 3.29%–0.26%

N(1720) P13 **** 1700–1750 283/2[56, 2+] 1660.4 2.32%–5.12%

N(2190) G17 **** 2100–2200 287/2[70, 3−] 2150.1 0.024%–2.26%

N(2220) H19 **** 2200–2300 289/2[56, 4+] 2182.8 0.78%–5.09%

N(2250) G19 **** 2170–2310 489/2[70, 3−] 2265 4.37%–1.94%

N(2600) I1,11 *** 2550–2750 2811/2 [70, 5−] 2687.3 5.38%–2.28%

∆ (1232) P33 **** 1231–1233 4103/2[56, 0+] 1232 0

∆ (1600) P33 *** 1550–1700 4103/2[56, 0+] 1571 1.35%–7.5%

∆ (1620) S31 **** 1600–1660 2101/2[70, 1−] 1602 0.12%–3.49%

∆ (1905) F35 **** 1865–1915 4105/2[56, 2+] 1927.9 3.37%–0.67%

∆ (1910) P31 **** 1870–1920 4101/2[56, 2+] 1927.9 3.09%–0.41%

∆ (1950) F37 **** 1915–1950 4107/2[56, 2+] 1927.9 0.67%–1.13%

∆ (2420) H3, 11 **** 2300–2500 41011/2 [56, 4+] 2464.7 7.16%–1.41%

Λ(1116)P01 **** 1116 281/2[56, 0+] 1116 0

Λ (1600)P01 *** 1560–1700 281/2[56, 0+] 1645.4 5.47%–3.21%

Λ (1670)S01 **** 1660–1680 281/2[70, 1−] 1620 2.41%–3.57%

Λ (1800)S01 *** 1720–1850 481/2[70, 1−] 1727.9 0.45%–6.6%

Λ (1810)P01 *** 1750–1850 281/2[70, 0+] 1880.9 7.4%–1.67%

Λ (1820)F05 **** 1815–1825 285/2[56, 2+] 1824 0.49%–0.05%

Λ (1890)P03 **** 1850–1910 283/2[56, 2+] 1824 1.4%–4.5%

Λ (2110)F05 **** 2090–2140 485/2[70, 2+] 2174.6 4.04%–1.61%

Λ∗(1405) S01 **** 1402–1410 211/2[70, 1−] 1384 1.28%–1.84%

Λ∗(1520)D01 **** 1518–1520 213/2 [70,1−] 1384 8.82%–8.94%

Σ (1193) P11 **** 1193 281/2[56, 0+] 1193 0

Σ(1670)D13 **** 1665–1685 283/2[70, 1−] 1680.1 0.9%–0.29%

Σ(1750)S11 *** 1730–1800 281/2[70, 1−] 1680.1 2.88%–6.66%

Σ(1775) D15 **** 1770–1780 485/2[70, 1−] 1804.9 1.97%–1.39%

Σ(1915)F15 **** 1900–1935 285/2[56, 2+] 1901 0.05%–1.75%

Σ(1940)D13 *** 1900–1950 283/2[56, 1−] 1940.4 2.12%–0.49%

Σ∗(2030)F17 **** 2025–2040 4107/2[56, 2+] 2067.5 2.09%–1.34%

Ξ (1318) P11 **** 1314–1316 281/2[56, 0+] 1331.6 1.33%–1.18%

Ξ (1820) D13 *** 1818–1828 283/2[70, 1−] 1827.6 0.52%–0.02%

4 Summary and conclusion

In this paper we have computed the strange and non-
strange baryon resonances spectrum up to 3 GeV within
a non-relativistic quark model based on the three iden-
tical quarks Schrödinger equation and the algebraic ap-
proach. Our results show that the generalized Gürsey
Radicati mass formula is a good parameterization of
the baryon energy splitting coming from SU (6) break-
ing. In our model, the energy splitting within the SU (6)

multiples are considered as perturbations added to the
SU (6) invariant levels, which are given by anharmonic
potential. For reproducing the spectrum of baryons res-
onances, we calculated the energy eigenvalues by solving
exactly the Schrödinger equation by the Ansatz method
for confining potential. Then, we fitted the generalized
GR mass formula parameters to the baryons energies and
calculated the baryons mass according to Eq. (31). The
overall good description of the spectrum which we obtain
by this combination of potentials shows that our model
can also be used to give a fair description of the energies
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of the excited multiples with up to 3 GeV mass and not
only for the ground state octets and decuples. More-
over, our model reproduces the position of the Roper
resonance and negative-parity resonance. There are still
problems with the reproduction of hyperons masses,
in particular for the Λ*(1405) S01 and the Λ*(1520)
D01 resonances that come out degenerate and above
the experimental values. There are problems in the
reproduction of the experimental masses in N (1720)
P13 and Σ(1775) D15 turn out to have predicted mass
about 50 MeV above the experimental value. A bet-
ter agreement may be obtained either using the square
of the mass [1] or using the Faddeev equation to get
the eigenvalue of energy more exactly. The Faddeev
equation is a three-dimensional integral equation for six

variables, apparently not a trivial task. However, with
modern computers and computational tools, it is possi-
ble to solve. For example in a paper about Three-Body
Systems by Bellotti et al. [44], they consider three body
systems in two dimensions with zero-range hence they
solved Schrödinger equation in momentum-space interac-
tions for general masses and interaction strengths. The
zero-range limit provides a simplification of the Fad-
deev equation for the three-body bound state due to the
separability of the zero-range interaction. We hope to
employ this method to obtain the spectrum of baryons
in our future work.

We give our most sincere thanks to the referee for a

very technical and useful comment on the manuscript.
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