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Study of singlet-triplet mixing via semileptonic decays *
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Abstract: The singlet-triplet mixing of 1P1–
3P1 is studied via calculating the branching ratios of semileptonic decay

Bs →Ds1lν and B→D1lν by means of the instantaneous Bethe-Salpeter method. Special attention is paid to the

relativistic corrections, since they are large for the P -wave states. Using the Mandelstam Formalism, we compute the

transition form factors not only in the high-energy lepton end-point region but also in the full Q2 region. In addition,

the non-perturbative QCD effects are taken care of in the overlapping integral over the relativistic wave functions of

the initial and final states.
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1 Introduction

The P -wave states D±
s1(2460, 2536), D(′)0

1 and D(′)±
1 ,

which are composed of a heavy c-quark and a light anti-
quark q̄(q̄=s̄,d̄,ū), are generally acknowledged as singlet-
triplet mixing states of 1P1 and 3P1 [1–3], so the mixing
angle is an important quantity which should be first high-
lighted before we study the behaviors of the states.

There are four P -wave states: 1P1 (1+), 3P0(0
+),

3P1(1
+) and 3P2 (2+) totally. For equal-mass systems,

like charmonium and bottomonium, the charge conjuga-
tion parity C can be used to distinguish two 1+ states,
which are 1+− (1P1) and 1++ (3P1); in this case, 1P1 and
3P1 are physical states. But for quark and antiquark of
different flavors, C is no longer a good quantum number,
1P1 and 3P1 do not need to be physical states. Actually
the physical states are the mixtures of them. To simplify
the theoretical description, we could take the infinitely
heavy quark limit mQ→∞ [4, 5]. In this case, the meson
is similar to a hydrogen, thus the heavy quark spin sQ

decouples and all kinetic properties of the meson are de-
termined by the light quark total angular momentum jq.
The spin of the light quark sq couples with its orbital mo-
mentum l(jq=l±sq), making the meson degenerate into
two jq=3/2 states (JP =1+,2+) and two jq =1/2 states
(JP =0+,1+), where J=jq+sQ and P are the total angular
momentum and parity of the meson respectively, so au-

thors usually use labels of
1

2

+

and
3

2

+

(jP
q ) to describe the

two 1+ states. Hence, the physical 1+ states are mixtures
of 1P1 and 3P1 naturally. The study of weak semileptonic
decay channels B0

s→D+
s1(2460, 2536)lν, B−→D(′)0

1 lν and
B0→D(′)+

1 lν could provide an important test about the
mixing, and other information about the mixing angle,
which would deepen our understanding of the P -wave
mesons.

Until recently, the semileptonic decays mentioned
above have been calculated by several authors in dif-
ferent ways, such as the QCD sum rule (QSR) [6], the
constituent quark model (CQM) [7, 8], the heavy quark
effective theory (HQET) [9], ISGW2 [10], etc. Compared
with the S-wave state, the P -wave state has a larger rel-
ativistic correction. It plays such an important role in
the processes in which a heavy-light P -wave meson is in-
volved that large error would be brought into the results
if the relativistic correction were ignored. We can un-
derstand these properties through the shape of the wave
functions. For the S-wave state, the wave function is a
function of the relative momentum q between the quark
and antiquark; usually the dominant contribution comes
from the range of small momentum q close to the origin
point, which means a small relativistic correction. But
for the P -wave state, the dominant contribution comes
mainly from the middle range of q, therefore a large
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relativistic correction should be taken into account. Thus
a more precise calculation needs a relativistic model.
Hereby, we offer a relativistic scheme for handling the
semileptonic decays involving P -waves.

In this study, we calculate the decay widths and
branching ratios in the Bethe-Salpeter (BS) method
[11, 12] with the Mandelstam formalism [13]. First, we
take the semileptonic decay of Bs meson as an example,
use the Bethe-Salpeter Equation to obtain the relativistic
wave functions of corresponding mesons, and then write
down the transition matrix element with the relativistic
BS wave functions as input in the Mandelstam formu-
lation. Thus the transition matrix element provides the
full phase space spectrum of the corresponding form fac-
tor, not only in the endpoint region, but also in the full
Q2 region. In this way, the recoil effect is considered, and
will be shown in the text below. The non-perturbative
QCD effects will be embodied in the overlapping integral
of the wave functions of the initial and final states. By
using this method, the relativistic corrections from both
kinematics and dynamics are included. As for the result
of B decays, we can easily draw out the result in the
same way.

The remaining parts of this paper are organized as
follows: in Section 2, the formulation of the exclusive
semileptonic decay amplitude is presented; in Section 3,
we show how to calculate the transition matrix element
and give the form factors by the Bethe-Salpeter equa-
tion with the help of Mandelstam formalism; in Section
4, we give the relativistic Salpeter wave functions and
their normalization conditions; finally, we present the
numerical results and conclusion in Section 5.

2 Formulation of exclusive semileptonic

decay amplitude

Taking the situation of B
0

s→D+
s1l

−
νl as an instance to

discuss, the Feynman diagram is shown in Fig. 1, where
P , M are the momentum and mass of the initial state

B
0

s , Pf , Mf are those of the final meson D+
s1, respectively.

Other quantities such as quark masses and the corre-
sponding momenta are all marked out.

Fig. 1. The semileptonic decay of B
0
s →D+

s1l
−

νl.

The matrix element of the semileptonic decay can be
generally written as [14]:

T =
GF√

2
Vcbūlγ

µ(1−γ5)v
νl
〈Ds1(Pf)|Jµ|Bs(P )〉, (1)

where Vcb is the CKM matrix element, Jµ is the current
responsible for the decay, P and Pf are the momenta of

initial state B
0

s and final state D+
s1 respectively. Thus we

have square of the matrix element:

|T |2= G2
F

2
|Vcb|2lµνhµν , (2)

where the leptonic tensor is:

lµν=ūlγ
µ(1−γ5)v

νl
v̄

νl
(1+γ5)γνul (3)

and the hadronic tensor is defined by:

hµν
≡〈Bs(P )|J†

ν
|Ds1(Pf)〉〈Ds1(Pf)|Jµ|Bs(P )〉, (4)

where the summation is over the inner quantities, like
the spin or polarization vector. Based on Lorentz covari-
ance, hµν

can be written as:

hµν
= −αgµν

+β++(P+Pf)µ(P+Pf)ν

+β+−(P+Pf)µ(P−Pf)ν

+β−+(P−Pf)µ(P+Pf)ν

+β−−(P−Pf)µ(P−Pf)ν

+iγεµνρσ(P+Pf)
ρ(P−Pf)

σ, (5)

the factors α, β, γ are functions of Q2 and will be defined
in the next section.

3 The weak current matrix elements by

Mandelstam formalism

To evaluate the exclusive weak decay of Bs meson,
one needs to calculate the transition matrix element of
current sandwiched between two single-hadron states,
i.e., 〈Ds1|Jµ|Bs〉. According to the Mandelstam for-
malism [13], at the leading order, the matrix element
〈Ds1(Pf)|Jµ|Bs(P )〉 can be written as [15]:

〈Ds1(Pf)|Jµ|Bs(P )〉 =

∫
dq

(2π)3
Tr

[

ϕ++
Pf

(

q− ms

mc+ms

Pf

)

×γµ(1−γ5)ϕ
++
P (q)

6P
M

]

, (6)

where we have chosen the center of mass system of initial
meson Bs; q is the three dimensional inner relative mo-
mentum between quark and anti-quark, Pf is the three
dimensional momentum of final state, respectively; ϕ++

P

or ϕ++
Pf

is the positive energy BS wave function of bound
states, which will be obtained by solving the BS equa-
tion in the next section. One can see from Eq. (6) that
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the transition matrix element is formulated as an over-
lapping integral of the BS wave functions of the initial
and final states. As claimed in the introduction, the
non-perturbative effects are included in this overlapping
integral, since the wave functions are obtained by solving
the BS equation whose kernel is a QCD-inspired poten-
tial. Furthermore, the matrix element is a function of
the final state momentum Pf , which plays an important
role in the calculation since there is no constraint on its
range, so our method is suitable not only for the zero re-
coil (endpoint) region, but also for all the recoil regions.

Generally, the matrix element 〈Ds1(Pf)|Jµ|Bs(P )〉
can be expressed in various quantities and one can form
it by the available kinematic variables such as P µ

f , P µ.
The coefficients of these variables are Lorentz-invariant
and are usually called form factors. The transition ma-
trix element can be written as a function of the form
factors:

〈Ds1(Pf ,ε)|Vµ|Bs(P )〉

≡ igεµνρσε∗ν(P+Pf)
ρ(P−Pf)

σ, (7)

〈Ds1(Pf ,ε)|Aµ|Bs(P )〉 ≡ fε∗
µ+h+(ε∗·P )(P+Pf)µ

+h−(ε∗·P )(P−Pf)µ, (8)

where Vµ is the hadronic vector current, and Aµ is the
axial vector current; g, f , h+ and h− are the correspond-
ing form factors, whose numerical values will be obtained
by our model.

The coefficients defined in Eq. (5) can be expressed
as functions of form factors and Q2:

α = f 2+4M 2g2|Pf |2, (9)

β++ =
f 2

4M 2
f

−M 2g2y+
1

2

[

M 2

M 2
f

(1−y)−1

]

fh+

+
M 2|Pf |2

M 2
f

h2
+, (10)

β+− = β−+=g2(M 2−M 2
f )− f 2

4M 2
f

−1

2
f(h++h−)

−1

2
f(h+−h−)

MEf

M 2
f

+h+h−

M 2|Pf |2
M 2

f

, (11)

β−− = −g2(M 2+2MEf+M 2
f )+

f 2

4M 2
f

−fh−

(

MEf

M 2
f

+1

)

+h2
−

M 2|Pf |2
M 2

f

, (12)

γ = 2gf, (13)

in which Pf is the three dimensional momentum of final
state, y=Q2/M 2, Q=P−Pf.

4 The relativistic wave functions

The kinematic relativistic effect mainly comes from
the wave functions, so we need relativistic wave functions
to calculate the corresponding decay form factors. There
are two aspects concerning this point: one is that the ex-
pression of the wave functions should be in a relativistic
form, and the other one is that we need a relativistic
dynamic equation to obtain the numerical values of the
wave functions. To match the latter requirement, we
have the famous Bethe-Salpeter equation [11], or its in-
stantaneous one, the Salpeter equation [12]. For the rel-
ativistic expression of the wave functions, we will briefly
review our recent results in the following subsections.

4.1 The wave function for 1S0 state

The general relativistic expression for the relativistic
Salpeter wave function of the bound state JP =0− can
be written as (in center-of-mass system) [16]:

ϕ1S0
(q) = M×

[

6P
M

f1(q)+f2(q)+
6q

P
⊥

M
f3(q)

+
6P 6q

P
⊥

M 2
f4(q)

]

γ5 , (14)

where q
P
⊥

=(0,q), and M is the mass of the correspond-
ing meson. Comparing with the usually used wave func-
tion, we have f1 6=f2, and there are extra terms f3 and f4

in proportion to relative momentum q. The components
of the wave function have the following relations [16]:

f3(q)=
f2(q)M(−ω1+ω2)

m2ω1+m1ω2

;

f4(q)=−f1(q)M(ω1+ω2)

m2ω1+m1ω2

.

(15)

From this wave function we can obtain the wave func-
tions corresponding to the positive projection [16]:

ϕ++
1S0

(q) =
M

2

(

f1(q)+f2(q)
m1+m2

ω1+ω2

)[

ω1+ω2

m1+m2

+
6P
M

−
6q

P
⊥

(m1−m2)

m2ω1+m1ω2

+
6q

P
⊥

6P (ω1+ω2)

M(m2ω1+m1ω2)

]

γ5,

(16)

where the numerical values of wave function f1(q) and
f2(q) are obtained by solving the Salpeter equation. The
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normalization condition is [16]

∫
dq

(2π)3
4f1(q)f2(q)M 2

{

ω1+ω2

m1+m2

+
m1+m2

ω1+ω2

+
2|q|2(ω1m1+ω2m2)

(ω1m2+ω2m1)2

}

=2M. (17)

4.2 The wave function for 1P1 state

Similar to that of 1S0 state, we can easily get the
positive projection of the 1P1 wave function [17]:

ϕ++
1P1

(q) =
1

2

[

g1(q)+g2(q)
ω1+ω2

m1+m2

]

(q
P
⊥

·ε
P
⊥

)

×
[

1+
6P
M

m1+m2

ω1+ω2

−
6q

P
⊥

(ω1−ω2)

m2ω1+m1ω2

+
6q

P
⊥

6P (m1+m2)

M(m2ω1+m1ω2)

]

. (18)

The normalization condition for the 1P1 wave func-
tion is [17]:

∫
dq

(2π)3
16g1(q)g2(q)ω1ω2|q|2

3(m1ω2+m2ω1)
=2M. (19)

4.3 The wave function for 3P1 state

Similarly, we also have [17]

ϕ++
3P1

(q) =
1

2

[

ϕ1(q)+ϕ2(q)
ω1+ω2

m1+m2

]

×
[

6ε
P
⊥

6q
P
⊥

6P−6Pq
P
⊥

·ε
P
⊥

M

+
(

6ε
P
⊥

6q
P
⊥

−q
P
⊥

·ε
P
⊥

) m1+m2

ω1+ω2

+
(6ε

P
⊥

6Pq2
P
⊥

−6q
P
⊥

6Pq
P
⊥

·ε
P
⊥

)(ω1−ω2)

M(m2ω1+m1ω2)

−
(6ε

P
⊥

q2
P
⊥

−6q
P
⊥

q
P
⊥

·ε
P
⊥

)(m1+m2)

m2ω1+m1ω2

]

γ5.

(20)

The normalization condition for the 3P1 wave func-
tion is [17]:

∫
dq

(2π)3
32ϕ1(q)ϕ2(q)ω1ω2(ω1ω2−m1m2+|q|2)

3(m1+m2)(ω1+ω2)
=2M.

(21)

4.4 The wave function for the physical 1+ state

The two physical 1+ states of P -wave, which are also

written as
1

2

+

and
3

2

+

in HQET, can be described as a

pair of mixing states of 1P1 and 3P1 as follows [18]:
∣

∣

∣

∣

1

2

〉

= |1P1〉cosθ+|3P1〉sinθ;

∣

∣

∣

∣

3

2

〉

=−|1P1〉sinθ+|3P1〉cosθ,

(22)

where

∣

∣

∣

∣

1

2

〉

and

∣

∣

∣

∣

3

2

〉

are two physical states denoted by

the angular momentum jq of the light quark, and θ is
the mixing angle between 1P1 and 3P1 states.

D+
s1(2460) and D+

s1(2536) are corresponding to

∣

∣

∣

∣

1

2

〉

and

∣

∣

∣

∣

3

2

〉

respectively. If the heavy-quark limit mQ→∞
is taken, θ=θi

∼=35.26◦ and the relations become [1, 2]:

|D+
s1(2460)〉=

√

2

3
|1P1〉(cs̄)+

√

1

3
|3P1〉(cs̄);

|D+
s1(2536)〉=−

√

1

3
|1P1〉(cs̄)+

√

2

3
|3P1〉(cs̄).

(23)

Meanwhile, D′0,±
1 and D0,±

1 are corresponding to

∣

∣

∣

∣

1

2

〉

and

∣

∣

∣

∣

3

2

〉

respectively, thus:

∣

∣

∣
D0/±

1

〉

=

√

2

3
|1P1〉(cū,cd̄)+

√

1

3
|3P1〉(cū,cd̄);

∣

∣

∣
D′0/±

1

〉

=−
√

1

3
|1P1〉(cū,cd̄)+

√

2

3
|3P1〉(cū,cd̄).

(24)

5 The numerical results

In our model, there are some model-dependent pa-
rameters to be fixed and they are chosen as: mb =
4.96 GeV, mc = 1.62 GeV, ms = 0.500 GeV, mu =
0.305 GeV, Vcb=0.0406. The life-times of corresponding
mesons are: τBs

= 1.472×10−12 s, τB− = 1.638×10−12 s,
τB0 =1.525×10−12 s [19].

In Tables 1 and 2, we list our results in the infin-
ity heavy-quark limit along with other theoretical results
and the concerned experimental data, which are from D0
Collaboration [22].

Although the semileptonic experimental measure-
ment listed in Table 2 is not electronic but muonic, we
are still able to get confidence from the good matching
of our result and the existing experimental data. Ebert
et al. have calculated the branching ratios of these two

013101-4



Chinese Physics C Vol. 37, No. 1 (2013) 013101

Table 1. Different results for the branching ratios of B
0
s →D+

s1(2460)l
−

νl in percent (%).

ours (θi
∼=35.26◦) Ebert [20] QSR [6] QSR in HQET [9] CQM [7]

0.181 0.18 ∼=0.49 0.08–0.10 0.752–0.869

Table 2. Different results for the branching ratios of B
0
s→D+

s1(2536)l
−

νl in percent (%).

ours (θi
∼=35.26◦) Ebert [20] ISGW2 [10] Mayorga [21] D0(B0

s →D−
s1(2536)µ+

νX) [22]

0.972 1.06 0.53 0.195 1.03±0.20±0.17±0.14

Table 3. Our results for the branching ratios of B→D
(′)
1 l−νl in percent (%).

B−→D′0
1 l−νl B−→D0

1l
−

νl B
0
→D′+

1 l−νl B
0
→D+

1 l−νl

0.227 0.666 0.215 0.623

Table 4. Other results for the branching ratios of similar processes in percent (%).

ours CQM [8] Belle [24] BABAR [25, 26]

Br(B+→D
′0
1 l+νl) Br(D

′0
1 →D∗−

π
+) 0.151 0.132 <0.07 0.27±0.04±0.05

Br(B+
→D

0
1l

+
νl) Br(D

0
1→D∗−

π
+) 0.222 0.257 0.42±0.07±0.07 0.297±0.17±0.17

Br(B0→D′−
1 l+νl) Br(D′−

1 →D
∗0

π
−) 0.143 0.123 <0.5 0.31±0.07±0.05

Br(B0→D−
1 l+νl) Br(D−

1 →D
∗0

π
−) 0.415 0.239 0.54±0.19±0.09 0.278±0.024±0.025

semileptonic decays in their own way, which is also a rel-
ativistic quark model. One can see that our results are
in good agreement with theirs.

As for the case of B → D(′)0,±
1 l−νl, which also con-

tains the singlet-triplet mixing of 1P1 and 3P1 that we
are concerned with as the final states, the masses are
mD′0

1
(2430) = 2427 MeV/c2, mD0

1
(2420) = 2421.4 MeV/c2

[23]. Considering that people usually prefer to discuss
cq̄(q̄=ū,d̄) together since the masses of ū-quark and d̄-
quark are so close to each other that the predicted masses
of D(′)±

1 are almost the same as those of D(′)0
1 in the cq̄

picture, we decide to take the values below to carry on
the calculation:

m
D

′0,+
1

(2430)
=2427 MeV/c2;

mD
0,+
1

(2420)=2421.4 MeV/c2.

By the same token, the branching ratios of semileptonic
B decays can be easily calculated. We demonstrate our
results of B→D(′)

1 l−νl at the angle of θi
∼=35.26◦ in Ta-

ble 3.
Since the strong decays D′

1→D∗+
π

− and D′
1→D∗0

π
0

are the only OZI (Okubo-Zweig-Iizuka)-allowed decay
channel of D′

1 meson, isospin symmetry predicts an ap-

proximate branching fraction
2

3
for D′

1 → D∗+
π

− over

D′
1 → D∗

π; if we consider their charge conjugate de-
cays to have the same branching ratio (with CP vio-
lation ignored), the estimation from our calculation is
also listed along with another column of theoretical pre-
dictions and the experimental measurements for similar
processes which are taken as comparable results are listed
in Table 4.

Fig. 2. The branching ratios of B
0
s → D+

s1l
−

νl in
different mixing angles.

Fig. 3. The branching ratios of B−
→D

(′)0
1 l−νl in

different mixing angles.

From the comparisons, one can find that although
our results are close to the existing experimental data in

013101-5



Chinese Physics C Vol. 37, No. 1 (2013) 013101

the heavy quark limit, there are still discrepancies. That
deviation might be brought up by the hypothesis of the
heavy quark limit, which is not quite appropriate to the
cq̄ system. Because our listed results are based on heavy

Fig. 4. The branching ratios of B
0
→D

(′)+
1 l−νl in

different mixing angles.

quark limit mQ →∞, whereas the c-quark is not heavy
enough compared with the antiquark in the bound state
of the final meson, the heavy quark limit seems not quite
natural here. One possibility for further study is to take
into account the effect that breaks the hypothesis by
modifying the mixing angle. In view of this, we draw
Figs. 2, 3 and 4 to demonstrate how the branching ratios
vary with different mixing angles, from which one can
still get rough values according to our method as refer-
ences, or to assess the reasonability degree of our results
when experiments with improved accuracy determine the
mixing angle more precisely in the future.

In conclusion, we calculate the exclusive semilep-
tonic decays to the orbitally excited P -wave mesons

B
0

s → D+
s1l

−
νl, B− → D(′)0

1 l−νl and B
0 → D(′)+

1 l−νl by
means of the relativistic Bethe-Salpeter method, and de-
rive the curves of the branching ratios versus mixing an-
gles. Special attention is paid to the relativistic correc-
tions.
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