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Study of Robinson instabilities with a higher-harmonic

cavity for the HLS phase /// project *
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Abstract: In the Phase / Project at the Hefei Light Source, a fourth-harmonic “Landau” cavity will be

operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage

ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small

momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson

mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities.

To study the evolution of unstable behavior, simulations have been performed in which macroparticles are

distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the

harmonic cavity.
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1 Introduction

To increase the beam lifetime, a fourth-harmonic

cavity will be operated in the Phase / Project at the

Hefei Light Source (HLS). In a low or medium energy

storage ring, the lifetime is dominated by Touschek

scattering. Theory and experience have indicated

that adding a higher harmonic RF system can effec-

tively increase the Touschek lifetime and meanwhile

will not compromise the transverse beam brightness.

For this reason, a higher harmonic cavity will be used

to increase the beam lifetime and suppress coupled-

bunch instabilities in the HLS /.

We will use a fourth-harmonic cavity and it will

be operated in passive mode, where its voltage is in-

duced by the beam current. In this case, some nega-

tive effects such as Robinson instabilities, which are

coupled-bunch instabilities where all bunches oscillate

in unison, should be avoided. We have predicted the

instabilities by analytical modeling and studied the

evolution of unstable behaviour by performing simu-

lations.

In this paper, we firstly operate an algorithm in

the analytic modeling to consider Robinson instabili-

ties [1–3] and we also discuss the procedures in detail

[2, 4]. Secondly, simulations are performed in which

macroparticles are distributed among the buckets to

study the evolution of unstable behaviour. Compar-

ing these two results, we obtain good agreement be-

tween analytic modeling and simulations.

2 Analytic modeling

For HLS /, we use the parameters [5] shown in

Table 1. The harmonic cavity impedance and Q fac-

tor are estimated respectively for the 4th harmonic

cavities. We have modified an algorithm to consider

Robinson instabilities for a given fundamental rf peak

voltage VT1, ring current I , and harmonic cavity tun-

ing angle φ2.

We initially set the bunch form factors F1 = 1 and

F2 = 0.1, and iterate until they are consistent with the

computed bunch length. Let Cavity 1 be the funda-

mental rf cavity and Cavity 2 be the higher harmonic

cavity. We operate the algorithm as follows.

1) Calculate the synchronous phase of the funda-
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mental rf cavity Ψ1, using the equation

VS = VT1 cosΨ1 +VT2 cosΨ2

= VT1 cosΨ1−2IR2F2 cos2 φ2. (1)

R2 is the resonant impedance for Cavity 2.

2) Calculate the tuning angle of Cavity 1 φ1, using

the equation

φ1 = tan−1(2F1IR1 sinΨ1/VT1). (2)

Table 1. The machine parameters for the Hefei

Light Source / Project.

parameter value

beam energy/GeV 0.8

beam revolution frequency/MHz 4.533

number of bunches 45

synchronous voltage/kV 16.73

natural relative energy spread 0.00047

fundamental rf angular frequency/MHz 204

fundamental cavity shunt impedance/MΩ 3.3

fundamental quality factor 28000

fundamental cavity coupling coefficient 2

harmonic-cavity harmonic number 4

harmonic-cavity shunt impedance/MΩ 2.5

harmonic-cavity quality factor 18000

harmonic-cavity coupling coefficient 0

momentum compaction 0.02

fundamental rf peak voltage/kV 250

harmonic frequency/MHz 816

radiation-damping time constant/ms 10

HOM resonant angular frequency/MHz 1000

HOM resonant impedance/kΩ 10

HOM quality factor 3000

3) Calculate the coefficients of the Taylor expan-

sion of the synchrotron potential

U(τ) = aτ 2 +bτ 3 +cτ 4, (3)

using Eqs. (4)–(6) and τ is the arrival time of a single

electron relative to the synchronous time.

a =
αeωg

2ET0

(VT1 sinΨ1 +νVT2 sinΨ2). (4)

b =
αeω2

g

6ET0

(VT1 cosΨ1 +ν2VT2 cosΨ2). (5)

c =
αeω3

g

6ET0

(VT1 sinΨ1 +ν3VT2 sinΨ2). (6)

ωg is the fundamental rf angular frequency, ν is the

harmonic number, α is the momentum compaction,

E is the beam energy and T0 is the storage ring re-

circulation time. For a passive Landau cavity,

VT2 cosΨ2 = −2IF2R2 cos2 φ2, (7)

VT2 sinΨ2 = IF2R2 sin2φ2. (8)

4) Calculate the bunch length σt, which obeys

σ2
t = 〈τ 2〉−〈τ〉2 ≈〈τ 2〉, where

〈τn〉=

∫
τn exp[−U(τ)/2U0]dτ
∫
exp[−U(τ)/2U0]dτ

, (9)

and U0 = α2(σE/E)2/2, σE is the natural electron en-

ergy spread.

5) Calculate the form factors, using F1 =

exp(−ω2
gσ

2
t /2) and F2 = exp(−ν2ω2

gσ
2
t /2). We repeat

steps 1) –5) until the form factors are consistent with

the bunch length.

6) Calculate the frequency of collective dipole os-

cillations ωR, which approximately obeys

ω2
R =

αeωg

ET0

(F1VT1 sinΨ1 +νF2VT2 sinΨ2). (10)

Then we estimate whether the dipole longitudi-

nal coupled-bunch instability is damped for reso-

nant interaction with a parasitic longitudinal cavity

mode of impedance Z(ωCB) at approximate frequency

ωCB, which is the angular frequency of the parasitic

mode. If ∆ΩCB − τ−1
L >| ∆Ω |thresh, we consider that

Landau damping is not sufficient to prevent instabil-

ity. ∆ΩCB is the complex frequency shift, given by

∆ΩCB =
eIαωCBZ(ωCB)F 2

ωCB

2ET0ωR

, (11)

where F
ωCB

is the bunch form factor at frequency ωCB.

τ−1
L is the radiation damping rate and | ∆Ω |thresh is

the dipole Landau damping rate which is given by

|∆Ω |thresh= 0.78
α2(σE/E)2

ωR

∣

∣

∣

∣

∣

3c

ω2
R

−

(

3b

ω2
R

)2∣
∣

∣

∣

∣

. (12)

7) Now we consider the Robinson instabilities.

Firstly, we analyze the Robinson instability with-

out considering mode coupling. If the zero-frequency

instability is not predicted, we calculate the com-

plex frequency shift and the Robinson damping rate.

When the Robinson damping rate is negative and the

complex frequency shift is greater than the Landau

damping rate, the Robinson instability will happen.

8) Next, to include the effects of dipole-quadru-

pole mode coupling, we compute the coupled-dipole

and the coupled-quadrupole Robinson frequency and

complex frequency shift, which include mode cou-

pling. If the zero-frequency coupled instability is not

predicted, we use a coupled mode criterion in which

we compare the complex frequency shift with the Lan-

dau damping rate to estimate whether the Landau

damping is overcome. When the Robinson damping

rate is negative and the complex frequency shift is
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Fig. 1. (a) Robinson instabilities are predicted without consideration of the mode coupling. The solid curve

shows the parameters for optimal bunch lengthening, in which case the linear synchrotron frequency is

zero. Vertical line: dipole instability; spot: quadrupole instability. (b) Dipole-quadrupole mode coupling is

included. Vertical line: coupled-dipole instability; spot: coupled-quadrupole instability. (c) Coupled bunch

instability is included. Horizontal line: coupled bunch instability.

greater than the Landau damping rate, coupled mode

Robinson instability will happen.

The analytical results are shown in Fig. 1.

In Fig. 1(a), the uncoupled dipole and quadrupole

Robinson instabilities are predicted. When tuning in

the cavity with currents below 80 mA, the onset of

dipole Robinson instability is predicted before opti-

mal bunch lengthening is attained. For currents ex-

ceeding 100 mA, the onset of a quadrupole Robin-

son instability is predicted occur after optimal bunch

lengthening is obtained. For currents below 100 mA,

a dipole Robinson instability is predicted to occur be-

fore optimal bunch lengthening is obtained.

In Fig. 1(b), the dipole-quadrupole mode coupling

is included in the analysis. Compared with Fig. 1(a),

we conclude that when the cavity is tuned with cur-

rents near 100 mA and optimal bunch lengthening is

obtained, the onset of coupled-dipole instability and

coupled-quadrupole instability are predicted.

In Fig. 1(c), the coupled bunch instability is in-

cluded. We see that when the tuning angle is from

−88.5◦ to −89.5◦ and the current is below the cur-

rent value of the optimal bunch lengthening, coupled

bunch instability is predicted to be excited intensely

by the harmonic cavity.

3 Simulations

We have performed 500000-turn simulations for

20 values of the ring current and 50 values of the

harmonic-cavity tuning angle to study the evolu-

tion of unstable behavior. In our simulations, 450

macroparticles are evenly distributed among the 45

buckets. Fig. 2 shows the simulation results in which

� is plotted for mild instability, • is plotted for mod-

erate instability, and N is plotted for strong insta-

bility.

Fig. 2. Results of 500000-turn simulations of

450 macroparticles. �: mild instability, where

the energy spread exceeds its natural value by

(10–30)%; •: moderate instability, where the

energy spread has increased by (30–100)%; N:

strong instability, where the energy spread has

increased more than 100%.

Fig. 3. Simulation of coupled-quadrupole Rob-

inson instability for a ring current of 125 mA

and a Landau-cavity tuning angle of −79.8◦.

• : bunch length σt, � : bunch centroid 〈t〉.
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There is good agreement between the analytic predic-

tions of Fig. 1(b) and the simulated instabilities ob-

served in Fig. 2. According to the simulations, stable

optimally lengthened bunches are obtained for ring

currents of 80–500 mA. The results show that tuning

in the harmonic cavity strongly suppresses the para-

sitic coupled-bunch instability.

The simulated instability growth and saturation

for a current of 125 mA and harmonic-cavity tuning

angle −79.8◦ are shown in Fig. 3. The amplitude of

σt oscillations is much greater than that of the beam

centroid, which is consistent with the analytic predic-

tion of a coupled-quadrupole instability.

4 Conclusion and discussion

We have studied the Robinson instabilities with a

higher harmonic cavity using analytic modelling and

simulations. In our analytic model, we estimate the

currents and tuning angles at the onset of instabil-

ity and the parameters for optimal bunch lengthening

are also obtained. In our simulations, the results con-

firm that tuning in the harmonic cavity strongly sup-

presses the parasitic coupled-bunch instability. There

is good agreement between the analytic predictions

and the simulated instabilities.
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