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MIA analysis of FPGA BPMs and beam optics at APS *
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Abstract: Model independent analysis, which was developed for high precision and fast beam dynamics anal-

ysis, is a promising diagnostic tool for modern accelerators. We implemented a series of methods to analyze

the turn-by-turn BPM data. Green’s functions corresponding to the local transfer matrix elements R12 or R34

are extracted from BPM data and fitted with the model lattice using least-square fitting. Here, we report

experimental results obtained from analyzing the transverse motion of a beam in the storage ring at the Ad-

vanced Photon Source. BPM gains and uncoupled optics parameters are successfully determined. Quadrupole

strengths are adjusted for fitting but can not be uniquely determined in general due to an insufficient number

of BPMs.

Key words: MIA, PCA, SVD, FPGA BPM, optics parameter, lattice fitting

PACS: 41.85.-p, 29.20.dh, 29.27.Eg DOI: 10.1088/1674-1137/36/11/015

1 Introduction

Model independent analysis (MIA) is an emerging

spatial-temporal mode analysis technique for beam

dynamics study, in which the spatial information

comes from a large number of beam position moni-

tors (BPMs) and the temporal information from turn-

by-turn beam histories. All the beam histories form

a data matrix B = (bm
p )

√
P where the column in-

dex m indicates the monitor, the row index p the

pulse or turn, and P the number of turns. A major

method for spatial-temporal mode analysis uses the

singular value decomposition (SVD) of B to decom-

pose beam motion into a superposition of orthogo-

nal spatial-temporal modes according to the principal

component analysis, which is a major statistical data

analysis method [1, 2].

It is important to get reliable beam histories from

credible and stable BPMs. The first step in MIA is

to identify BPMs with various errors by analyzing

Fig. 1. the arrangement of one of the sectors at the APS storage ring. The BPMs in lattice from sector 29 to

sector 40 were replaced by new FPGA BPMs at the time of study.

Received 3 February 2012

* Supported by the Chinese National Foundation of Natural Sciences (111100512108) and National Sciences Foundation of

Chinese (10725525)

1)E-mail: jidh@ihep.ac.cn

2)E-mail:wangcx@aps.anl.gov

©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 11 JI Da-Heng et al: MIA analysis of FPGA BPMs and beam optics at APS 1121

the turn-by-turn data using different methods and to

characterize the used BPM system as much as possi-

ble. Although MIA can get much useful information

without a lattice model (after all, it was invented for

such purposes, as its name suggests), when an ade-

quate model is available, MIA combined with lattice

fitting could provide many more results. Thus, in the

following treatment, we take the lattice model into

account in the MIA calculations. In this paper, we

describe our recent effort on BPM system characteri-

zation and uncoupled optics function determination.

This study was done at the Advanced Photon

Source (APS) storage ring, whose turn-by-turn BPMs

are being gradually replaced with new FPGA BPMs.

Here we discuss the techniques used to analyze the

beam histories from all installed FPGA BPMs. We

will first give some results on our evaluation of FPGA

BPMs. Then we discuss BPM gain measurement and

storage ring optics determination using MIA and lat-

tice fitting.

2 BPM investigation

2.1 FPGA BPMs of APS

The advanced photon source, which is located at

Argonne National Laboratory in the US, is a third-

generation synchrotron X-ray source that provides in-

tense X-rays for basic and applied research. The stor-

age ring operates at 7 GeV and 100 mA. It has 40

nearly identical sectors. Each includes nine to eleven

BPMs. The use of a single FPGA chip to perform

the initial signal processing for all analog input chan-

nels has a number of advantages over a design using

conventional digital signal-processing devices. The

chosen FPGA has several multiply accumulate cores,

which allows the signal processing for up to eight in-

put channels to be performed on a single chip. This

provides increased reliability and reduces power con-

sumption since almost all high-speed signals are con-

tained within that single device and need not pass

through I/O pin drivers. These FPGA BPMs can

provide 218 turns, about a second long, turn-by-turn

beam histories. In the experiment the beam is ex-

cited by the feedback system with reverse phase to

remove the effect of damping. Overall, the FPGA

BPMs supply very valuable data.

2.2 Problematic BPMs

Most of the FPGA BPMs are reliable and their

stability is satisfactory. However, several problems

still arise during our analysis, as shown in Table 1

and Fig. 2. Some of those in type A and B are simply

Fig. 2. Illustration of problematic BPMs. (a) Type A, no response signal in the middle BPM; (b) type B,

no tune signal in the FFT of the middle BPM; (c) type C, phase-advance error close to tune; (d) type D,

unusually low S/N, such as #351.
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BPMs used for other purposes. However, there are

BPMs with more subtle problems that will be hard

to diagnose otherwise. A BPM with a type C prob-

lem shows a measured phase advance that differs from

the designed value by a multiple of the tune approx-

imately. It is probably caused by turn offsets due to

wrong timing, which can often be corrected simply by

shifting the beam history. There are also some BPMs

that appear to be functioning, but with unusually low

signal. Signal strength does vary among BPMs due to

beta function and gain setting. However, an unusu-

ally low signal-to-noise level indicates problems and

including such BPMs in MIA analysis may reduce the

overall accuracy of the measured MIA modes [3].

Table 1. Problematic BPMs.

type behavior resolution

A no response signal removed

B no tune signal in FFT removed

C phase-advance error close to tune sync data

D unusually low S/N removed

2.3 Noise level and its current dependence

BPM noise level is determined by the character-

istic noise tail in the singular-value spectrum. To ex-

amine the current dependence of BPM resolution, we

took beam histories at various currents and the corre-

sponding singular-value spectrum is plotted in Fig. 3.

We use the SVD method to decompose the beam his-

tory to different modes. The tail of a singular value

can present the noise level in signal [4]. Fig. 3 shows

the noise level change with beam current. If we take

the RMS value of the noise modes, we can get the

noise level from different BPMs as shown in Fig. 6.

2.4 Phase-advance measurement accuracy

MIA can be used to measure the tune and phase

advance. Fig. 4 shows the tuning accuracy of MIA

measurement, which is also compared with the re-

sult of FFT. In the figure, the red points represent

the tune calculated from beam histories at different

BPMs by MIA and the blue curve is the result of the

FFT of one beam history.

Ideally, the accuracy of MIA phase measurement

is proportional to 1/
√
P , where P is the length of

beam history [2]. The measured P -dependence is

shown in Fig. 5, in which the beam histories of se-

lected length from a single data set are used to com-

pute the uncertainty in phase advance measurement

and its dependence on the history length P . It be-

haves as expected.

Fig. 3. Noise level and its current dependence.

(a) Singular value with current Y plane beam

current from up to down: 0.14 mA, 0.25 mA,

0.5 mA, 1 mA, 2 mA,3.2 mA,4.6 mA. (b) Noise

level with current. X/Y plane singular value

of mode 40. The cross is the X plane and the

point is the Y plane.

Fig. 4. Up: tune calculation of MIA, compared

with the FFT mean. tune: 0.17439, std:

9.3281e −06 down: BPM distribution in tune

calculation.
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Fig. 5. Phase measurement accuracy verse

beam history length. The line is the fitted

result with y =a+b/
√

P .

2.5 BPM gains

BPM gain determination relies on beam based

measurement and model fitting, which will be dis-

cussed in the next section.

2.6 Stability and repeatability

We examined machine stability and measurement

repeatability by comparing different measurements

under the same conditions. Figs. 6 and 7 contain mea-

surements from three different data sets, shown with

different markers. They show excellent repeatability.

Note that the tune deviation in Fig. 7 is remarkably

small.

Fig. 6. Noise along BPMs and from different

data under the same experimental conditions.

Beam current =3.6 mA single bunch. x-axis

is BPM order.

Fig. 7. Tune variation of three data sets mea-

sured under the same conditions.

3 Model-independent optics measure-

ment and lattice fitting

3.1 Model-independent optics measurement

An SVD of the beam-history matrix B yields:

B=USV T =
∑

σiµiυ
T
i , (1)

where UP×P = [µ1, · · · ,µP ] and VM×M = [υ1, · · · ,υM ]

are orthogonal matrices containing the temporal vec-

tors µi and spatial vectors υi. S is a diagonal matrix

with nonnegative σ =
√
λ along the diagonal in de-

creasing order. The singular values reveal the num-

ber of independent variables and their magnitudes.

It can be shown that when beam motion is domi-

nated by betatron oscillation, there are two orthogo-

nal eignmodes (referred to betatron modes) that cor-

respond to the normal coordinates. SVD decomposes

the beam history to different modes. More beam fac-

ing information can be given by the mean of analyzing

these modes. When B is dominated by the excited

betatron motion given by bm
p =

√

2Jpβm cos(φp+ψm),

with action and angle variables independently dis-

tributed, it can be decomposed to [5]

B≈ 1√
P

(

bm
p

)

=σ+µ+υ
T
+ +σ−µ−υ

T
−
, (2)

where the spatial and temporal vectors are given by:






























µ+ =

{
√

2Jp

P 〈J〉 cos(φp−φ0), p= 1, · · · ,P
}

,

µ− =

{
√

2Jp

P 〈J〉 sin(φp−φ0), p= 1, · · · ,P
}

,

(3)

and
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υ+ =
1

√

λ+

{

√

〈J〉βm cos(φ0 +ψm), m= 1, · · · ,M
}

,

υ− =
1

√

λ−

{

√

〈J〉βm sin(φ0 +ψm), m= 1, · · · ,M
}

.

(4)

From the spatial vector we can get

ψ = tan−1

(

σ−υ−

σ+υ+

)

, (5)

β = 〈J〉−1(λ+υ
2
+ +λ−υ

2
−
). (6)

The reference point of phase does not matter in

phase-advanced calculation. So the phase advance

and beta function can be obtained from the spatial

vector directly. In practice, BPM gains have to be

taken into account. The phase measurement is not

affected by the BPM gains and is independent of the

lattice model. The standard deviation of the mea-

sured phase advance from the default lattice is about

2◦ in our experiments, which is much worse than the

phase measurement accuracy. Thus, such a phase-

advance measurement can provide valuable informa-

tion for optics correction. On the other hand, beta-

function measurement depends on the BPM gains.

Given a good model of the lattice, we can fit the data

and lattice model to determine the BPM gains. The

results of beta measurement, with and without BPM-

gain correction, are shown in Fig. 8. We see that it

is critical to measure the BPM gains, which will be

addressed in the next section.

3.2 Lattice fitting

Since FPGA BPMs were installed on only about

a third of the ring at the time of this study, we need

local quantities as the fitting targets. Note that beta

functions and phase advances are global quantities

that can be changed by magnets far from the BPMs

used in the measurement. We choose the R12 element

of the transfer matrix for fitting, which is affected

only by the local magnet strengths, and given by [6]

M(s2|s1) =

(

· · · R12

· · · · · ·

)

, (7)

and

R12 =
√

β1β2 sin(ψ2−ψ1)

=
√

β2 sin(φ0 +ψ2)
√

β1 cos(φ0 +ψ1)

−
√

β2 cos(φ0 +ψ2)
√

β1 sin(φ0 +ψ1), (8)

where β1, ψ1 is beta function and phase at s1, β2,

ψ2 is beta function and phase at s2. Inserting the

measured betatron mode in Eq. (4) into Eq. (8) we

get

Rdata
12ij =

1

〈J〉 (σ+υ+jσ−υ−i−σ−υ−jσ+υ+i). (9)

Taking the BPM gains into account, we have

Rdata
12ij =

1

〈Jgigj〉
(σ+υ+jσ−υ−i−σ−υ−jσ+υ+i) (10)

and

(Xquad,bpm,etc)
T = (∆R12)/(∂R12/∂Xquad,bpm,etc). (11)

where X contains the lattice parameters used for fit-

ting. Here ∆R12 is fixed by lattice parameters. If

the number of lattice parameters is more than the

number of the equation’s rank, ∆R12 can be uniquely

determined.

The number of BPM gains must be less than the

number of the equation’s rank because of RankR12
≈

2×NUMBPM. So the BPM gains could be uniquely

determined.

(Gbpm)T = (∆R12)/(∂R12/∂Gbpm). (12)

To confirm our BPM-gain measurement, we changed

the gain of the BPM S39A:P2 from 1.2367 to 1 and

the gain of BPM S35A:P2 from 1.2357 to 1, then

repeated the measurement. The difference in the

measured gains is shown in Fig. 9. It demonstrates

that the measurement results reflect the actual BPM

gains. The difference between measured and set val-

ues are about 0.5%. Taking the gains into account,

the result of beta calculation in Fig. 8(b) is much

closer to default lattice than Fig. 8(a).

Fig. 8. Result of beta-function measurement

with and without BPM-gain correction.

Points are measured beta, diamonds are mod-

eled beta, and circles are unavailable BPMs.

(a) without gain, std: 0.248; (b) with gain,

std: 0.0745.
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Fig. 9. Deviation of fitting. Two BPMs gains

were changed.

Fig. 10. Quad fitting result. (simulation) Cir-

cle is the set value. Cross is the fitting result.

The quad number between each two neighbor

BPM in (a) is less than 2 and in (b) is not

limited.

Quadrupole strengths were also done in our cal-

culation. The betatron modes of each BPM provide

two freedoms in each plane. For each plane, fitting

BPM gain will take one freedom. If the number of

quadrupole magnets between two adjacent BPMs is

less than 2, we can get exact solutions. Otherwise, ap-

proximate solutions of quad strengths would be given.

For both planes each BPM provides four fitting free-

doms. BPM gain fitting will take up two. So we can

accurately determine two lattice parameters between

two BPMs. If the number of quadrupoles between

two BPMs is more than two, the quadrupole strength

cannot be uniquely determined as shown in Fig. 10.

But in Y plane, the measurement result is much

worse than that in the X plane. So fitting of both

planes does not work well. Now we suspect that the

wake field, transverse coupling, or the sextupole off-

sets affect the beam measurement, since they are not

yet considered in our model.

4 Conclusion and discussion

We evaluated the FPGA BPM system using MIA

and developed the MIA-based optics fitting programs

for APS optics measurement and lattice fitting, as-

suming negligible coupling for now. As expected,

MIA is proved to be an effective method for beam

optics measurement of the APS storage ring. The

FPGA BPMs provide second-long beam histories,

which can be very powerful for improving the ac-

curacy of beam parameter measurement with MIA.

The accuracy of the phase advance measurement is re-

markably good (better than 0.1 degree in some cases)

and independent of the machine lattice model. Since

the beta function measurement needs BPM gains, we

developed the BPM gain and quadrupole strength fit-

ting programs in MATLAB. Despite some limitations

in optics fitting, BPM gains can be reliably deter-

mined by fitting the measurement results with the

machine model. Thus, beta functions can be mea-

sured rather accurately (better than 1% relative er-

ror).

Limited by an insufficient number of BPMs,

quadrupole strength errors cannot be uniquely deter-

mined, even in the simulations. We found that, unlike

many other machines, wake field plays a significant

role in the optics seen by the beam, whose effect is

yet to be taken into account in our model fitting. We

also have not taken into account the transverse cou-

pling and sextupole offsets. Due to these limitations,

the lattice fitting is not satisfactory at the moment

and needs to be improved in further studies.
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