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A study of transverse charge density of pions in

relativistic quantum mechanics *
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Abstract: The transverse charge density of pions is calculated based on relativistic quantum mechanics,

where the pion is regarded as a quark-antiquark bound state. Corrections from the two spin-1/2 constituents

and from the wave function of a quark and antiquark inside the bound system are discussed. The calculated

results are compared to the results with a realistic effective Lagrangian approach as well as to that with a

simple covariant model where the pion is regarded as a composite system with two scalar particles.
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1 Introduction

It is well known that the properties of the light

pseudo-scalar mesons are essential to understand the

phenomena of low-energy QCD. The pion meson, as

the simplest elementary particle, has been widely in-

vestigated before. In particular, its electromagnetic

(EM) form factor of F1 has been studied in much

work, since it can test both the physical ingredients

and the theoretical models simultaneously. So far,

some accurate data for F1 at low Q2 and also for a

charge radius of r2
π

have been determined. For ex-

ample, several experiments have been carried out in

order to measure the charge pion form factor in the

past [1–3]. The experiments at JLab to measure the

pion form factor in the space-like and low Q2 region

with higher accuracy are being planned [4]. In addi-

tion, experiments for the pion EM form factor in the

time-like region are also in progress [5, 6]. It is ex-

pected that those measurements with high precision

may provide good discrimination among the various

theoretical approaches.

Apart from the EM form factor of the pion, the

study of pion transverse density ρ(b) has also been of

great interest recently. This transverse density stands

for the two-dimensional Fourier transform of the EM

form factor F1 and represents the charge density lo-

cated at the transverse separation b from the cen-

ter of transverse momentum in the infinite momen-

tum frame [7–11]. It is pointed out that this two-

dimensional density can directly relate to the matrix

element of a density operator. However, the con-

ventional three-dimensional Fourier transforms of the

form factors cannot because the initial and final mo-

menta are different and one cannot boost the initial

and final states to the rest frame simultaneously [11].

In a recent paper by Miller [12], a simple covariant toy

model is applied to study the transverse charge den-

sity of a bound state. This simple model is based on

the idea of Weinberg and others [13]. However, only

the scalar constituents, other than the spin-1/2 ones,

are considered. Moreover, in Ref. [12], no correla-

tion function, which stands for the distribution of the

constituents inside the bound system, is taken into

account. There is an effective Lagrangian approach

that can consider the above two physical ingredients.

It is based on the same idea of Ref. [13]. It should

be mentioned that the approach has been extensively

applied to the study of the new resonances in the

hadronic molecular scenario as well as the study of the

structures of the nucleon, deuteron and pion [14, 15].

In those papers, the correlation functions as well as
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the properties of the spin-1/2 constituents of the sys-

tem are considered. In Ref. [16], the effective La-

grangian approach is employed in the calculation of

the transverse charge density of the pion.

In this work, we will study the transverse density

of the charged pion based on an approach of rela-

tivistic quantum mechanics (RQM). RQM has been

studied for a long time [17]. Three forms RQM, front

form, instant form and point form, have already been

applied to the study of the charged pion EM form

factors in the literature. The recent analyses of Ref.

[18] show that the divergence among the three forms

of RQM in the description of the pion EM form factor

is due to the problem of the space-time translation in-

variance. If this is restored by hand, the three forms

of RQM will give a very similar result for the pion

EM form factor and also a result similar to that from

RQM with a dispersion relation. It should be men-

tioned that in RQM, the internal quark line is always

set to be on the mass shell and this is not the case

in field theory. In this work, RQM is employed to

study transverse density and the estimated result is

compared with the calculations in the effective field

theory of Refs. [12] and [16].

2 Calculation of the pion and its

transverse charge density based on

RQM

To calculate the form factor of the charged pion

(IG(JP ) = 1−(0−)), we have (see Fig. 1)

F (Q2)(Pf +Pi)
µ = 〈Pf | Jµ |Pi〉. (1)

Then, the expression of the pion form factor in the

front form of the relativistic quantum mechanics with

q+ = 0 is [18]

F1(Q
2) =

1

πN

∫
d2R

∫1

0

dx

x(1−x)
I0

ω

Ĩ0
ω

ψ(si)ψ
∗

f (sf), (2)

where the invariant variables

si = (p+pi)
2 =

m2 +p2
i⊥

1−x +
m2 +p2

⊥

x
−P 2

i⊥

=
m2 + ~R2 +x~R · ~Q⊥ +

x2

4
~Q2

x(1−x) , (3)

sf = (p+pf)
2 =

m2 +p2
f⊥

1−x +
m2 +p2

⊥

x
−P 2

f⊥

=
m2 + ~R2−x~R · ~Q⊥ +

x2

4
~Q2

x(1−x) , (4)

with m being the quark mass. Moreover,

s̄=
si +sf

2
=

1

x(1−x)

(

m2 + ~R2 +
x2

4
~Q2

)

. (5)

The factor in Eq. (2)

I0
ω

Ĩ0
ω

=
2(1−x)s̄+xq2

2(1−x)√sisf
(6)

takes into account the fact that we are dealing with

spin-1/2 constituents instead of scalar ones. This fac-

tor plays the same role as the trace term in the calcu-

lation of field theory for spin-1/2 particles. Let’s as-

sume that the wave function is exponential-like with

a free scale parameter Λ, then the explicit expression

of the wave function is

ψ(si,f) = exp
(

−si,f
Λ2

)

. (7)

After some algebra, the form factor of the charged

pion in the relativistic quantum mechanics is

Fig. 1. Interaction

F (Q2) =
(2π)2

πN

∫1

0

dx

∫
d2b

e−iqb

(1−x)2

{[

(1−x)2
2

Q2 +
x(1−x)

2
Λ4 ∂
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}

∣

∣

∣

∣

Φ
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b

1−x

)∣

∣

∣

∣

2

, (8)

where

Φ

(

b

1−x

)

=
1

x(1−x)

∫
d2l

(2π)2
ei

~l·~b

1−x

ψ(s̄(l))
√

s̄(l)
=

1

x(1−x)

∫
d2l

(2π)2
ei

~b·~l

1−x

√

x(1−x)
~l2 +m2

e
−

~l
2+m

2

Λ2x(1−x)

=
1

(2π)2
√

x(1−x)

∫
dlei bl

1−xK0

(

l2 +m2

2Λ2x(1−x)

)

e
−

l
2+m

2

2Λ2x(1−x) , (9)
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with K0 being the Bessel function of the imaginary

argument

Kν(zx) =

Γ

(

ν+
1

2

)

(2z)ν

Γ

(

1

2

)

xν

∫
∞

0

cosxtdt

(t2 +z2)ν+ 1
2

. (10)

According to Miller [12], the transverse charge density

ρ(b) can be written in terms of the EM form factor

as

F (Q2) =
1

(2π)2

∫
d2bρ(b)e−iqb. (11)

Then the transverse charged density of the pion in

RQM is

ρ(b)R

=
16π4

πN

∫1

0

dx

1−x

{

1−x
2

Q2Φ+xΛ4

(

∂
∂Λ2

Φ

)}

Φ.

(12)

In the above equations, the normalization of N is

defined as [18]

F (0) =
1

N

∫
ds̄ψ2(s̄)

√
s̄2−4m2s̄

s̄
= 1. (13)

The transverse charged density of the pion in Eq. (12)

can be compared with the result of the simple covari-

ant approach in field theory by Miller

ρ(b)M =
N 2

0

4π

1

(2π)2

∫1

0

dx
x

1−x

×K2
0

(

√

m2−M 2
π
x(1−x) b

1−x

)

, (14)

where Mπ is the mass of the pion meson. Moreover,

the density in Eq. (12) can also be compared with

the calculation based on the effective Lagrangian ap-

proach where the pion is considered to be a composed

system by the two spin-1/2 particles and with the

correlation function being taken into account. The

obtained density from this effective Lagrangian ap-

proach is in the covariant form. It is [16]

ρ(b)D =
N 2

1

2π

∫1

0

dx

1−xe
2

Λ2

(

m2
−

M
2
π

4

)

{(

Q2

2
(1−x)+xM 2

π

)[

K0

(

b

1−xC
)

−f(Λ2C)

]2

+Λ2

[

K0

(

b

1−xC
)

−f(Λ2C)

]

e
−2Λ2 b

2

(1−x)

}

, (15)

where

f(Λ2C) =

∫
∞

0

cos

(

b

1−xt
)

√
C2 + t2

Φ̃

[
√

C2 + t2

2Λ2(1−x)

]

dt, (16)

and Φ̃ stands for an error function and C2 = m2−
x(1−x)M 2

π
. In Eqs. (12, 14, 15), the constants N,

N0 and N1 are determined by the normalization con-

dition of the form factor F (Q2) at Q2 = 0 (see

Eq. (13)).

It should be reiterated that our approach with

RQM has considered the correlation function of the

quark-antiquark inside the pion and also considered

the fact that the quark and antiquark are spin-1/2

particles. The two physical ingredients are taken into

account explicitly by the wave functions of ψ(si,f) and

by the factor of
I0

ω

Ĩ0
ω

in Eq. (6). To proceed with a nu-

merical calculation of the transverse density in the

relativistic quantum mechanics, two parameters are

needed. They are the quark mass and the parameter

Λ in the wave function of Eq. (7). According to Ref.

[19], the string tensor of σst = Λ2/2 is 0.2 GeV2 ∼ 1

GeV/fm. Moreover, the quark mass is fixed by requir-

ing that the pion decay constant is fπ=0.0924 GeV.

Then, the mass of the u or d quark is m=0.25 GeV.

Comparing the three versions of the transverse

density of pion of ρR,M,D, one clearly sees that the

ρR,D are Q2-dependent. The dependence results from

Fig. 2. ρ(b), the dotted line stands for the results

of Ref. [12]; the double-dotted-dashed and dotted-

dashed curves represent the results of Ref. [16]

with Q2 = 0 and 1 GeV2; the dashed and solid

lines are the ones of the present work with RQM

and Q2 = 0 and 1 GeV2, respectively.
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the fact that the quark and antiquark are spin-1/2

particles and therefore results from the factor of
I0

ω

Ĩ0
ω

or from the trace term of the Dirac spinors. This

feature is neglected in the case of ρM, where the

quark and antiquark are considered as two spin-less

particles. Moreover, the effect of the wave functions

in the present RQM and in the effective Lagrangian

approach [16] are displayed in the exponential term

in Eqs. (9) and (15). Fig. 2 displays the calculated

ρR(b) in the two cases of Q2 = 0 and 1 GeV2. Com-

paring the present ρR(b) with ρD(b), we find that the

pronounced Q2-dependence in ρD(b) changes to be a

weak Q2-dependence in ρR(b) for Q2 = 0. Moreover,

our ρR(b) is similar to ρD(b) with Q2=1 GeV2. It

should be mentioned that the discrepancy between

ρR and ρD results from the different treatment of the

two fermion propagators in the calculation of the loop

integral in RQM. Moreover, the discrepancy between

ρM and the other two results from the considerations

of the two spin-1/2 particles and of the wave function

or correlation function. The remarkable differences

among the three versions of the transverse density of

the charged pion can be tested in future experiment

measurements with high precision.

Discussions with Bertrand Desplanques and Ping

Wang are appreciated.
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