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Fast computation of observed cross section

for ψ′
→PP decays *

WANG Bo-Qun(�Æ+)1,2;1) MO Xiao-Hu(#¡m)2 WANG Ping(�²)2 BAN Yong(�])1

1 School of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, China

2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: It has been conjectured that the relative phase between strong and electromagnetic amplitudes is

universally −90◦ in charmonium decays. ψ′ decaying into a pseudoscalar pair provides a possibility to test this

conjecture. However, the experimentally observed cross section for such a process is depicted by the two-fold

integral, which takes into account the initial state radiative (ISR) correction and energy spread effect. Using

the generalized linear regression approach, a complex energy-dependent factor is approximated by a linear

function of energy. Taking advantage of this simplification, the integration of ISR correction can be performed

and an analytical expression with accuracy at the level of 1% is obtained. Then, the original two-fold integral

is simplified into a one-fold integral, which reduces the total computing time by two orders of magnitude. Such

a simplified expression for the observed cross section usually plays an indispensable role in the optimization of

scan data taking, the determination of systematic uncertainty, and the analysis of data correlation.
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1 Introduction

The relative phase between the strong and the

electromagnetic amplitudes of the charmonium de-

cays is a basic parameter in understanding decay dy-

namics. Studies have been carried out for many J/ψ

two-body decay modes: 1−0− [1, 2], 0−0− [3–5], 1−1−

[5] and NN [6]. These analyses reveal that there ex-

ists a relative orthogonal phase between the strong

and the electromagnetic amplitudes in J/ψ decays

[1–7]. As to ψ′, there is also a theoretical argument

that favors the ±90◦ phase [8]. Experimentally, some

analyses [9–11] based on limited 1−0− and 0−0− data

indicate that the large phase is compatible with the

data. Moreover, some efforts have been made to ex-

tend the phase study to ψ′′ decay phenomenologically

[12, 13] and experimentally [14].

The great merit of the phase study lies in the fact

that it can provide a valuable clue for the relation

between the strong and the electromagnetic interac-

tions. Now with the upgraded accelerator and de-

tector, BEPC//BES0, on May 2009, the high lu-

minosity of 3 × 1032 cm−2·s−1 had achieved, which

is the highest luminosity in τ-charm energy region

that ever existed. The 106 M ψ′ and 226 M J/ψ

events have been collected, even more colossal data

are to be collected in the coming years, which gives

a great opportunity to determine the phase between

the strong and the electromagnetic amplitudes with

unprecedented statistical precision.

A favorable way to measure the phase is through

the scan experiment, which is the most model-

independent approach. However, even with a high lu-

minosity accelerator, the exclusive scan experiment of

charmonium decay is fairly difficult due to low statis-

tics at each energy point. Therefore, the optimization

study for the data taking strategy is of great impor-

tance in order to obtain the most accurate results

with limited luminosity (equivalently within the lim-

ited data taking time).
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Without losing generality, we focus on the mode

of ψ′ decays to two pseudoscalars. Because, as will

be shown in the next section, this decay mode can ac-

commodate a comparatively simple parametrization

form, which is of great benefit to extract the relative

phase. To get the optimized data taking scheme, we

resort to the sampling simulation technique, which is

successfully used in the study of the data taking strat-

egy for a high precision τ mass measurement [15, 16].

For such a kind of method, many fits should be carried

out, where a large number of calculations need to be

performed to get the theoretically expected observed

cross section. Unfortunately, two nested integrations

in this calculation take too long to make the actual

optimization procedure practical.

This paper aims to simplify calculation of the ob-

served cross section of ψ′ decaying to a pseudoscalar

pair. Some reasonable assumptions lead us to obtain

the analytic expression for the Initial State Radia-

tive (ISR) corrected cross section. That is to say, we

transform the two-fold integral into a one-fold inte-

gral, which speeds up the calculation by one hundred

times.

2 Observed cross section

The process of ψ′ decays to Pseudoscalar and

Pseudoscalar (PP) final state can be parameterized

by merely two amplitudes [5, 17], that is

Aπ+π− = AEM,

AK+K− = AEM +AS,

AK0
S
K0

L
= AS,

(1)

where AEM denotes the electromagnetic amplitude

and AS the SU(3) breaking strong amplitude. Here,

the G-parity violating channel π+π− is through the

electromagnetic process (the contribution from the

isospin-violating part of QCD is expected to be small

[18] and is neglected), K0
SK

0
L through the SU(3)

breaking strong process, and K+K− through both.

For e+e− experiment, the actual amplitudes must in-

clude the contribution of continuum, which features

the electromagnetic process [9, 10, 19],

Aπ+π− = Ac
EM +AEM,

AK+K− = Ac
EM +AEM +AS,

AK0
S
K0

L
= AS,

(2)

where Ac
EM is the amplitude of the continuum contri-

bution. In addition to the common part, Ac
EM, AEM

and AS can be expressed explicitly as

Ac
EM ∝ 1

s
,

AEM ∝ 1

s
B(s),

AS ∝ Ceiφ · 1
s
B(s),

(3)

where the real parameters φ and C are the relative

phase and the relative strength between the strong

and the electromagnetic amplitudes, and B(s) is de-

fined as [9]

B(s) =
3
√

sΓee/α

s−M 2
ψ′ +iMψ′Γt

. (4)

Here,
√

s is the center of mass energy, α is the QED

fine structure constant; Mψ′ and Γt are the mass and

the total width of ψ′; Γee is the partial width to e+e−.

The Born order cross sections for the three chan-

nels read

σπ
+π−

Born (s)=
4πα2

s3/2
[1+2<B(s)+ |B(s)|2]

×|Fπ+π−(s)|2Pπ+π−(s), (5)

σK+K−

Born (s)=
4πα2

s3/2

[

1+2<(CφB(s))+ |CφB(s)|2
]

×|FK+K−(s)|2PK+K−(s), (6)

σ
K0

SK0
L

Born (s)=
4πα2

s3/2
C2|B(s)|2|FK0

SK0
L
(s)|2PK0

SK0
L
(s), (7)

where Cφ = 1 + Ceiφ; Ff.s.(s) = ff.s./s, with ff.s.

being an energy independent constant, and f.s. =

π+π−,K+K−,K0
SK

0
L; Pf.s.(s) = 2q3

f.s./3s, with q2
f.s. =

E2
f.s.−m2

f.s. = s/4−m2
f.s..

It is obvious that in Eq. (6), if Cφ = 1, σBorn
K+K−(s)

is identical to σBorn
π+π−

(s) while if Cφ = Ceiφ, σBorn
K+K−(s)

is identical to σBorn
K0

S
K0

L
(s). From a mathematical point

of view, the cross section expression of σBorn
K+K−(s) is

more general with the expressions of σBorn
π+π−

(s) and

σBorn
K0

S
K0

L
(s) as its special cases. Therefore, in the fol-

lowing study, only tackled is the formula for K+K−

final state and f.s. is simply denoted as K.

In e+e− collision, the Born order cross section is

modified by the ISR in the way [20]

σr.c.(s) =

∫Xf

0

dxF (x,s)
σBorn(s(1−x))

|1−Π(s(1−x))|2 , (8)

where Xf = 1−s′/s. F (x,s) has been calculated to an

accuracy of 0.1% [20–22] and Π(s) is the vacuum po-

larization factor. In the upper limit of the integration,√
s′ is the experimentally required minimum invari-

ant mass of the final particles. In this work, Xf = 0.15
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is used, which corresponds to invariant mass cut of

3.4 GeV/c2.

By convention, Γee has the QED vacuum polar-

ization in its definition [23, 24]. Here, it is natural to

extend this convention to the partial widths of other

pure electromagnetic decays, that is

ΓK = 2Γ̃ee

(

qK

Mψ′

)3
∣

∣F(M 2
ψ′)
∣

∣

2
, (9)

where

Γ̃ee ≡
Γee

|1−Π(m2
ψ′)|2

,

with the vacuum polarization effect included.

The e+e− colliders have finite energy resolution,

which is much wider than the intrinsic width of ψ′.

Such energy resolution is usually a Gaussian distri-

bution [25, 26],

G(W,W ′) =
1√
2π∆

e−
(W−W

′)2

2∆2 ,

where W =
√

s and ∆, a function of the energy, is

the standard deviation of the Gaussian distribution.

The experimentally observed cross section is the ra-

diative corrected cross section folded with the energy

resolution function,

σobs(W ) =

∞∫

0

dW ′σr.c.(W
′)G(W ′,W ). (10)

For briefness, the variables Γ̃ee, Mψ′ , and Γt are

respectively written as Γee, M , and Γ hereafter.

3 Simplification of ISR correction

In this section, we focus on the simplification of

ISR correction of the observed cross section. In the

energy region concerned (3.67– 3.71 GeV), the vac-

uum polarization factor could be concerned as con-

stant and absorbed into Γ̃ee, as in Eq. (9). So we

could begin with this expression,

σr.c.(s) =

∫Xf

0

dxF (x,s)σBorn(s(1−x)) , (11)

where F (x,s) is the structure function, which can be

expressed as

F (x,s) = xt−1 ·B1(t)+xt ·B2(t)

+xt+1 ·B3(t)+O(xt+1t2), (12)

where

B1(t) = t ·
[

1+
α

π

(

π2

3
− 1

2

)

+
3

4
t+ t2

(

9

32
− π

2

12

)]

,

B2(t) = −t− t2

4
,

B3(t) =
t

2
− 3

8
t2, (13)

with

t =
2α

π

(

ln
s

m2
e

−1

)

.

Based on Eq. (6), the whole expression of the ob-

served cross section is subdivided into three terms:

the continuum, the resonance, and the interference

terms. The simplification of each term will be dis-

cussed separately.

3.1 Continuum term

In the light of Eq. (6), the Born order expression

for the continuum is written explicitly as

σC
Born =

8πα2f 2
K

3
· (s/4−m2

K)3/2

s9/2
. (14)

In the above equation, the most crucial part is the

factor

l9/2(s) =
(s/4−m2

K)3/2

s9/2
.

For the study of charmonium physics, s is much

greater than m2
K, therefore the factor l9/2(s) varies

almost linearly in the vicinity of ψ′ peak, as shown

in Fig. 1. With this observation, it is natural to ap-

proximate the factor l9/2(s) with a linear function,

viz.

l̄9/2(s)≈λ9/2 ·s+ζ9/2.

Fig. 1. Variations in factor lβ(s) against center-

of-mass energy (
√

s) in the vicinity of ψ′ res-

onance peak for β = 9/2, 4, 7/2.

As a matter of fact, the similar factors appear in

the resonance and interference terms as well. So, gen-

erally, we define

lβ(s) =
(s/4−m2

K)3/2

sβ
, (15)
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and utilizing the approximation

l̄β(s)≈λβ ·s+ζβ . (16)

Here the coefficients λβ and ζβ can be determined

analytically. The details are degraded into the

appendix1).

With the linearization of the factor l9/2(s), the

x-concerned ISR integral for the continuum term ac-

tually has the form

ρ0 =

∫Xf

0

xµdx, (17)

which can be integrated easily. So the ISR corrected

cross section of the continuum is expressed analyti-

cally as follows,

σC
r.c. =

8πα2f 2
k

3
·[(λ9/2·s+ζ9/2)·H0(s)−λ9/2·s·H1(s)], (18)

with

Hµ(s)≡
∫Xf

0

xµF (x,s)dx =

3
∑

ν=1

Xt+µ+ν−1
f

t+µ+ν−1
·Bν(t) .

3.2 Resonance term

In the light of Eq. (6), the Born order expression

for the resonance is written explicitly as

σR
Born =

8πα2f 2
k

3
· A1

(s−M 2)2 +M 2Γ 2

(s/4−m2
K)3/2

s7/2
,

(19)

where

A1 = 9Γ 2
ee/α2 ·(1+C2 +2C cosφ) .

As far as the factor

l7/2(s) =
(s/4−m2

K)3/2

s7/2

is concerned, the similar approximation as the previ-

ous section is adopted, viz.

l̄7/2(s)≈λ7/2 ·s+ζ7/2.

The x-concerned ISR integral for the resonance

term then reads

ρ(s,t) =

∫Xf

0

xt−1dx

(s(1−x)−M 2)2 +M 2Γ 2
, (20)

which can be integrated analytically [27, 28]

ρ(s,t) =
1

ts2
·at−2πtsin[θ(1− t)]

sinθ sinπt

+
1

s2
·
[

1

t−2
·Xt−2

f +
2(s−M 2)

(t−3)s
·Xt−3

f

+
3(s−M 2)2−M 2Γ 2

(t−4)s2
·Xt−4

f

]

, (21)

where

a2 =

(

1− M 2

s

)2

+
M 2Γ 2

s2
(a > 0),

cosθ =
1

a
·
(

M 2

s
−1

)

.

With the expression of ρ(s,t), the ISR corrected

cross section of the resonance is re-cast as

σR
r.c. =

8πα2f 2
K

3
·A1·[(λ7/2·s+ζ7/2)·G0(s)−λ7/2·s·G1(s)],

(22)

with

Gµ(s) =

∫Xf

0

xµ ·F (x,s)dx

(s(1−x)−M 2)2 +M 2Γ 2

=

3
∑

ν=1

ρ(s, t+µ+(ν−1)) ·Bν(t) . (23)

3.3 Interference term

The Born order expression for the interference can

be acquired readily from Eq. (6). However, for clear-

ness, the expression of the interference is further di-

vided into two sub-terms, as follows,

σI1
Born =

8πα2f 2
K

3
· A2 ·(s−M 2)

(s−M 2)2 +M 2Γ 2
· (s/4−m2

k)
3/2

s4
,

(24)

and

σI2
Born =

8πα2f 2
k

3
· A3

(s−M 2)2 +M 2Γ 2
· (s/4−m2

k)
3/2

s4
,

(25)

where

A2 = 6(Γee/α) ·(1+C cosφ),

A3 = 6(Γee/α) ·CMΓ sinφ.

The simplification strategy is the same as those

used for the continuum and resonance. First, the fac-

tor

l4(s) =
(s/4−m2

k)
3/2

s4

is approximated as

l̄4(s)≈λ4 ·s+ζ4;

second, the x-concerned ISR integrals for the interfer-

ence terms have the same forms as those in Eqs. (17)

and (20), which can be integrated out directly or by

1)The determination of linear coefficients λβ and ζβ is similar to that of linear regression, where the optimization is used.

However, for linear regression, a linear function is used to fit a set of separated data while for our problem, a linear function is

used to approximate another non-linear function. Such an idea of linearization is referred to as the generalized linear regression.
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formula (21). Finally, the ISR corrected cross section

of the interference is obtained,

σI1
r.c. =

8πα2f 2
k

3
·A2 ·{(λ4 ·s+ζ4)(s−M 2) ·G0

−[2λ4 ·s2 +(ζ4−λ4M
2)s] ·G1(s)

+λ4s
2 ·G2(s)}, (26)

σI2
r.c. =

8πα2f 2
k

3
·A3 · [(λ4s+ζ4) ·G0(s)

−λ4s ·G1(s)], (27)

where Gµ(s) is given by formula (23).

In summary, the ISR corrected cross section for-

mula is

σr.c.(s) = σC
r.c.(s)+σR

r.c.(s)+σI1
r.c.(s)+σI2

r.c.(s), (28)

with expressions of the cross section for each term

given in Eqs. (18), (22), (26), and (27), respectively.

4 Possible simplification of energy

spread integral

As indicated in Eq. (10), the experimentally ob-

served cross section is the σr.c. convoluted G(W ′, W ),

which might be simplified further. Two methods, the

Taylor Expansion (TE) method and the Fast Fourier

Transformation (FFT) method, have been considered

for such a simplification.

For the TE method, we begin from Eq. (10), and

Taylor expand the σr.c. at W , viz.

σr.c.(W
′) =

∞
∑

n=0

σ(n)
r.c.(W )

n!
·(W ′−W )n,

where σ(n)
r.c.(W ) denotes the n-th derivative of function

σr.c. at value W . Replacing the Taylor expansion of

σr.c. into Eq. (10), the integral to be calculated has

the following form

∞∫

−∞

xne−x2

dx,

which can be precalculated. However, in order to

achieve a reasonable precision, we need to calculate

hundreds, or even thousands, of terms in Taylor ex-

pansion. This means that the fairly high order deriva-

tives of σr.c. have to be calculated, and too much time

is consumed, which is not acceptable.

As for the FFT method1), we could easily find

that the observed cross section σobs(W ) is a convo-

lution of the radiative corrected cross section and a

gauss function. Consider the Convolution Theorem in

Fourier Transformation,

F(g⊗h) = F(g) ·F(h) ,

where F represents Fourier Transformation, ⊗ repre-

sents convolution. To calculate convolution efficiently,

we use Fast Fourier Transformation. First, σr.c. and G

should be sampled in the energy region. After that,

we get two series of numbers. Then DFT (Discrete

Fourier Transformation) should be performed on both

series, and the resulting series should be multiplied to

generate one final series. Finally, IDFT (Inverse Dis-

crete Fourier Transformation) should be performed

on this series and what we get is the distribution of

σobs in the energy region on which σr.c. and G are

sampled. This process is very fast, and we could get

the result on the whole energy region at the same time

rather than calculating the integral one by one. To

get an accurate result, the sample number should be

very large (512 or 1024), which means a large number

of cross sections should be calculated. In a real energy

scan, the number of data taking points is usually not

large (less than 20). The total integration time in a

small number of energy points is less than the time

cost by sampling a large number of cross sections and

perform DFT and IDFT on it. So this method does

not fit our purpose.

5 Investigation of simplified formula

5.1 Precision

The accurate observed cross section (σobs) is cal-

culated by Eq. (10) while the simplification one (de-

noted by σs
obs) is also calculated by Eq. (10) but with

(σr.c.) replaced by the expression (28). The relative

error of two observed cross sections is defined as

Rσ=
σs

obs−σobs

σobs

. (29)

In the calculation of the observed cross section, all

parameters of resonances are taken from PDG08 [29],

∆ = 1.3 MeV is used. Two real undetermined pa-

rameters are the relative phase (φ) and the relative

strength (C) between the strong and the electromag-

netic amplitudes. The dependences of Rσ on φ and C
are shown in Figs. 2 and 3, respectively.

The variations in Rσ against the center-of-mass

energy (
√

s) in the vicinity of ψ′ resonance peak for

φ = 0◦, 90◦, 180◦, and 270◦ are displayed in Fig. 2,

according to which we notice that firstly, the abso-

lute value of Rσ is less than one percent in the en-

1)http://en.wikipedia.org/wiki/Fast Fourier transform
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ergy region concerned; secondly, the difference be-

tween two cross sections fades away at the resonance

peak; thirdly, the differences in off-resonance region

are larger than those in the on-resonance region. The

similar dependence of Rσ on C can be seen from Fig. 3,

where displayed are the variations of Rσ against
√

s

in the vicinity of the ψ′ resonance peak for C =1, 5,

and 10. It is obvious that the difference due to the

variation in C is even smaller, which is at the level of

a few per mille.

Fig. 2. Variations in Rσ against
√

s in the vicin-

ity of ψ′ resonance peak for φ =0◦, 90◦, 180◦,

and 270◦. In the calculation of the observed

cross section, C is fixed at 2.5.

Fig. 3. Variations in Rσ against
√

s in the vicin-

ity of ψ′ resonance peak for C =1, 5, and 10. In

the calculation of the observed cross section,

φ is fixed at 90◦.

5.2 Computation time

The symbol T s (T 0) denotes the computation time

when σs
obs (σobs) is used for the cross section calcula-

tion. The comparison of T s (denoted by the dashed

line) and T 0 (denoted by the solid line) at both reso-

nance and off-resonance regions are shown in Fig. 4.

Fig. 4. Comparison of T s and T 0 at both reso-

nance and off-resonance regions.

From a comparison, it can be seen that about

one-hundred-time reduction of computation time is

achieved by our simplification algorithm. Although

only one-fold integral is simplified by analytical ex-

pression, the computation time is less than 0.1 sec-

ond for each energy point, which is fast enough for

our scan simulation study.

5.3 Application

As we mentioned in the introduction, the speed of

calculation of the observed cross section is the crucial

issue of a data taking optimization study of the scan

experiment. Without reasonably simplified formula,

it will be too long a time to perform the optimization

fit, and the detailed scan optimization is impractical.

Besides the application in scan optimization, sim-

plified cross section formulas can also be used for

the uncertainty study [30] and correlation study [31].

Since for both of these studies the sampling-and-

fitting method is also adopted, the fast computation

of the cross section is needed as well.

6 Summary

The complete expressions for ψ′ → PP decays

are presented, including the relative phase between

the strong and the electromagnetic amplitudes. After

linearizing one non-linear kinematic factor, the in-

tegrand with the initial state radiation is integrated

analytically. Such a simplification of two-fold integral

into a one-fold integral reduces the total computing

time by about one hundred times.

The possible approaches for the simplification of

the energy spread integral are also discussed.
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The simplified formulas of the observed cross sec-

tions obtained in this paper provide a practical tool

for the further optimization study of the scan data

taking, which is of great importance for the study of

the relative phase between the strong and the elec-

tromagnetic amplitudes.

Appendices A

As we have noted in Subsection 3.1, the factor

l9/2(s) =
(s/4−m2

K)3/2

s9/2

varied almost linearly in the vicinity of ψ′ peak, and its

variation against s is shown in Fig. 1. Therefore, for the

factor

lβ(s)=
(s/4−m2

K)3/2

sβ
, (A1)

a linear function (it refers to Eq. (16)),

l̄β(s)≈λβ ·s+ζβ (A2)

is utilized to approximate it in the vicinity of resonance

peak. The coefficients λβ and ζβ are determined by the

generalized linear regression method. As the first step, we

define the integration

I =

∫s2

s1

ds

[

(λβ ·s+ζβ)− (s/4−m2
K)3/2

sβ

]2

. (A3)

The needed values of coefficients λβ and ζβ are ob-

tained by the minimization of the integration I, that is

∂I

∂λβ

=0 and
∂I

∂ζβ

= 0. (A4)

From the above requirements, we acquire a set of lin-

ear equations of λβ and ζβ. By solving it, we obtain

λβ =
δ1C1−δ2C2

δ1δ3−δ2
2

and ζβ =
δ3C2−δ2C1

δ1δ3−δ2
2

, (A5)

where

δi =

∫s2

s1

si−1ds=
si
2−si

1

i
,

C1 =

∫s2

s1

ds
(s/4−m2

K)3/2

sβ−1
=

1

8
D(β−1),

C2 =

∫s2

s1

ds
(s/4−m2

K)3/2

sβ
=

1

8
D(β).

Both C1 and C2 contain integral

D(β) =

∫s2

s1

dx
(x−u)3/2

xβ
, (A6)

where

β = 2,
5

2
, 3,

7

2
, 4,

9

2
, u = 4m2

K.

For different β, we can calculate the integral

analytically1). For β =2,

D(2) =

[√
x−u

(u

x
+2
)

−3
√

utan−1

(√
x−u√

u

)]
∣

∣

∣

∣

s2

s1

; (A7)

For β =
5

2
,

D

(

5

2

)

=
[

2lg
(

2
(√

x−u+
√

x
))

+
2

3

(

u

x
3
2

− 4√
x

)√
x−u

]
∣

∣

∣

∣

s2

s1

; (A8)

For β = 3,

D(3) =

[

3

4
√

u
tan−1

(√
x−u√

u

)

+
1

4

(

2u

x2
− 5

x

)√
x−u

]

∣

∣

∣

∣

s2

s1

; (A9)

For β =
7

2
,

D

(

7

2

)

=
2(x−u)

5
2

5ux
5
2

∣

∣

∣

∣

s2

s1

; (A10)

For β = 4,

D(4) =

[ tan−1

(√
x−u√

u

)

8u
3
2

+
√

x−u

(

u

3x3

+
1

8ux
− 7

12x2

)]

∣

∣

∣

∣

s2

s1

; (A11)

For β =
9

2
,

D

(

9

2

)

=
2(x−u)

5
2 (5u+2x)

35u2x
7
2

∣

∣

∣

∣

s2

s1

. (A12)

1)The following integrals are obtained by using Mathematica and are checked by hand.
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It could be easily checked that for the coefficients λβ

and ζβ, we obtain

∂2
I

∂λ2
β

= 2

∫s2

s1

s2ds =
2

3

(

s3
2−s3

1

)

> 0, (A13)

∂2
I

∂ζ2
β

= 2

∫s2

s1

ds =2(s2−s1) > 0. (A14)

This means that what we get is the minimum of I, not

the maximum.

The relative error between the linearized formula and

the original formula is defined as

Rl =
|l̄β − lβ|

lβ
. (A15)

When β = 9/2, 4, 7/2, the variations in Rl against the

center-of-mass energy (
√

s) are shown in Fig. A1.

Fig. A1. The variations in Rl against
√

s for

β = 9/2, 4, 7/2.

References

1 Jousset J et al. (DM / collaboration). Phys. Rev. D, 1990,

41: 1389

2 Coffman D et al. (Mark 0 collaboration). Phys. Rev. D,

1988, 38: 2695

3 Suzuki M. Phys. Rev. D, 1999, 60: 051501
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