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Multi-objective optimization of inverse planning

for accurate radiotherapy *
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Abstract: The multi-objective optimization of inverse planning based on the Pareto solution set, according

to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly,

the clinical requirements of a treatment plan were transformed into a multi-objective optimization problem

with multiple constraints. Then, the fast and elitist multi-objective Non-dominated Sorting Genetic Algorithm

(NSGA-/) was introduced to optimize the problem. A clinical example was tested using this method. The

results show that an obtained set of non-dominated solutions were uniformly distributed and the corresponding

dose distribution of each solution not only approached the expected dose distribution, but also met the dose-

volume constraints. It was indicated that the clinical requirements were better satisfied using the method and

the planner could select the optimal treatment plan from the non-dominated solution set.
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1 Introduction

Radiotherapy has been applied to the treatment of

tumors for almost a century, but the multi-objective

character of inverse planning optimization was only

fully recognized about ten years ago. Inverse planning

optimization is a multi-objective optimization prob-

lem whose solution is known as the Pareto solution

set. However, most currently used inverse planning

systems translate the multi-objective optimization

problem into a single objective optimization problem

by computing the weighted summation of each objec-

tive, and then optimize it using an stochastic algo-

rithm or an analytic method. There are two short-

comings of this approach. First, the weighting factors

should be determined before optimizing, also known

as “priori method”. However, as the optimum weight-

ing factors are unknown before optimizing, the opti-

mization procedure is a trial and error process, result-

ing in a waste of manpower and planning time. Sec-

ond, its applicability is limited, because the method is

acceptable only for convex multi-objective optimiza-

tion problems and cannot guarantee that the obtained

solution is a Pareto solution when the optimization

problem is non-convex. In fact, most clinical cases are

non-convex problems. Only the optimization of radi-

ation field weighting factors is a single-extreme prob-

lem. However, if the intensity map of each beam, the

beam angels and the beam numbers are all optimized

simultaneously, the inverse planning optimization is

a non-convex problem [1], so the Pareto solution can

not be obtained with the “priori method”. To obtain

the Pareto solution set of a multi-objective optimiza-

tion problem, many multi-objective evolutionary al-

gorithms including the fast and elitist multi-objective

Non-dominated Sorting Genetic Algorithm (NSGA-

/), have recently been proposed. They have been

applied in many fields because of their high efficiency,

while for the multi-objective optimization of inverse

planning, they are seldom used.
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In this study, multi-objective optimization of in-

verse planning was studied based on inverse planning

research by the Advanced/Accurate Radiation Ther-

apy System (named ARTS) [2–8]. First, the mathe-

matical modeling was presented, in which the clin-

ical requirements for a treatment plan were trans-

formed into a multi-objective optimization problem

with multiple constraints. Then, the NSGA-II was

introduced to optimize the model. Lastly, a clini-

cal example was tested. The results showed that

an obtained set of non-dominated solutions were dis-

tributed uniformly. Then, the corresponding dose

distribution of each solution in the non-dominated

solution set not only approached the expected dose

distribution, but also satisfied the dose-volume con-

straints. It was indicated that the clinical require-

ments were better satisfied and that the planner

could select the optimal treatment plan from the non-

dominated solution set. With the method we pro-

posed, the planner has no need for a trial and error

process to find the optimum plan, so efficiency will

be highly improved.

2 Method

2.1 Mathematical modeling

The aim of mathematical modeling is to establish

the objective function of optimization, which mea-

sures the effectiveness of a selected plan, and its

choice is crucial for radiotherapy treatment planning

optimization. There are two different types of ob-

jective function, the ‘physical’ objective function and

the ‘biological’ objective function. The ‘physical’ ob-

jective function, which establishes a link between the

output dose distribution and the input beam param-

eters, is widely used in the commercial Treatment

Planning System (TPS). In fact, the biological effects

of radiation on tumors and normal tissues not only

have a relation with the received dose value, but also

have connections with the volume of different dose

values. So dose-volume constraints are also widely

used in clinical applications. In this investigation,

difference between the calculated and expected dose,

and the dose-volume constraints were both consid-

ered. The mathematical formulations of the inverse

planning are shown as follows:

minf1 =
1

NPTV2

NPTV
∑
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(dPTV
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1
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here dPTV
i and dNT

i are the calculated dose at the

point of i in the Planning Tumor Volume (PTV) and

Normal Tissue (NT) respectively; DPTV is the pre-

scribed dose of the PTV; NPTV and NNT are the cal-

culated point numbers at the PTV and NT, respec-

tively. Therefore, the optimization objectives can be

expressed as: 1) the calculated dose of all the points

in PTV must approximate DPTV; 2) the smaller the

average dose of NT is, the better the corresponding

plan will be.

In Eq. 2, V L
PTV and V

′L
PTV are the calculated volume

and the least allowed volume where the dose is higher

than L, respectively. V
′L
PTV and L are given by clinical

doctors according to the cancer type, expected treat-

ment results and clinical experiences. V
DH

OAR and V
′DH

OAR

are the calculated volume and the objective volume

where the dose is higher than DH, which is the allowed

dose of the Organ At Risk (OAR), respectively. dOAR
i

is the calculated dose of the point i in the OAR. NOAR

is the point number in the OAR. D
′OAR
avg is the highest

allowed average dose of the OAR. So the constraints

formulated by Eq. 2 can be expressed as: 1) not less

than V
′L
PTV of the volume of the PTV received a dose

of higher than L; 2) not more than V
′DH

OAR of the volume

of the OAR received a dose of higher than DH; 3) the

average dose of the OAR must be less than D
′OAR
avg .

From Eq. (1) and Eq. (2) it is evident that the dose

and dose-volume constraints were both considered.

2.2 Optimization algorithm based on NSGA-

///

Evolutionary algorithms are popular for solving

multi-objective optimization problems because they

are characterized by a population of solution candi-

dates and can produce a set of approximate solutions

in a simulated run. As a representative of the multi-

objective evolutionary algorithms, the NSGA-/ has

been applied to many areas due to its validity [9].

Therefore, the NSGA-/ was introduced to the in-

verse planning in this paper. The procedures were as

follows:

1) Initialization: the population size (N) and the

maximum evolutionary generation were set and then

N individuals of a parent population ( P0) were ran-

domly generated;

2) N groups of field parameters were obtained by

decoding the population P0 and then the point dose
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values in the PTV, OAR and NT were calculated in

order to compute the objective functions and con-

straint values according to Eq. (1) and Eq. (2);

3) The non-dominated rank and crowding dis-

tance of individuals in population P0 were computed

according to the objective functions and the con-

straint functions [9, 10];

4) Considering the individual’s non-dominated

rank and the crowding distance, the binary tourna-

ment selection was adopted to select N individuals

into the next population Q0;

5) Individuals in Q0 implemented an evolutionary

process (including crossover and mutation) and then

performed steps 2) and 3) again for Q0, when finished,

the process proceeded with step 6);

6) The parent population (P0) and the offspring

population (Q0) were combined into a population Q

of 2N individuals, and then N individuals of the par-

ent population of the next generation were generated

by the tournament selection from the individuals of

Q;

7) If the iterative times or the other conditions

were satisfied, the optimization process would be ter-

minated and the obtained Pareto solutions (field pa-

rameters) were exported, otherwise the process would

go to step 2).

The selection is a crucial evolutionary strategy.

However, the selection based on fitness that is com-

mon used by the evolutionary algorithm is not suit-

able for the multi-objective optimization problem be-

cause fitness cannot be computed as a single-objective

optimization problem. The selection of the NSGA-/

proposed in the paper was based on the constraint

values, the non-dominated rank and the crowding dis-

tance of the individuals, and was not necessary to

calculate the fitness. The steps are shown as follows:

1) Two individuals were selected randomly and

their feasibility was judged by the following rules: the

individual satisfying Eq. (2) was a feasible solution,

otherwise it was not a feasible solution ( an infeasible

solution). If only one of the two individuals was a

feasible solution, it would be selected into the next

pop; if both of the individuals were infeasible solu-

tions, then their C(the degree of deviation from the

constraints) would be computed according to Eq. (3)

and the individual with less C was selected; if the C

of the two individuals were the same or both were fea-

sible solutions, then step 2) would be implemented.

2) The dominated relations were compared. The

individual that was not dominated by the other one

was selected. If they couldn’t be compared, step 3)

would be followed.

C1 = max{(V
′L
PTV−V L

PTV),0},

C2 = max{(V DH

OAR−V
′DH

OAR),0},

C3 = max

{(

1

NOAR
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∑
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dOAR
i −D
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,0

}

,

C = C1 +C2 +C3.
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3) The crowding distances of the two individu-

als were compared and the individual with a smaller

crowding distance was selected; if their crowding dis-

tances were the same, step 4) would be performed.

4) One individual was selected randomly.

Feasibility, non-domination and diversity (uni-

formly distributed) of solutions are the three key eval-

uation criteria for a multi-objective optimization al-

gorithm. From the investigation selection process it

was shown that feasibility and non-domination of so-

lutions were first considered. Meanwhile, retaining

the diversity of the solutions was also considered. The

constraints were satisfied by the solution’s feasibil-

ity. The minimized objective function values were

guaranteed by non-domination calculated according

to objective functions. The smaller the individual’s

non-dominated rank was, the higher the probability

that it would be selected into the next generation.

Retaining diversity was guaranteed by the crowding

distance calculated according to a number of other

solutions around the solution. The smaller the indi-

vidual’s crowding distance, the higher the probabil-

ity that it would be selected into the next generation.

So the corresponding treatment plan solution could

kill the tumor cells at an optimal level, while the sur-

rounding organs at risk and other normal tissues were

effectively protected.

2.3 Test example

LSM, a patient with a clinical head tumor with 18

CT (Computer Tomography) slices was chosen to test

the method. The PTV and OAR were contoured as

shown in Fig. 1. The radiation source was a Varian

photon beam. Three beams with different orienta-

tions were adopted: anti-clockwise direction with the

vertical 90◦, clockwise into 60◦ and 120◦.

The Source to Surface Distances of the three

beams were all set to 100 cm. The parameters to

be optimized were the beam weight, the field size

(A/cm), the collimator angle (roat/(◦)) of each beam

and xf/cm, yf/cm of each beam’s central axis offset.
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Fig. 1. Contour of PTV and OAR.

2.4 Algorithm parameters

The objectives and constraints of the test exam-

ple were set as follows: the objective dose of PTV

was 92%; the dose of NT was as low as possible; the

average dose of the OAR was lower than 20%; not

less than 90% of the volume of the PTV received a

dose of higher than 90%; not more than 15% of the

volume of the OAR received a dose of higher than

30%. The calculated points were uniformly sampled

and the point numbers of the PTV, the OAR and the

NT were 417, 267 and 693, respectively.

The parameters of the algorithm were set as fol-

lows: the population size was 140; the max generation

was 200; the crossover probability was 0.6; the muta-

tion probability was 0.01; the variables were treated

as the binary code; the binary bits of variables were

different from each other according to the accuracy.

The point dose in Eq. (1) and Eq. (2) could be cal-

culated by the Regular Beam Model (RBM), the Pen-

cil Beam Model (PBM), etc. The RBM was adopted

in the study.

3 Results and discussion

3.1 Results

As the test example had two contradicting ob-

jectives, there is no single optimal solution but in-

stead a whole set of possible solutions of an equiv-

alent quality (Pareto solutions). 36 Pareto solu-

tions were obtained using the optimization. The dis-

tributions of the two objective values of 36 solu-

tions are shown in Fig. 2. Three representations

of the solutions were chosen: 1) Solutions 1: the

first objective was minimized, which meant the dose

of the PTV most approximated the expected dose;

2) Solutions 2: the second objective was minimized,

which meant protecting the normal tissue was of ut-

most importance; 3) Solutions 3: compromises of the

first objective and the second objective. The corre-

sponding objective function values and beam par-

ameters of the three solutions are shown in Table 1,

Fig. 2. Distribution of the pareto-front.

Fig. 3. Dose volume histogram of PTV.

Fig. 4. Dose volume histogram of OAR.

Table 1. The parameters, constraint and objective values of three solutions.

weight A/cm roat/(◦) xf/cm yf/cm f1(%) f2(%) V L
PTV(%) V Hd

OAR(%) DOAR
avg (%)

beam1 0.07 11 26 3.44 −2.68

solution 1 beam2 0.8 5 112 −0.84 0.51 0.004 41.21 4.7 15 16.83

beam3 0.40 9 −34 4.04 0.93

beam1 0.53 8 19 −1.38 3.58 0.252 29.91 0.168 15 21

solution 2 beam2 0.8 5 112 −0.51 0.51

beam3 0.07 7 163 3.6 −1.2

beam1 0.33 9 40 −1.56 −2.18

solution 3 beam2 0.80 5 110 −1.52 0.51 0.01 33.21 0.647 15 21

beam3 0.13 9 89 2.8 0.31
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Fig. 5. Dose volume histogram of NT.

and the corresponding Dose Volume Histograms

(DVH) of the PTV, OAR and NT are shown in

Figs. 3–5.

3.2 Discussion

As shown in the DVH of the PTV (Fig. 3), the

dose conformal of solution 1 is the best, followed by

solution 3, while solution 2 is the worst. The rea-

son for this is that the first objective’s priority of the

solution 1 is higher than the others. If the planner

wants to effectively kill the tumor and the dose of the

OAR and NT only need to meet the constraints, then

solution 1 would be the preferred solution. From the

DVH of the NT (Fig. 5) it can be seen that the cor-

responding DVH of solution 1 is the worst one, and

the DVHs of the other two solutions are the same. As

the second objective’s priority (corresponding to NT)

of solution 2 or 3 is higher than solution 1, and if the

planner’s expectation is to focus on minimizing the

radiation exposure of the surrounding NT while the

tumor receives a given radiation dose, then solution 2

or 3 would be the preferred solution.

All the Pareto solutions (shown in Fig. 2) meet

the dose volume constraints, however, it can be seen

from Fig. 4 that the DVHs of the OAR of solution 2

and 3 are both below the DVH of solution 1, which

means that the volume that received a higher dose

than every dose value in the OAR of solution 2 and

3 are less than that of the solution 1. Thus, the cor-

responding plan of the solutions 2 and 3 can protect

the OAR better than solution 1. The planner can

select the optimal plan from these Pareto solutions

depending on what he wants (kill the tumor most

or minimize the damage of the NT). In other words,

multi-objective optimization based on the NSGA-/

can obtain multiple Pareto solutions from which the

planner can select the optimal plan according to the

patient’s situation, ease of implementation, clinical

experiences and so on.

4 Conclusions

In this study, taking advantages of both the ob-

jective function based on the dose distribution and

the objective function based on the dose-volume con-

straints, inverse planning optimization was mathe-

matically modeled as a multi-objective optimization

problem, and then a multi-objective evolutionary al-

gorithm based on the NSGA-/ was introduced to

solve the problem. Clinical test results showed that

multiple optimal solutions could be obtained, pro-

viding the planner with the best selection to trade-

off between different objectives and dose-volume con-

straints.

The commonly used optimization methods of in-

verse planning, which transform the multi-objective

optimization problem into a single-objective opti-

mization through weighted summation, can only ob-

tain a balance between multiple objective functions

and constraints. However, if the obtained solution

does not satisfy the requirements, the optimization

should be run again. Thus, the commonly used meth-

ods may waste more time. The proposed method in

this paper provides a Pareto optimal solution set to

be selected by the planners and does not force the

user without any knowledge to import the weighting

factors iteratively. Therefore, this method is more ac-

curate and flexible for fulfilling practical clinical re-

quirements.

References
1 Lahanas M, Baltas D, Zamboglou N. Med. Phys., 1999, 26:

1904

2 WU Yi-Can, LI Guo-Li, TAO Sheng-Xiang et al. Chinese

Journal of Medical Physics, 2005, 22(6): 283 (in Chinese)

3 WU Yi-Can, SONG Gang, CAO Rui-Fen et al. Chinese

Physics C (HEP&NP), 2008, 32(Suppl. II): 177

4 LI Guo-Li. Study on Multi-objective Optimization Algo-

rithm for Inverse Planning of External Radiation in ARTS.

[PhD] Institute of Plasma Physics, Chinese Academy of

Sciences. 2006

5 CAO Rui-Fen, LI Guo-Li, SONG Gang. Chinese Journal

of Radiological Medicine and Protection, 2007, 27(5): 467

(in Chinese)

6 LI Guoli, SONG Gang, WU Yi-Can. Nuclear Technology,

2007, 30(3): 222 (in Chinese)

7 LI Guo-Li, WU Yi-Can, ZHANG Jian. Plasma Science and

Technology, 2006, 8(2): 234

8 LI Guo-Li, WU Yi-Can, SONG Gang, WANG Shi-Fang.

Nuclear Physics Review, 2006, 23(2): 233 (in Chinese)

9 Kalyanmoy Deb, Amrit Pratap, T Meyarivan. IEEE Trans-

actions on Evolutionary Computation, 2002, 6(2): 182–197

10 CAO R F, LI G L, WU Y. Advanced intelligent Comput-

ing Theories and Applications, Proceedings. 2007, 4682:

553–564

11 SONG Gang. Hybrid Dose Calculation Research and Pro-

gram Development for Accurate Radiotherapy. [PhD] Insti-

tute of Plasma Physics, Chinese Academy of Science. 2008


