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Beam hardening correction for a cone-beam CT

system and its effect on spatial resolution *
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Abstract: In this paper, we present a beam hardening correction (BHC) method in three-dimension space

for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on

the spatial resolution. Due to the polychromatic character of the X-ray spectrum used, cupping and streak

artifacts called beam hardening artifacts arise in the reconstructed CT images, causing reduced image quality.

In addition, enhanced edges are introduced in the reconstructed CT images because of the beam hardening

effect. The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on

different planes in space. Thus, in the CT images with beam hardening artifacts, enhanced ERFs will be

extracted to calculate the modulation transfer function (MTF), obtaining a better spatial resolution that

deviates from the real value. Reasonable spatial resolution can be obtained after reducing the artifacts. The

10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without

BHC are presented.
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1 Introduction

Computed tomography (CT) is an imaging

method used to produce two-dimensional or three-

dimensional distribution (usually some physical prop-

erties such as density or attenuation coefficients) of

objects from a series of X-ray projections when X-

ray penetrates the rotating objects. The projection,

which is a line integral of a single slice in the object,

is a function of the X-ray energy, X-ray propagation

length and the linear attenuation coefficients of the

object. Since most materials absorb low-energy X-

ray better than high-energy X-ray photons, mainly

because of photoelectric absorption, the attenuation

at a fixed point in an object is generally greater for

photons of low energy [1]. Thus the energy distri-

bution spectrum of the polychromatic X-ray beam

changes (mean energy rise, namely beam hardening)

as it passes through the object. A basic assumption

for CT is that X-rays are attenuated in the same way

in a particular voxel for every projection angle inde-

pendent of how much matter the X-rays have pene-

trated before reaching the voxel [2]. This means mo-

noenergetic X-rays are required. However, in practi-

cal CT imaging, a polyenergetic X-ray source (usually

X-ray tubes) is employed, which means the amount

of photons taken away from the beam is dependent

on how deep the beam has propagated.

So when a voxel is located at the edge of the ob-

ject facing the X-ray source, the mean energy of the

X-ray spectrum reaching the voxel is lower and the

number of photons attenuated from the beam as it
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penetrates the voxel is larger. Meanwhile, when the

object is turned to face the detector in later projec-

tions, the X-ray beam have to propagate a long path

before reaching the voxel, which causes a higher mean

energy since low energy photons are taken away from

the beam. This gives a smaller density or attenua-

tion coefficient of the material for the voxel in the

latter projection than in the former. Thus, for the

CT imaging with polyenergetic source the pixel val-

ues are dependent both on the voxel itself and where

it is located, in contrast to the imaging with monoen-

ergetic source which is only dependent on the mate-

rial in the voxel. Beam hardening induces artifacts

in CT imaging showing a smaller density in the cen-

ter of the object namely cupping artifact and dark

streaks between the region of high density [1, 3, 4].

The artifact can be explained by the nonlinear nature

of beam hardening.

Beam hardening artifacts can be widely seen in

CT images and bring difficulty to understand the

object structure. They also severely limit the per-

formance of quantitative analysis of the CT images

[1]. There are many correction approaches proposed

to reduce the artifacts. They can be classified into

[5]: pre-filtering, linearization, dual energy and post-

reconstruction method.

The spatial resolution characterizes the ability of

a CT system to image fine structural detail. It is

best quantified by a measurement of the point spread

function (PSF) of the system or, equivalently, by the

MTF, the frequency-space representation of the PSF.

The recommended method is to determine the MTF

by computing the amplitude of the Fourier trans-

form of PSF. The PSF is obtained by calculating the

derivative of the profile of the edge of a test phantom

[6]. For a CBCT system, we choose a uniform steel

ball as the test phantom. The diameter of the ball is

0.5 mm. In the reconstructed CT images, beam hard-

ening artifacts enhance the edge of the ball. ERFs ex-

tracted from the enhanced edge cause a better mod-

ulation at higher frequencies, namely a better system

spatial resolution.

Casteele [7] has investigated the effect of beam

hardening on the resolution for fan beam reconstruc-

tion. In this paper, we investigate the effect of

beam hardening artifacts on spatial resolution for

cone beam reconstruction. In Part 2, we present the

BHC method for the CBCT system which is based on

the reprojection and linearization in a mono-material

case. Beam hardening artifacts in the CBCT system

can be corrected by the projection data and is inde-

pendent of the reconstruction algorithm, so the BHC

method for fan beam can be employed to correct the

beam hardening artifacts in the CBCT system. In

Part 3, we give the measurement and calculation of

the MTF, in addition, the PSF fitted by Gaussian

function which can show the FWHM is also presented.

In Part 4, we give the BHC results of the steel ball,

the MTF of the CBCT system and the FWHM of PSF

with and without BHC. We also give the deviation of

the calculation. For a CBCT system, beam hardening

artifacts lead to an asymmetry PSF, causing a better

spatial resolution which deviates from the real value.

After reducing the beam hardening artifacts, the PSF

recovers symmetry. Reasonable spatial resolution can

be calculated.

2 Method

2.1 BHC for the CBCT system

In a CBCT system, usually a flat-plane detector or

a CCD array is employed. The X-rays diverge from

the X-ray source and form a cone-like solid angle,

shown in Fig. 1. A divergent line which connects the

X-ray source spot and the detector pixel represents

the X-rays penetrating the object. The whole object

can be reconstructed from one single scan. Compared

with BHC for the fan beam CT, BHC for the CBCT

system need to solve two problems:

1) The mid-plane and off mid-plane can use the

same correction model.

2) BHC for the CBCT system is independent of re-

construction algorithm, just as BHC for the fan beam

CT.

The explanations for the two questions go as fol-

lows:

1) When a polyenergetic X-ray beam passes

through an object, the exit intensity can be expressed

as

I = I0

∫E0

0

S(E)D(E)e−
∑M

j=1
µj(E)Xj dE (1)

and ∫E0

0

S(E)D(E)dE = 1, (2)

where I0 is the incoming photon intensity and S(E) is

the polychromatic X-ray spectrum. D(E) is the en-

ergy dependent efficiency of the detector and µj(E) is

the linear attenuation coefficient of the jth material

along the path, Xj is the length of the jth material

and E0 is the maximum photon energy in the spec-

trum.

Define ray sum R,

R(µ,x) =− ln

(

I

I0

)

. (3)
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Then

R(µ,x) =− ln

∫E0

0

S(E)D(E)e−
∑M

j=1
µj(E)Xj dE. (4)

So the ray sum R for a divergent line which con-

nects the X-ray source spot and the detector pixel

is a function of the linear attenuation coefficient µ of

the material along the path and the propagation path

length x. When there is a mono-material in case, R

is dependent on propagation path length x and is in-

dependent on the location of the propagation voxel.

Thus the correction model constructed by the projec-

tion data in off mid-plane is the same as the correction

model constructed in mid-plane, which means we can

use the mid-plane correction model to correct the off

mid-plane projection data.

Fig. 1. The cone-beam reconstruction arrangement.

2) Let R(L) be the measured CT raw ray sum (log

attenuation) and let Rc(L) be the desired corrected

raw ray sum that corresponds to the line of integra-

tion L (or detector channel number). We define

Rc =ψ(R), (5)

where ψ is the correction function, for convenience we

drop the index L here, then the required amount of

correction

∆R=Rc−R. (6)

Since CT reconstruction is a back-projection pro-

cedure, it can be formulated by inverse Radon trans-

form. If f(~r) is a reconstructed image with reduced

beam hardening artifact, for the fan beam CT, we

have

f(~r) =<
−1
2 Rc =<

−1
2 (R+∆R) =<

−1
2 R+<

−1
2 ∆R, (7)

where <
−1
2 represents a 2D inverse Radon transform,

in the last step, we use the linearity of the Radon

transform. For the CBCT system, we also have

f(~r) =<
−1
3 Rc =<

−1
3 (R+∆R) =<

−1
3 R+<

−1
3 ∆R, (8)

where <
−1
3 represents a 3D inverse Radon transform.

From the above two equation, we know that BHC for

fan beam CT and BHC for the CBCT are both inde-

pendent of reconstruction algorithm as the linearity

nature of the Radon transform. Thus the BHC model

of the fan beam CT can be used to correct the pro-

jection data of the CBCT system.

The BHC method used in this paper is based on

linearization and reprojection. The basic idea of lin-

earization is to transform the ray sum values from the

curved function Rpoly(X) to values on the linear func-

tion Rmono(X), for the same objects thickness. Then

we have

Rpoly(X) =

N
∑

l=1

alX
l−1, (9)

where al is the polynomial coefficient and X is the

propagation path length. The slope of Rpoly(X) at

X = 0 can be considered as the attenuation coeffi-

cient when monoenergetic X-ray is employed. Then

the corrected ray sum value is Rmono = a1X .

Fig. 2. The BHC flow chart for the CBCT system.

The drawback of linearization is that it requires

calibration measurement of Rpoly(X) for different

thicknesses of the object material. This can be labori-

ous and sometimes impossible in reality, such as BHC

for CT image of ancient fossils. To avoid this fact, we

introduce the reprojection procedure to construct the
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correction model [5]. The correction method can be

explained by the flow chart in Fig. 2.

First the raw projection data are reconstructed

and then the CT image is segmented to distinguish

the steel and the surrounding air by the OTSU seg-

mentation algorithm [8]. After that, the propagation

path length within object for each pixel is calculated

by a ray tracing algorithm and the pixel size of CT

image which is calculated by the magnification. The

calculated length is then assigned to the correspond-

ing measured ray sum Rij to construct the correction

model. The raw projection data are corrected by the

correction model. Finally, the corrected raw data are

reconstructed, resulting in CT images with reduced

beam hardening artifact. Since the off mid-plane data

and the mid-plane data can use the same correction

model, in this paper, we only construct the mid-plane

correction model which can save a lot of time. Com-

pared with other BHC methods, we can see that the

BHC method based on linearization and reprojection

doesn’t need calibration measurement, X-ray spec-

trum or material characteristics (such as mass atten-

uation coefficients or mass energy-absorption coeffi-

cients). The method only needs raw projection data

and the correction procedures are very convenient.

2.2 Spatial resolution measurements

Spatial resolution for the CBCT system is mea-

sured with and without BHC according to the stan-

dard ASTM E1695-95 [6] and a preprint in our group

[9]. Compared with the fan beam CT system, in the

CBCT system, we use a steel ball (0.5 mm in diam-

eter) as the test phantom. Put the ball in the field

of view of the CBCT system and the position doesn’t

need to be in the center of rotation stage. 3D CT im-

ages with beam hardening artifact are reconstructed

by the raw projection data, while 3D CT images with-

out beam hardening artifact are reconstructed by the

corrected projection data. The MTF measurement is

based on the two sets of 3D CT images.

We measure the MTF and the FWHM of the PSF

on XY , Y Z and ZX planes that pass through the

center of the ball (the rotation axis is Z axis) with

and without BHC. The measured procedure goes as

follows:

1) In the reconstructed 3D images, extract a sub

volume containing the steel ball. The size of the vol-

ume should be larger than the diameter of the ball.

For example, we extract a 239×239×239 volume.

2) Find the center of the steel ball.

On XY plane, find the edge of the ball in differ-

ent slices using the Canny edge detection algorithm

[10]. Use a circle to fit the edge by employing the

least-square method. Then we can get the diameter

and the center of the circle Xcenter, Ycenter. The cen-

ter of steel ball locates on the slice Zcenter which gives

the largest circle diameter. So the center of the steel

ball is Xcenter, Ycenter, Zcenter. On Y Z, ZX planes,

use the same method to find the center of the steel

ball and the maximum diameter of the fitting circle.

The deviation of the center of the steel ball and the

maximum diameters of the fitting circle found on dif-

ferent planes which depend on the roundness of the

steel ball should be smaller than 1 pixel. In this ex-

periment, the relative roundness of the steel ball is

0.6% which can satisfy the requirement.

3) Obtain the ERF in the CT image.

In the sub volume, on XY plane, obtain 36 sets

of line profiles that pass the center of the steel ball

with a 10 degree increment. Use the same method to

obtain 36 sets of line profiles on Y Z and ZX planes,

respectively. All of the profiles are then averaged.

The averaged line profile includes two ERFs corre-

sponding to two edges of the steel ball.

4) Calculate the differentiation of the averaged

ERF to obtain the Line-Spread Function (LSF),

which can be roughly equivalent to PSF.

5) Calculate the Discrete Fourier Transform of the

PSF and normalize the magnitude at zero frequency

to unity to generate the MTF. The 10% MTF value

is often used to characterize the spatial resolution of

the CT system.

6) In order to show the deviation of the calcu-

lated spatial resolution, redo Procedure 3) to 5) thirty

times with different sampling angles. Then we can ob-

tain 30 normalized MTF and 30 corresponding 10%

MTF values. The deviation of the spatial resolution

is from these 10% MTF values.

7) Fit the PSF to obtain the FWHM.

In order to obtain the FWHM of the PSF, we use

the single parameter Gaussian function to fit the PSF.

Since the FWHM is another parameter to character-

ize the performance of the system, we can compare

the FWHM with the 10% MTF value. According to

the relationship between the standard deviation σ of

the Gaussian function and the FWHM,

FWHM = 2.3547σ, (10)

we can easily calculate the FWHM by σ which is given

by the least-squares fitting. The procedure to obtain

the deviation of the FWHM is similar to Procedure

6). Obtain 30 averaged ERFs with different sampling

angles. Calculate the differentiation and fit them with

Gaussian function. We can obtain 30 FWHMs and
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the standard deviation of the 30 FWHMs is the de-

viation of the result.

3 Apparatus and implementation

The experiment is performed on a 225 kV cone-

beam micro-CT system. The system is developed and

built by the Institute of High Energy Physics (IHEP),

the Chinese Academy of Sciences (CAS). The main

system components are an amorphous silicon Flat

Panel Detector (FPD), an X-ray tube and a rotation

stage. The FPD (PaxScan 4030CB, Varian Medical

System, UT, America) compact 2048×1536 194 µm-

pixel array and the conversion screen are integral

columnar CsI(Tl). The X-ray tube (Phoenix xs-225d,

GE, America) has a 5 µm–15 µm focal spot. The ro-

tation stage (Huber 410A, Huber, Germany) has a

resolution of 0.001◦/1000 steps.

The experimental setting is shown in Table 1.

Table 1. The experimental setting.

voltage 120 kVp

current 40 µA

projection number 1800

magnification 60

reconstructed image size 2048×2048

Scan the steel ball at conditions given in Ta-

ble 1. The projection data are first reconstructed

by the FDK algorithm to generate CT images with

beam hardening artifacts. Then the projection data

are corrected by the BHC method presented in Sec-

tion 2.1. Finally, the corrected projection data are

reconstructed to generate CT images with reduced

beam hardening artifacts. For convenience, in the re-

constructed 3D image we extract a sub volume con-

taining the steel ball in a 239×239×239 array. The

spatial resolution is calculated by the procedures pre-

sented in Section 2.2 which are based on the two sub

volumes, with and without BHC.

4 Results

4.1 Beam hardening correction

In the following section, the reconstructed CT im-

ages with and without BHC are presented. Following

the BHC procedures discussed before, firstly, the edge

of the ball is detected by the Canny algorithm, seen

in Fig. 3(b). Then the center and the diameter of

the ball are found by performing a least-square circle

fitting. The mid-plane of the CT image is segmented

to distinguish the steel and the surrounding air, as

shown in Fig. 3(a). After that, the propagation path

length for each pixel in the mid-plane is computed

and the results are assigned to the raw ray sum of

the corresponding pixel to construct the correction

model. In Fig. 4, the line and curve represent the mo-

noenergetic and polyenergetic ray sums, respectively.

The relationship between the computed propagation

path length and the raw ray sum is non-linear due to

the beam hardening effect. Fitting the curve with a

fourth-degree polynomial, then the corrected ray sum

can be calculated by the slope of the polynomial at

original point. The corrected ray sum is filtered with

a 2D median filter because the correction process can

magnify noise. The results of CT images without

Fig. 3. (a) Binarizated CT image that passes

the center of the steel ball. The white area

is the ball and the dark area is the surround-

ing air. (b) The Detected edge of the ball by

performing Canny algorithm.

Fig. 4. The relationship between the propa-

gation path length and the ray sum of the

steel ball. The X-axis is the propagation path

length and is labeled as millimeter. The Y -

axis is the ray sum. The solid line is the

polyenergetic ray sum fitted by a 4th polyno-

mial. The non-linearity nature of the curve

characterizes attenuation when the polyener-

getic X-ray passes though an object. The dot-

ted line shows the linear attenuation nature

when the monoenergetic X-ray passes through

an object. Both of the lines pass though the

original point.
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BHC are shown in Figs. 5(a)–(c). The cupping ar-

tifacts can be clearly seen in the images of different

planes and gray levels of the images aren’t uniform.

The line profiles of the uncorrected CT images in

Figs. 5(g)–(i) show that the larger the distance to the

center of the steel ball is, the higher the gray levels

of the images have, as the reason of beam hardening.

We can see that the descent of the gray level of the

steel ball besides the edge causes an enhanced edge.

CT images on different planes reconstructed by the

corrected ray sum are shown in Figs. 5(d)–(f). We

can see that the CT images are much uniform with

reduced beam hardening artifacts. The line profiles

of the corrected CT images shown in Figs. 5(g)–(i)

reveal that the cupping artifacts are reduced almost

completely.

Fig. 5. CT images with and without BHC on different planes and the line profiles that pass the center of

the ball. Column 1, 2, 3 represent the CT images and the line profiles on the XY , Y Z and XZ planes,

respectively. Row 1, 2, 3 represent the CT images without BHC, with BHC and line profiles, respectively.

4.2 Spatial resolution

In this section, the MTF and the FWHM of the

PSF are presented. The averaged ERF is obtained

according to the procedures discussed before. Then

it is differentiated to yield the PSF, seen in Fig. 6.

Due to the enhanced edge caused by the beam hard-

ening effect, the PSF is no longer symmetrical. The

side of the PSF that corresponds to the steel ball

has much severer descent, meanwhile, the extension

of the PSF that corresponds to the ball deviates from

0. After the BHC, the cupping artifacts and the en-
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hanced edge are reduced and the PSF recovers sym-

metry that it shall be. The extension of the PSF that

corresponds to the ball recovers 0. The FWHM of the

PSF is obtained by performing a Gaussian fitting on

the PSF with and without BHC, shown in Fig. 7.

The FWHM of the PSF with BHC is larger than the

PSF without BHC that means we get a better spatial

resolution before BHC. According to the geometry

relationship, we can calculate the physical size of the

pixel in CT image (2.74 µm). Thus the FWHM of

PSF can be represented in physical size. Calculating

the Discrete Fourier Transform of the PSF and nor-

malizing the magnitude at zero frequency to unity,

we get the MTF, shown in Fig. 8. The 10% MTF

value without BHC is larger than the 10% MTF value

with BHC which is consistent with the results of the

FWHM. The results of the FWHM and 10% MTF

values with and without BHC are listed in Table 2.

Fig. 6. The PSF with and without BHC. The

PSF is no longer symmetrical due to the en-

hanced edge caused by the beam hardening

effect. After BHC, the symmetry is recovered.

The X-axis is the pixel number and the Y -axis

is dµ/dx.

Fig. 7. The PSF with and without BHC fitted

by the Gaussian function. Beam hardening

artifacts lead to a narrower PSF, causing the

FWHM to deviate from the real value. The

X-axis is the pixel number and the Y -axis is

dµ/dx.

Fig. 8. The MTF with and without BHC. The

10% MTF value is much higher without BHC.

The X-axis is the space frequency represented

as lp/mm and the Y -axis is the normalized

MTF.

Table 2. Spatial resolution of the CBCT system.

spatial resolution 10%MTF/(lp/mm) FWHM(voxel) FWHM/µm

without BHC 68.52±0.28 4.18±0.01 11.45±0.03

with BHC 63.15±0.33 4.79±0.02 13.12±0.05

Deviations of the results are calculated as discussed

before. Deviations become larger after BHC because

BHC can magnify the projection noise.

5 Discussion and conclusion

Since the CBCT system is a spatial variant system

[11], the ball diameter shouldn’t be too big. Mean-

while, the ball diameter should be big enough com-

pared with the spatial resolution which can be sat-

isfied in our experiment. So the ball chosen in our

experiment is reasonable. Besides, the averaged ERF

is very sensitive to the roundness of the ball, so it’s

very important to guarantee the roundness of the ball.

The relative roundness of the ball is 0.6%, which sat-

isfies the requirement.

An uniform steel ball is no longer uniform in the

reconstructed 3D CT images due to the beam hard-
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ening effect. The larger the distance to the ball center

is, the higher the gray levels of the CT images have.

Beam hardening artifacts on any plane are the same

as the beam hardening artifacts in 2D space. The 3D

CT images are uniform after BHC and the cupping

artifacts on any plane are reduced.

In this paper, we perform BHC in a mono-material

case for the CBCT system and prove that beam hard-

ening artifacts cause an enhanced edge and induce an

asymmetrical PSF. Thus the spatial resolution which

is calculated by the ERF deviates from the real value.

The PSF recovers symmetry and the spatial resolu-

tion is close to the real value when the artifacts

are reduced. So the calculated spatial resolution is

reasonable when the beam hardening artifacts are

reduced or the beam hardening artifacts can be ne-

glected.
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