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Scheme-scale ambiguity in analysis of QCD observable
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Abstract The scheme-scale ambiguity that has plagued perturbative analysis in QCD remains on obstacle

to making precise tests of the theory. Many attempts have been done to resolve the scale ambiguity. In this

regard the BLM, EC, PMS and CORGI approaches are more distinct. We try to employ these methods to

fix the scale ambiguity at NLO, NNLO and even in more higher order approximations. By optimizing the

renormalization scale, there will be a possibility to predicate higher order terms. We present general results

for predicted terms at any order, using different optimization methods. Some observable as specific examples

will be used to indicate the validity of scale fixing to predicate the higher order terms.
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1 Introduction

The problem of the renormalization scale

(scheme) dependence of fixed order perturbative

QCD (PQCD) predictions is always frustrating at-

tempts to obtain reliable results. There are a number

of proposals for controlling or avoiding this difficulty.

One of them is the principle of minimum sensitivity

(PMS) [1]. The PMS approach attempts to resolve

the renormalization scheme dependence problem by

exploiting the fundamental notion of renormalization

group invariance of physical quantities. An other

alternative formalism, is called Complete Renormal-

ization Group Improvement (CORGI) [2]. This for-

malism points out that the renormalization scale de-

pendence of a dimensionless physical QCD observ-

able, depending on a single energy scale Q, can be

avoided provided that all ultraviolet logarithms which

build the physical energy dependence on Q are re-

summed. The method of BLM [3] is trying to reduce

to the standard criterion that only vacuum polar-

ization insertions contribute to the effective coupling

constant. The idea of Effective charge (EC) method

is to re-formulate the results of PQCD calculations as

renormalization-scheme independent prediction, pro-

posed by G. Grunberg [4].

2 The principle of minimal sensitivity

The PMS applies this reality that the physical

quantities are independent of un-physical parameters

of renormalization scheme (RS) and also renormaliza-

tion scale. On this bases for the k-th truncated series

R(k) = a(i)[1+r1a
(i) + · · ·+ri−1(a

(i))k−1] we will have

∂R(k)

∂(RS) |RS=Optimized RS

= 0.

The self consistency principle (SCP) which appears

as
∂R(k)

∂(RS)
|RS

= O(ak+1) will help to obtain the invari-

ant quantity of RS. The QCD β-function obeys

∂a

∂τ
= β̂(k+1) =−a2(1+ca+c2a2 + · · ·+cka

k).

The SCP demands that

∂R(k+1)

∂(τ,c2, · · · , ck)
= O(a(k+2)).

The dependence of coupling constant a to ci as

scheme parameters is govern by

βi =
∂a

∂ci

=−β̂(a)

∫ a

0

xi+2

[β̂(a)]2
.
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Using SCP [1]:

∂rl

∂τ
=

l−1
∑

m=0

(m+1)rmc l−m−1 (1)

∂rl

∂cj

=











−1

j−1

∑l−j

m=0
rmW j

l−j−m, l > j

0, l < j

, (2)

where c0 = r0 = W j
0 = 1 and c1 = c. The W j

n are the

expansion coefficients of the βi =
∂a

∂ci

as:

βi =
1

i+1
ai+1(1+W i

1a+W 2
1 a2 + · · · ) . (3)

Partial derivatives in Eqs. (1), (2) will yield the fol-

lowing invariant quantities

ρ1 = τ −r1 ,ρ2 = r2 +c2−
(

r1 +
c

2

)2

· · · ,

ρk = rk +
ck

k−1
−Ω(k)

where for instance

Ω(2) = (r1+
c

2
)2 , Ω(3) = r1(c2+3r2−2r2

1−
c

2
r1) · · · . (4)

If we rewrite Eq. (4) as rk = Ω(k)−
ck

k−1
−ρk and ig-

nore from the invariants quantities ρk, the remaining

terms can be considered as a predicted term in the

required order.

3 Complete RG improvement

(CORGI)

An observable R(Q) in a standard approach has

a perturbative expansion like:

R(Q) = a+r1a
2 +r2a

3 + · · ·+rnan+1 + · · · . (5)

In the CORGI approach [2]:

R(Q) = a0 +X2a
3
0 +X3a

4
0 + · · ·+Xnan+1

0 + · · · . (6)

In Eq. (5) all terms depend on renormalization scale

(µ), while in Eq. (6), a0 = a0(Q). X2,X3, · · · are

constants and scheme invariants. SCP and solving si-

multaneously the related partial differential equations

will yield

r2(r1, c2) = r1
2 +cr1 +X2−c2

r3(r1, c2, c3) = r1
3 +

5

2
cr1

2 +(3X2−2c2)r1 +

X3−
1

2
c3

...
... (7)

In general the structure is

rn(r1, c2, · · ·, cn) = r̂n(r1, c2, · · ·, cn−1)+Xn−cn/(n−1) .

The coupling constant a0 represents a summation

over NLO contribution of all terms in Eq. (5) which

is an RS independent sum. It is defined as:

a0 ≡ a+r1a
2 +(r2

1 +cr1−c2)a
3 +

(

r3
1 +

5

2
cr2

1 −2c2r1−
1

2
c3

)

a4 + · · · . (8)

A phenomenological application of this approach can

be found in Ref. [5].

a) In the NLO approximation we have:

R(Q) = a0. (9)

Substituting Eq. (8) in Eq. (9) will give us:

R(Q) = a+r1a
2 +(r2

1 +cr1−c2)a
3 + · · · . (10)

Therefore the predicted term is:

r2(pre) = r2
1 +cr1−c2 or r2(pre) = r2

1 +
β1

β0

r1−
β2

β0

.

b) In the NNLO approximation, R(Q) has an ex-

pansion like :

R(Q) = a0 +X2a
3
0 . (11)

Substituting Eq. (8) in Eq. (11) for a0 and using

Eq. (7) to define X2 in terms of r1, r2, · · · and re-

arrange them in terms of a, we will obtain

R(Q) = a+r1a
2 +r2a

3 +

(

r13 +
5

2
cr2

1 −2c2r1−

1

2
c3 +3(r2−r2

1 −cr1 +c2)r1

)

a4.

The predicted term is:

r3(pre) = r13 +
5

2

β1

β0

r2
1 −2

β2

β0

r1−

1

2

β3

β0

+3(r2−r2
1 −

β1

β0

r1 +
β2

β0

)r1.

4 BLM approach

The idea of BLM has been initiated from the im-

portant rule which is allocated to the running cou-

pling constant. The coefficient functions r1, r2, r3, · · ·

in a perturbative series of an observable depend on

the number of flavor (f) which in fact is arising

from fermion loops. Since we have similar fermion

loops which are related to electric charge e and fi-

nally coupling constant then it will be a good idea to

absorb all fermion loops into the coupling constant.

This procedure make the series more convergent and

consequently the renormalization scale will be fixed.

Accordingly we have R = a2 + r1a
2
2 + r2a

3
2 + · · · =
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a2+(A+Bf)a2
2+(C +Df +Ef 2)a3

2 + · · · Considering

the QCD-β function, we will have

a2(µ
′) = a(µ)+β0la

2(µ)+(β2
0 l2 +β1l)a

3(µ)+ · · ·(12)

where l = ln

(

µ′

µ

)

and β0 =
11

4
−

1

6
f , β1 =

51

8
−

19

24
f .

Here we assumed l = c1 +(c2 + c3f)α [3]. After the

required substitution we get

R = a+

[(

11

4
−

1

6
f

)

c1 +A+Bf

]

a2 +

[(

11

4
−

1

6
f

)

(c2+c3f)+

(

11

4
−

1

6
f

)2

c2
1 +

(

51

8
−

19

24
f

)

c1 +C +Df +Ef 2 +

2(A+Bf)

(

11

4
−

1

6
f

)

c1

]

a3 +O(a4) . (13)

The coefficient of a2 is

(

11

4
c1+A

)

+

(

−1

6
c1+B

)

f .

If we choose c1 = 6B then the f -dependence in coef-

ficient of a2 is disappeared. New coefficient is now:

(

11

4
c1+A

)

=
33

2
B+A. (14)

The coefficient of a3 is now:

(

11

4
c2 +

153

4
B+33BA+

1089

4
B2 +C

)

+

(

11

4
c3 +D−

1

6
c2−

19

4
B−2BA

)

f +

(−B2 +E−
1

6
c3)f

2 . (15)

Similar technique will remove the f 2 and f depen-

dence in Eq. (15). The l quantity which indicates the

change of scale is finally given by:

l = 6B+

[(

−99B2 +99E+6D−
57

2
B−12BA

)

+

(−6B2 +6E)f

]

α. (16)

The relation between coupling constant at two dif-

ferent scales will help us to predicate higher order

term in terms of lower ones. The BLM technique

leads us to

R = a+A′a2 +C ′a3 + · · · (17)

where A′ and C ′ are independent of f . If we consider

Eq. (12) as the expansion of a with respect to a2(µ
′)

and substitute it in Eq. (17), we will get:

R = a2 +(A+Bf)a2
2 +(C +Df +Ef 2)a2

3 +
[

−
1

1024
(−2907B+ · · ·)+(−48BC + · · · )f +

(−76E+ · · · )f 2 +(−32EB+ · · · )f 3

]

a4
2. (18)

The coefficient of a4
2 is the predicted term which is

known completely in our calculations.

5 EC approach

In the BLM approach, we could absorb the f -

dependence of coefficient function into the coupling

constant. The extension of this idea is to absorb

whole coefficients into the coupling constant. Is this

possible ? Yes. Consider the perturbative series for

R observable as:

R = a+r1a
2 +r2a

3 + · · · , (19)

By employing CORGI approach, we arrive at:

R = a0 +X2a
3
0 +X3a

4
0 + · · · ,

a0 = a0(Q
2) = a(r1 = 0;c2 = c3 = · · · 0). (20)

Xis are RG-invariant. Changing the RS parameters

to r̃1 = r1− r̄1, c̃2 = c2− c̄2, · · · c̃n = cn− c̄n, will yield:

R = ā0 + r̄1ā
2
0 +X̃2ā

3
0 +X̃3ā

4
0 + · · · , (21)

where ā0 = ā0(Q
2) = a(r1 = r̄1;c2 = c̄2, · · · ). We

can choose the constant c̄2, c̄3, · · · so as X̃2, X̃3, · · · are

equal zero. Therefore R = ā0 + r̄1ā
2
0 and this is the

desired result. The NLO r̄1ā
2
0 term can be absorbed

to ā0 by changing the scale. So we achieve to the

appropriate result in EC approach.

The quantity l which determines the change of

scale is determined in a way that at NLO approx-

imation, r1 is absorbed into the coupling constant.

So using Eq. (12), R = a + r1a
2 + · · · converts to

R = a2 + (−β0l + r1)a
2
2 + · · · . EC approach de-

mands that β0l + r1 = 0 so l =
r1

β0

Consequently

aEC = a2 + r
′

2a
3
2 where r

′

2 = r2 − r12 +
β1

β0

r1 Using

Eq. (12) and definition of l we will arrive at R =

aEC = a+r1a
2+r2a

3+

(

−3r3
1−3

β1

β0

r2
1 +3r1r2

)

a4+· · · .

The last term is the predicted, rPre
3 , term.
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6 Examples

I) The R-ratio [6] of
σ(e+e− → hadrons)

σ(e+e− → leptons)
:

Re−e+ = 3
∑

f

Q2
f

[

1+
αR(Q)

π

+ · · ·

]

where

αR(Q)

π

= a(s)+1.4092a(s)2−12.7673a(s)3−

79.9795a(s)4+ · · · .

II)

Rτ = 3SEW(|Vud |
2
+ |Vus |

2
)×

(1+δ′
EW +δ′

Pert +δ′
Non−Pert),

where [6]

δ′
Pert = a(s)+5.2023a(s)2+26.366a(s)3

127.08a(s)4+ · · · Where a(s) =
αs(mτ)

2

π

.

The result for predicted terms, using different ap-

proaches are tabulated in Table 1.

Table 1. Predicted term in different approaches.

r
ex
3 (Rratio) r

pre
3 (Rratio) r

ex
3 (Rτ) r

pre
3 (Rτ)

PMS −79.9795 −54.7861 127.08 120.5124

CORGI −79.9795 −63.6515 127.08 115.606

BLM −79.9795 −63.8952 127.08 120.73

EC −79.9795 −69.8820 127.08 113.2646
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