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Partial wave analysis of ψ′
→γχc0 →γpK−Λ

used for searching for baryon resonance *
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Abstract Abundant ψ′ events have been collected at the Beijing Electron Positron Collider-/ (BEPC/)

that could undoubtedly provide us with a great opportunity to study the more attractive charmonium decays.

As has been noticed before, in the process of J/ψ decaying to the baryonic final states, pK−Λ, the evident

Λ∗ and N∗ bands have been observed. Similarly, by using the product of χcJ from ψ′ radiative decay, we may

confirm this or find some extra new resonances. χc0’s data samples will be more than χc1,2, taking into account

the larger branching ratio of ψ′
→ γχc0. Here, we provide explicit partial wave analysis formulae for the very

interesting channel ψ′
→γχc0 →γpK−Λ.
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1 Introduction

As is known, the process of ψ′ → γχcJ contains

abundant interesting physics. Firstly, the product

of χcJ in ψ′ radiative decays may pronde useful in-

formation about two-gluon hadronization dynamics

and glueball decays. Secondly, the radiative decays

of ψ′ → γχcJ are expected to be dominated by elec-

tric dipole (E1) transitions, with higher multipoles

suppressed by powers of photon energy divided by

quark mass [1–3], so searching for contributions of

higher multipoles is promising. On the other hand,

the possibility of anomalous magnetic moments of

heavy quarks that are larger than those for light ones

may exist [4]. Except for these things, utilizing the

rich final state interaction of χcJ’s baryonic decay in

searching for new baryon resonances is another mean-

ingful topic. In the experiment at BES-0, about

10× 109 J/ψ and 3× 109 ψ′ events can be collected

per year’s running according to the designed lumi-

nosity of BEPC-/ in Beijing3) [5]. These large data

samples will provide great opportunities to perform

partial wave analysis to study this topic.

Like the J/ψ case [6], one of the most interesting

channels is χcJ → pK−Λ. In reality, on the experi-

mental side, ψ′ → γχc0 has a larger branching ratio

than the other χcs [7], which can provide us with a

relatively larger χc0 data sample at BES0. Further-

more, in the real data analysis, one can isolate the

χc0 from χc1 and χc2 from the mass window cuts with

little dilution.

Experimentally, in order to get more information

about the resonance properties (such as JPC quantum

numbers, mass, width, production and decay rates,

etc.), partial wave analysis (PWA) is necessary. PWA

is an effective method for analyzing the experimental

data of hadron spectra. There are two methods: one

is based on the covariant tensor (also named Rarita

Schwinger) formalism [8], and the other is based on

the original helicity formalism [9]. The latter covari-

ant helicity format was developed by Chung [10, 11].

Ref. [12] shows the connection between the covariant
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tensor formalism and the helicity one. In this short

paper, we will pay more attention to the covariant

tensor format, but append the helicity one for the spe-

cific process, ψ′ → γχc0 → γΛ(1520)Λ with Λ(1520)

decaying to pK−, Λ to pπ+.

The paper is organized as follows. In Sec. 2, the

general principle for constructing covariant tensor

amplitude is introduced. In Sec. 3, we present the

covariant tensor amplitudes for ψ′ →γχc0 →γpK−Λ.

In Sec. 4, the helicity formula for χc0 →Λ(1520)Λ→
(pK−)(pπ+) is provided. Finally we present our con-

clusion.

2 General formalism for constructing

covariant tensor amplitude

In this part, the general formulae which will be

used in the following have been mentioned before in

Ref. [13–15], including three parts: ψ′ radiative decay

to a meson, a meson decaying to two baryons and a

baryon decaying to a daughter baryon and a meson.

Because it can be transplanted into the case of J/ψ

decay, hereafter in this paper we also refer to them

as ψ.

2.1 ψ radiative decay

Denoting the ψ polarization four-vector by

ψµ(m1) and the polarization vector of the photon by

eν(m2), the general form for the decay amplitude is

A = ψµ(m1)e
∗

ν(m2)A
µν =

ψµ(m1)e
∗

ν(m2)
∑

i

ΛiU
µν
i , (1)

where Uµν
i is the i-th partial wave amplitude with

coupling strength determined by a complex param-

eter Λi. Because of the massless properties of the

photon, there are two additional conditions: (1) the

usual orthogonality condition eνq
ν = 0, where q is the

photon momentum; (2) the gauge invariance condi-

tion (assuming the Coulomb gauge in ψ rest system)

eνp
ν
ψ= 0, where pψ is the momentum of vector meson

ψ. Then we yield the sum of polarization [16]

∑

m

e∗µ(m)eν(m) = −gµν +
qµKν +Kµqν

q ·K −

K ·K
(q ·K)2

qµqν ≡−g(⊥⊥)
µν (2)

with K = pψ−q and eνK
ν = 0. To compute the differ-

ential cross section, we need an expression for |A|2,
the square modulus of the decay amplitude, which

gives the decay probability of a certain configuration

and should be independent of any particular frame.

For ψ production from e+e− annihilation, the

electrons are highly relativistic, with the result that

Jz = ±1, which is the transverse polarization. If we

take the beam direction to be the z-axis, this limits

m has only two values, i.e. components along x and

y. Thus the radiative cross section is:

dσ

dΦn

=
1

2

2∑

m1=1

2∑

m2=1

ψµ(m1)e
∗

ν(m2)A
µν ×

ψ∗

µ′(m1)eν′(m2)A
∗µ′ν′

=

−1

2

2∑

m1=1

ψµ(m1)ψ
∗

µ′(m1)g
(⊥⊥)

νν′ AµνA∗µ′ν′

=

−1

2

2∑

µ=1

Aµνg(⊥⊥)

νν′ A∗µν′

=

−1

2

∑

i,j

ΛiΛ
∗

j

2∑

µ=1

Uµν
i g(⊥⊥)

νν′ U∗µν′

j ≡

∑

i,j

Pij ·Fij (3)

with definition

Pij = P ∗

ji =ΛiΛ
∗

j , (4)

Fij = F ∗

ji =−1

2

2∑

µ=1

Uµν
i g(⊥⊥)

νν′ U∗µν′

j . (5)

Note the relation

2∑

m=1

ψµ(m)ψ∗

µ′(m) = δµµ′(δµ1 +δµ2), (6)

has been used.

The partial wave amplitude U in the covariant

tensor formalism can be constructed by using pure

orbital angular momentum covariant tensor t̃(L)
µ1µ2···µL

and covariant spin wave functions φµ1µ2···µS
together

with the metric tensor gµν , the totally antisymmet-

ric Levi Civita tensor εµνλσ and the four-momenta

of participating particles. For a process a → bc, if

there exists a relative orbital angular momentum Lbc

between the particle b and c, then the pure orbital

angular momentum Lbc state can be represented by

the covariant tensor t̃(L)
µ1µ2···µL

, which is built from the

relative momentum. Here, we list the amplitude for

pure S-, P -, D- and F - wave orbital angular momen-
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tum explicitly [10, 11, 13]:

t̃ (0) = 1, (7)

t̃ (1)
µ = g̃µν(pa)r

νB1(Qabc)≡ r̃µB1(Qabc), (8)

t̃ (2)
µν =

[
r̃µr̃ν −

1

3
(r̃ · r̃)(g̃µν(pa))

]
B2(Qabc), (9)

t̃ (3)
µνλ =

[
r̃µr̃ν r̃λ−

1

5
(r̃ · r̃)(g̃µν(pa)r̃λ+

g̃νλ(pa)r̃µ + g̃λµ(pa)r̃ν)

]
B3(Qabc), (10)

where r= pb−pc is the relative momentum of the two

decay products in the parent particle rest frame. In

the above equations,

g̃µν(pa) =−gµν +
paµpaν

p2
a

(11)

is the polarization sum relation for vector meson, and

Q2
abc =

(sa +sb−sc)2
4sa

−sb (12)

with sa = E2
a − p2

a. Bl(Qabc) is the Blatt Weisskopf

barrier factor [13, 17],

B1(Qabc) =

√
2

Q2
abc

+Q2
0 , (13)

B2(Qabc) =

√
13

Q4
abc

+3Q2
abcQ

2
0 +9Q4

0 , (14)

B3(Qabc) =

√
277

Q6
abc

+6Q4
abcQ

2
0 +45Q2

abcQ
4
0 +225Q6

0 , (15)

with Q0 = 0.197321/R(GeV/c) as a hadron scale pa-

rameter, where R is the radius of the centrifugal bar-

rier in fm.

If a is an intermediate resonance decaying into b,

c, one needs to introduce into the amplitude a Breit

Wigner propagator [13, 18]

f (a)

(bc) =
1

m2
a−sbc− imaΓa

. (16)

In the equation, sbc = (pb+pc)
2 is the invariant mass-

squared of b and c. ma, Γa are the resonance mass

and width, respectively.

Additionally, some expressions depend also on the

total momentum of the ij pair, p(ij) = pi +pj . When

one wants to combine two angular momenta jb and jc
into a total angular momentum ja, if ja+jb+jc is an

odd number, then the combination εµνλσp
µ
a with pa

the momentum of the parent particle is needed in or-

der to satisfy the requirement of parity conservation

[10, 11], otherwise it is not needed.

2.2 The case of a meson decaying to two

baryons

For a given hadronic decay process A→BC, in the

L-S scheme at hadronic level, the initial state is de-

scribed by its four-momentum pµ and its spin state

SA, and the final state is described by the relative

orbital angular momentum state of BC system and

their spin state (SB,SC). The spin states (SA,SB,SC)

can be well represented by the relativistic Rarita

Schwinger spin wave functions for particles of arbi-

trary half-integer spin [8]. As is well known, spin-
1

2
wave function is the standard Dirac spinor u(p,s) and

v(p,s); spin-1 wave function is the standard spin-1 po-

larization four-vector εµ(p,s) for a particle with mo-

mentum p and spin projection s. For arbitrary spin,

there have been the explicit expressions which will be

introduced and used in the following. For the case of

A as a meson, B as N∗ with spin n+
1

2
and C as N

with spin
1

2
, the total spin of BC (SBC) can be either

n or n+1. The two SBC states can be represented as

[14]

ψ(n)
µ1µ2···µn

= ūµ1µ2···µn
(pB,sB)γ5v(pC, sC), (17)

Ψ (n+1)
µ1µ2···µn+1

= ūµ1µ2···µn

(
γµn+1

− rµn+1

mA +mB +mC

)
×

v(pC,sC)+(µ1 ↔µn+1)+ · · ·+

(µn ↔µn+1). (18)

2.3 The case of one baryon decaying to a

daughter baryon and a meson

For the case of A as N∗ with spin n+
1

2
, B as N

with spin
1

2
and C as a meson, one needs to couple

−SA and SB first to get SAB =−SA+SB states, which

are [14]

φ(n)
µ1µ2···µn

= ū(pB,sB)uµ1µ2···µn
(pA,sA), (19)

Φn+1
µ1µ2···µn

= ū(pB,sB)γ5γ̃µn+1
uµ1µ2···µn

(pA,sA)+

(µ1 ↔µn+1)+ · · ·+(µn ↔µn+1). (20)

For Sec 2.2 and 2.3, the principle of construct-

ing the orbital angular part is the same as Sec. 2.1.

Up to now, we have introduced all principles for con-
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structing the covariant tensor amplitude, including

the orbital angular part as well as the spin part. In

the concrete case, the P parity conservation may be

applied, which could be expressed as

ηA = ηBηC(−1)L, (21)

where ηA, ηB and ηC are the intrinsic parities of par-

ticles A, B, and C, respectively. From this relation,

L can be only even or odd for each case, which guar-

antees a pure L final state.

In the following, we will present the specific pro-

cess ψ′ →γχc0 →γpK−Λ in the framework of general

covariant tensor amplitude.

3 Analysis for ψ′
→γχc0 →γpK−Λ

Hereafter, we denote p, K−, and Λ by the num-

bers 1, 2 and 3 for simplicity. Firstly, for ψ′ → γχc0,

from the helicity formalism, it is easy to show that

there is only one independent amplitude for ψ′ radia-

tive decay to a spin 0 meson. Hence, the amplitude

is

Uµν
γχc0

= gµνf (χc0). (22)

where f (χc0) means χc0 has the subsequent decay. For

sequential χc0 decay, there may exist the following

modes: χc0 →ΛxΛ,Λx → pK−, where Λx can be

Λ(1520)
3

2

−

, Λ(1600)
1

2

+

, Λ(1670)
1

2

−

, Λ(1690)
3

2

−

,

Λ(1800)
1

2

−

, Λ(1810)
1

2

+

, Λ(1820)
5

2

+

, Λ(1830)
5

2

−

,

Λ(1890)
3

2

+

, Λ(2100)
7

2

−

, Λ(2110)
5

2

+

;

χc0 → Np,N → ΛK−, where N is the anti-partner of

hyperon N, and N can be

N(1650)
1

2

−

, N(1675)
5

2

−

, N(1700)
3

2

−

, N(1710)
1

2

+

or

N(1720)
3

2

+

.

Another possibility, that pΛ may be generated from

an intermediate resonance Kx is also taken into ac-

count. We would give an explicit example for how to

write the amplitude for a concrete process. For Λx

being Λ(1520)
3

2

−

, the total spin of Λ(1520) and Λ
1

2

−

can be 1 or 2, corresponding to the P - wave and D-

wave, respectively, because of the spin-0 property of

χc0. The parity relation (21) makes P - wave impos-

sible. Considering that this channel is recognized as

a meson decaying to two fermions, according to the

above description, now one can write the covariant

amplitude as

Φ(2)(
Λ(1520)3

)
µν
t̃ (2)µν(

Λ(1520)3

) , (23)

where Φ and t’s meanings are implied in Eq. (9) and

(20). And then considering Λ(1520) → pK−, the to-

tal spin of particle 1 and 2 can only be
1

2
, requiring

D- wave following Eq. (21) and angular momentum

conservation. Thus the covariant amplitude can be

expressed as

Φ
(2)

(12)µν t̃
(2)µν

(12) . (24)

Here, we list all the amplitudes for the whole de-

cay chain ψ′ → γχc0,χc0 → ΛxΛ,Λx → pK− up to

spin-
7

2
for Λx,

Λx

(
1

2

+
)

: Uµν = gµνΨ (1)

(Λx3)λt̃
(1)λ

(Λx3)Φ
(1)

(12)σ t̃
(1)σ

(12) f
(Λx)

(12) ,

(25)

Λx

(
1

2

−
)

: Uµν = gµνψ(0)

(Λx3)φ
(0)

(12)f
(Λx)

(12) , (26)

Λx

(
3

2

+
)

: Uµν = gµνψ(1)

(Λx3)λ t̃
(1)λ

(Λx3)φ
(1)

(12)σ t̃
(1)σ

(12)f
(Λx)

(12) ,

(27)

Λx

(
3

2

−
)

: Uµν = gµνΨ (2)

(Λx3)λδ t̃
(2)λδ

(Λx3)Φ
(2)

(12)ρσ t̃
(2)ρσ

(12) f (Λx)

(12) ,

(28)

Λx

(
5

2

+
)

: Uµν = gµνΨ (3)

(Λx3)λδβ t̃
(3)λδβ

(Λx3) Φ
(3)

(12)ρση ×

t̃ (3)ρση

(12) f (Λx)

(12) , (29)

Λx

(
5

2

−
)

: Uµν = gµνψ(2)

(Λx3)λδ t̃
(2)λδ

(Λx3)φ
(2)

(12)ρσ t̃
(2)ρσ

(12) f (Λx)

(12) ,

(30)

Λx

(
7

2

+
)

: Uµν = gµνψ(3)

(Λx3)λδβ t̃
(3)λδβ

(Λx3) φ
(3)

(12)ρση ×

t̃ (3)ρση

(12) f (Λx)

(12) , (31)

Λx

(
7

2

−
)

: Uµν = gµνΨ (4)

(Λx3)λδβξ t̃
(4)λδβξ

(Λx3) Φ(4)

(12)ρσηζ ×

t̃ (4)ρσηζ

(12) f (Λx)

(12) . (32)

Note that t̃ (0) = 1 has been considered here and the

f (Λx)s differ from case to case. And ψ(0),φ0) is ex-
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pressed as [14]

ψ(0)

(BC) = ū(pB,sB)γ5v(pC,sC), (33)

φ(0)

(AB) = ū(pB,sB)u(pA,sA), (34)

which can be deduced from Eq. (17) and Eq. (19).

Correspondingly, for channel χc0 → Nxp,Nx →
K−Λ, in the same way, we can write the amplitudes

up to spin-
7

2
for Nx without difficulties, even though

the highest spin for Nx decaying into K−Λ only is
5

2
currently [7].

Nx

(
1

2

+
)

: Uµν = gµνψ(0)

(Nx1)
φ(0)

(Nx1)
f (Nx)

(23) , (35)

Nx

(
1

2

−
)

: Uµν = gµνΨ (1)

(Nx1)λ
t̃ (1)λ

(Nx1)
Φ(1)

(23)σ t̃
(1)σ

(23) f
(Nx)

(23) ,

(36)

Nx

(
3

2

+
)

: Uµν = gµνΨ (2)

(Nx1)λδ
t̃ (2)λδ

(Nx1)
Φ(2)

(23)ρσ ×

t̃ (2)ρσ

(23) f (Nx)

(23) , (37)

Nx

(
3

2

−
)

: Uµν = gµνψ(1)

(Nx1)λ
t̃ (1)λ

(Nx1)
φ(1)

(23)σ t̃
(1)σ

(23) f
(Nx)

(23) ,

(38)

Nx

(
5

2

+
)

: Uµν = gµνψ(2)

(Nx1)λδ
t̃ (2)λδ

(Nx1)
φ(2)

(23)ρσ ×

t̃ (2)ρσ

(23) f (Nx)

(23) , (39)

Nx

(
5

2

−
)

: Uµν = gµνΨ (3)

(Nx1)λδβ
t̃ (3)λδβ

(Nx1)
Φ(3)

(23)ρση ×

t̃ (3)ρση

(23) f (Nx)

(23) , (40)

Nx

(
7

2

+
)

: Uµν = gµνΨ
(4)

(Nx1)λδβξ
t̃
(4)λδβξ

(Nx1)
Φ

(4)

(23)ρσηζ ×

t̃ (4)ρσηζ

(23) f (Nx)

(23) , (41)

Nx

(
7

2

−
)

: Uµν = gµνψ(3)

(Nx1)λδβ
t̃ (3)λδβ

(Nx1)
φ(3)

(23)ρση ×

t̃ (3)ρση

(23) f (Nx)

(23) . (42)

For channel χc0 → K+
x K−,K+

x → pΛ, the ampli-

tudes are listed below. Note that JP = 0+, 1−, 2+,

3−, 4+ · · · are forbidden by the parity relation

Eq. (21). In the following, the partial wave amplitude

is denoted by Uµν

(LS), in which L,S mean the orbital

and total spin angular momentum between p and Λ.

We write the amplitudes for Kx up to spin-4,

Kx
+(0−) : Uµν = gµνψ(0)

(Kx2)f
(Kx)

(13) , (43)

Kx
+(1+) : Uµν

(10) = gµνψ(0)

(Kx2)T̃
(1)σ

(Kx2)×

φ(13)σελt̃
(1)λ

(13)f
(Kx)

(13) , (44)

Uµν

(11) = gµνερσηζpKxρεσT̃
(1)η

(Kx2)×

Ψ (1)

(Kx2)η t̃
(1)ζ

(13)φ(13)ζf
(Kx)

(13) , (45)

where ερσηζ is the total asymmetric 4-rank tensor, and

ελ and εσ denote the wave function of Kx which is the

familiar polarization 4-vector of vector meson. In the

following, ϕs imply the wave function of higher spin

Kx, which are higher rank tensors. There has been a

general expression for a particle of spin J , which is a

rank-J tensor [10]

ϕα1α2···αJ (m)=
∑

m1m2···

〈1m11m2|2n1〉〈2n11m3|3n2〉 · · ·

〈J−1nJ−21mJ |Jm〉ϕα1(m1)×

ϕα2(m2) · · ·ϕαJ (mJ) (46)

with mi =±1,0, (i= 1,2, · · ·J) and

ϕα(1,−1) =∓ 1√
2
(0;1,±i,0), ϕα(0) = (0;0,0,1).

(47)

It is interesting to note a useful relationship:

ϕ(−m) = (−)mϕ∗(m). (48)

Next we illustrate these formulas with some exam-

ples. For J = 1, one finds that it reduces to identities

for ϕ(1) and ϕ(0). For J = 2, one has [10]

ϕαβ(+2) = ϕα(1)ϕβ(1), (49)

ϕαβ(+1) =
1√
2
[ϕα(1)ϕβ(0)+ϕα(0)ϕβ(1)], (50)

ϕαβ(0) =
1√
6

[
ϕα(1)ϕβ(−1)+ϕα(−1)ϕβ(1)+

√
2

3
ϕα(0)ϕβ(0)

]
. (51)

Thus, the amplitudes for spin-2 and spin-3 of Kx

are written as
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Kx
+(2−) : Uµν

(20) = gµνT̃ (2)ηζ

(Kx2)ϕ
(2)ηζ t̃ (2)ρσ

(13) ψ(0)ϕρσf
(Kx)

(13) = gµνP (2)
ρσηζψ

(0)T̃ (2)ηζ

(Kx2) t̃
(2)ρσ

(13) f (Kx)

(13) , (52)

Uµν

(21) = gµνερσηζpKxρT̃
(2)βλ

(Kx2) ϕβλt̃
(2)ι

(13)σϕιηΨ
(1)
ζ f (Kx)

(13) = gµνP (2)
βλιηε

ρσηζpKxρT̃
(2)βλ

(Kx2) t̃
(2)ι

(13)σΨ
(1)
ζ f (Kx)

(13) , (53)

Kx
+(3+) : Uµν

(30) = gµνT̃ (3)λδβ

(Kx2) ϕλδβψ
(0) t̃ (3)ρση

(13) ϕρσηf
(Kx)

(13) = gµνP (3)
λδβρσηT̃

(3)λδβ

(Kx2) ψ(0)t̃ (3)ρση

(13) f (Kx)

(13) , (54)

Uµν

(31) = gµνT̃ (3)λδβ

(Kx2) ϕλδβε
ρσηζpKxρt̃

(3)κξ

(13)σΨ
(1)
η ϕ(3)

ζκξf
(Kx)

(13) = gµνP (3)
λδβζκξT̃

(3)λδβ

(Kx2) ερσηζpKxρt̃
(3)κξ

(13)σΨ
(1)
η f (Kx)

(13) ,

(55)

where the product of two ϕs is in reality its corre-

sponding spin projection operator P (S) [13],

P (2)
ρσηζ(pKx

) =
∑

m

ϕρσ(pKx
,m)ϕ∗

ηζ(pKx,m) =

1

2
(g̃ρη g̃σζ + g̃ρζ g̃ση)−

1

3
g̃ρσg̃ηζ , (56)

P (3)
λδβζκξ(pKx

) =
∑

m

ϕλδβ(pKx
,m)ϕ∗ζκξ(pKx

,m) =

1

6
(g̃λζ g̃δκg̃βξ + g̃λζ g̃δξg̃βκ + g̃λκg̃δζ g̃βξ +

g̃λζ g̃δξ g̃βκ + g̃δξ g̃βζ g̃λξ + g̃δκg̃λξ g̃βζ)−
1

15
(g̃λδ g̃ζκg̃βξ + g̃λδg̃κξg̃βζ +

g̃λδ g̃ζξ g̃βκ + g̃λβ g̃ζξ g̃δκ + g̃λβ g̃ζκg̃δξ +

g̃λβ g̃κξ g̃δζ + g̃δβ g̃κξ g̃λκ + g̃δβg̃ζκg̃λξ +

g̃δβ g̃κξ g̃λκ). (57)

So far, we have given the covariant tensor amplitudes

for the process ψ′ → γχc0 → γpK−Λ, including the

possible immediate resonance Λx to spin-
7

2
, Nx to

spin-
7

2
as well as Kx up to spin-3 being taken into

account.

4 Helicity formalism

For completeness, we will give the helicity for-

mat in comparison with the tensor formula in this

part. Helicity formalism has an explicit advantage

that the angular dependence can be easily seen. In

this section, we will give the amplitude for the de-

cay chain χc0 →Λ(1520)Λ,Λ(1520)→ pK−,Λ→ pπ+.

Firstly, we want to introduce the general helicity for-

mula expression. Consider a state with spin(parity)

= J(ηJ ) decaying into two states with S(ηs) and

σ(ησ). The decay amplitudes are given, in the rest

frame of J [9]1),

MJ→sσ
λν ∝

√
2J+1

4π
DJ∗

Mδ(φ,θ,0)HJ
λν , (58)

where λ and ν are the helicities of the two final state

particles s and σ with δ=λ−ν. The symbol M stands

for the z component of the spin J in a coordinate sys-

tem fixed by the production process. The helicities λ

and ν are the rotational invariants by definition. The

direction of the break-up momentum of the decaying

particle s is given by the angles θ and φ in the J rest

frame. Let x̂, ŷ and ẑ be the coordinate system fixed

in the J rest frame. It is important to recognize,

for the applications to sequential decays, the exact

nature of the body-fixed (helicity) coordinate system

implied by the arguments of the D function given

above. Let x̂h, ŷh and ẑh be the helicity coordinate

system fixed by the s decay. Then by definition, ẑh

describes the direction of s in the J rest frame (also

termed the helicity axis), and the y axis is given by

ŷh = ẑ× ẑh and x̂h = ŷh× ẑh. Parity conservation in

the decay leads to the relationship

HJ
λν = ηJηsησ(−)J−s−σHJ

−λ−ν . (59)

Let us consider a full process A→B+C, where B

and C are also the unstable particles decaying to

B1 + B2 and C1 + C2, respectively. The decay am-

plitude is simply2)

M(λB1
,λB2

,λC1
,λC2

) =
∑

λB,λC

MA→B+C
λB,λC

·MB→B1+B2

λB1
,λB2

·MC→C1+C2

λC1
,λC2

, (60)

1)An Experimenter’s Guide to the Helicity Formalism, CALT-68-1148 (1984).

2)T’Jampens S, Etude de la violation de la symétrie CP dans les canaux charmonium-K∗(892) par une analyse angulaire

complète dépendante du temps (expérience BaBar), PhD Thesis, Univ. Paris-Sud 11, France, http://tel.archives-ouvertes.fr/tel-

00002447/fr/.
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with

MA→B+C
λB,λC

∝
√

2JA+1

4π
DJA∗

MA,λB−λC
(φA,θA,0)HA

λB,λC
, (61a)

MB→B1+B2

λB1
,λB2

∝
√

2JB +1

4π
DJB∗

λB,λB1
−λB2

(φB,θB,0)HB
λB1

,λB2
, (61b)

MC→C1+C2

λC1
,λC2

∝
√

2JC +1

4π
DJC∗

−λC,λC1
−λC2

(φC,θC,0)HC
λC1

,λC2
. (61c)

Please note in (61c) that the first subscript of

DJC∗ is −λC and NOT λC, although it also gives the

correct result, because the quantization axis is along

the direction of the momentum of particle B, so that

the spin-quantization projection MC in the particle C

rest frame verifies MC =−λC.

The unpolarized angular distribution is then given

by averaging the initial spins and summing over the

final spins:

d3Γ

NdΩAdΩBdΩC

∝ 1

2SA +1

∑

λB1
,λC1

,λB2
,λC2

×

|M(λB1
,λB2

,λC1
,λC2

)|2, (62)

where N is the normalization factor. Following

Eq. (59), one has

HΛ
1
2
0
=HΛ

−
1
2
0

and

HΛ(1520)
1
2
0

=−HΛ(1520)

−
1
2
0

.

Applying the above amplitude expressions, after a

lengthy evaluation, one can get

d3Γ

NdΩχc0dΩΛ(1520)dΩΛ

∝
[3

2
cos2 θΛ(1520)−

3

2
cosθΛ(1520) +

9

2
cos2 θΛ(1520) sinθΛ(1520) cosφΛ(1520) +

√
3

2
cos2 θΛ(1520) cos2φΛ(1520) −

√
3

4
cosθΛ(1520)×

cos2φΛ(1520)−
3
√

3

4
cos2φΛ(1520) +1

]
×

∣∣∣HΛ
1
2
0

∣∣∣
2∣∣∣HΛ(1520)

1
2
0

∣∣∣
2

, (63)

where the subscript Λ(1520) denotes the angle de-

fined in the rest frame of Λ(1520). After integrating

φΛ(1520)s from [0,2π], Eq. (63) becomes

d3Γ

N ′dΩχc0dΩΛ(1520)dΩΛ

∝ 3

2
cos2 θΛ(1520) −

3

2
cosθΛ(1520) +1, (64)

where

N ′ =N
∣∣∣HΛ

1
2
0

∣∣∣
2∣∣∣HΛ(1520)

1
2
0

∣∣∣
2

is the redefined normalization factor. For simplicity,

denoting
d3Γ

NdΩχc0dΩΛ(1520)dΩΛ

by
dΓ

N ′dΩ
.

Fig. 1 shows the angular distribution.

Fig. 1. The illustrative plot for the angular

distribution of χc0 → Λ(1520)Λ, Λ → pπ+,

Λ(1520)→pK− in helicity format.

After a back-of-the-envelope computation by us-

ing Eqs. (58)–(62), one can find the differential decay

width for other Λ∗ and N∗ in helicity format, where

Λ∗ and N∗ denote the excited states of baryons Λ

and N.

5 Conclusion

To study the abundant hadron spectra contained

in the pK−Λ final states with a large data sample

at BES0, in this short paper, firstly, the relevant

general tensor formalism is introduced, and then the

covariant tensor amplitudes for ψ′ → γχc0 → γpK−Λ

are given, including the possible resonance Λx to spin-
7

2
, Nx to spin-

7

2
as well as Kx up to spin-3. At last, for
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completeness, the helicity format of differential decay

width for χc0 → Λ(1520)Λ,Λ → pπ+,Λ(1520) → pK−

is provided as an example, and a figure is attached. It

also can be easily adapted to the case of other higher

excited states of baryon Λ or N. We expect that, in

future, significant physical results can be achieved

through the channel ψ′ → γχc0 → γpK−Λ that we

have proposed here.
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