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Effects of the density dependence of the symmetry

energy on neutron stars *
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Abstract In this paper, we include the density dependence behavior of the symmetry energy in the improved

quark mass density dependent (IQMDD) model. Under the mean field approximation, this model is applied

to investigate neutron star matter and neutron stars successfully. Effects of the density dependence of the

symmetry energy on neutron stars are described.
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1 Introduction

In recent years, the development of the radioactive

ion beam (RIB) has provided scientists with opportu-

nities for studying neutron-rich matter and the isos-

pin degree of freedom [1–5]. Thus, researches on sym-

metry energy have been attracting more and more

interest, which is important for the understanding of

the radioactive nuclei properties in nuclear physics

and many interesting issues in astrophysics [3, 4].

The density dependence of symmetry energy, es-

pecially its high density behavior, is poorly under-

stood. Different results given by microscopic and/or

phenomenological models can generally be classified

into two kinds: one describes an increasing symme-

try energy (Esym) of baryon density (ρB) [1, 2], while

the other predicts Esym to decrease when ρB > 2ρ0,

where ρ0 is the saturation density [4]. Using the fol-

lowing two forms, Ea
sym =Esym(ρ0)u (u≡ ρB/ρ0) and

Eb
sym = Esym(ρ0)u(3−u)/2, Li in Ref. [5] indicates

that the neutron star becomes a pure neutron matter

with the Eb
sym when ρB > 3ρ0, while it becomes more

proton-rich as the density increases with the Ea
sym.

Our present work discusses neutron stars which are

known to have extremely large inner densities. And it

is necessary to consider the high-density dependence

of Esym within the corresponding model, since it con-

tributes to the equation of state (EOS).

To study nuclear matter, quantum hadrodynam-

ics (QHD) is a pioneering framework describing the

nuclear system as a relativistic many-body system of

baryons and mesons. Since the quantum chromody-

namics (QCD) of quarks and gluons is the fundamen-

tal theory of the strong interaction, it is natural to

extend QHD to quark level. The first correspond-

ing model, namely, the quark-meson coupling (QMC)

model, is suggested by Guichon [6]. This describes

the nuclear matter as a collection of nonoverlapping

MIT bags, scalar σ mesons and vector ω mesons. Al-

though QMC is successful in describing the physical

properties of the nuclear system, two shortcomings

arise from the MIT bag boundary. The first one is

that QMC is a permanent quark confinement model,

because the MIT boundary condition cannot be de-

stroyed by temperature and density. The second one

is its failure to do nuclear many-body calculations be-

yond the relativistic mean field approximation (MFA)

by quantum field theory.

To overcome these two shortcomings, Wu et al.

suggest an improved QMDD model [7–10]. Instead
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of the MIT bag, they construct a Friedberg-Lee soli-

ton bag after introducing the nonlinear interaction

of σ mesons and qqσ coupling. The interactions be-

tween quarks and mesons are then extended to the

whole system. Since this model gives up the MIT

bag constraint, it can well describe the quark decon-

finement phase transition and do nuclear many-body

calculations beyond the MFA.

In Ref. [8], the isospin vector ρ meson is included

within IQMDD to discuss asymmetric nuclear mat-

ter, in particular neutron star matter, and reasonable

results are given. However, the paper only employs

Esym(ρ0) to fit the coupling constant between quark

and ρ meson, neglecting its behavior at other den-

sities. In this work, we consider the density depen-

dence of Esym and discuss how it affects the neutron

star properties.

This paper is organized as follows. In Section

2, we try to study the density dependence of nu-

clear symmetry energy. Then in the third section, the

main formulae of the IQMDD model under MFA are

given. Numerical results will be presented next. In

the last section, a summary and some discussions are

included.

2 Density dependence of the symme-

try energy

The binding energy of asymmetric nuclear matter

can be formally written as

E(ρB,α) =E(ρB,α= 0)+Esym(ρB)α2, (1)

where ρB = ρn + ρp is the baryon density and α =

(ρn−ρp)/(ρn+ρp) denotes the isospin asymmetric pa-

rameter. Evidently the symmetry energy can be given

by

Esym(ρB) =
1

2

∂2
E(ρB,α)

∂α2

∣

∣

∣

∣

∣

α=0

. (2)

In the relativistic mean field model, the symmetry

energy can be derived from Eq. (2) [11–14] as

Esym(ρB) =
kF

2

6EF
∗
+

gρ

2

12π2

kF
3

mρ
2
, (3)

where EF
∗ =

√

kF
2 +M∗2

N , ρB = 2kF
3/(3π

2). M∗

N

refers to the nucleon effective mass and kF is the fermi

momentum.

At high density, the symmetry energy is domi-

nated by the second term [11, 15], namely, kF →∞,

Esym(ρB) → gρ

2kF
3/(12π

2mρ

2). So when it comes to

high density, such as the inner density of neutron

stars, we will get too much symmetry energy [15].

As pointed out by Chen et al. in Ref. [1], the density

dependence of Esym mainly depends on that of the

couplings between the isovector mesons and nucleon

in the relativistic mean field (RMF) model. Using the

same approach as Ref. [11], we try to modify the sym-

metry energy by introducing the density dependent

coupling between quark and ρ meson in our calcula-

tions. As usual, we employ the density dependence

form of nucleon-ρ coupling in Ref. [16] here, which

reads

Γρ(ρB) =Γρ(ρ0)exp

[

−aρ

(

ρB

ρ0

−1

)]

, (4)

where aρ and Γρ(ρ0) are to be determined by experi-

mental data. As shown in the Numerical results sec-

tion, the suprasaturation density dependence of Esym

becomes much softer.

3 Density dependent IQMDD

In this section, we include the density dependence

of Esym in the frame of the IQMDD model and then

studies on neutron stars are carried out.

3.1 Main formulas of IQMDD

For details of IQMDD, one may turn to references

[7–10]. Here we just outline its main formulae, in-

cluding the density dependent ρ-nucleon (quark) cou-

pling. The Lagrangian density within IQMDD is

L = ψ̄[iγµ ∂µ−mq +gq
σ
σ−gq

ω
γµωµ−g

q
ρ
(ρB)γµ~τ ·~ρµ]ψ

+
1

2
∂µσ∂µ

σ−U(σ)−
1

4
FµνF

µν +
1

2
m2

ωωµω
µ

+
1

2
m2

ρ
~ρµ · ~ρµ−

1

4
~Gµν

~Gµν , (5)

where

U(σ) =
1

2
m2

σ
σ2 +

1

3
bσ3 +

1

4
cσ4 +B,

mq (q=u, d) is given by the quark mass density de-

pendent model, i.e. mq = B/nq, B denotes the bag

constant, nq is the quark number density. mσ, mω

and mρ are the corresponding masses of σ, ω and

ρ mesons. gq
σ

and gq
ω

are the coupling constants be-

tween quark and σ, and quark and ω, respectively.

gq
ρ
(ρB) is the density dependent quark-ρ coupling. In

QMC or IQMDD, it satisfies gq
ρ
(ρB) = Γρ(ρB) [15],

therefore gq
ρ
(ρB) has the same density dependence

form as Γρ(ρB).

The meson and quark field equations of mo-

tion can be derived from Eq. (5) under MFA. The

meson equations remain unchanged, just as that

of Refs. [17, 18]. However, when we do the partial

derivatives of L to the field ψ̄, extra terms appear due
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to the additional degree, namely,
δL

δψ̄
=

∂L
∂ ψ̄

+
∂L
∂ρB

δρB

δψ̄

[19]. Here, only the vector density ρB =
√

jµjµ depen-

dence is considered. Hence, the equation of motion

for the quark reads as

[γµ(i∂µ
−Σµ−Σ

R
µ )−(mq−Σs)]ψ= 0. (6)

The so-called rearrangement self-energy term ΣR
µ is

given by Ref. [20],

ΣR
µ =

jµ
ρB

∂Γρ

∂ρB

ψ̄γν τ

2
ψ ·~ρν . (7)

Because neutron star matter can be regarded as

infinite nuclear matter, in the RMF approximation,

the rearrangement term is reduced to

ΣR
0 =

∂Γρ

∂ρB

ρ3

ρ̄

2
, ΣR

1,2,3 = 0, (8)

where ρ3 = ρp−ρn; ρ̄= gρρ3/(2mρ

2). The rearrange-

ment term does not affect the energy density of infi-

nite nuclear matter but contributes to both the pres-

sure density and the chemical potentials [12, 18]. This

conclusion is also valid for the neutron star matter.

3.2 Study of neutron stars

Now we turn to the study of neutron stars within

the modified IQMDD model. Considering the sim-

plest neutron star, two basic assumptions are the

charge neutrality and its β-equilibrium condition.

Here, we mainly emphasize the important equations

and formulae concerned, and the main formulae of

neutron stars can be obtained in Ref. [8].

As is well known, the rearrangement self-energy

term contributes to the chemical potentials of the nu-

cleon, which are written in the following form,

µn =

√

Kn
F

2 +M∗
N

2 +gωω̄−
1

2
Γρ(ρB)ρ̄+ΣR

0 , (9)

µp =

√

Kp
F

2 +M∗
N

2 +gωω̄+
1

2
Γρ(ρB)ρ̄+ΣR

0 , (10)

where Kp
F and Kn

F refer to the Fermi momentum of

protons and neutrons, respectively.

The EOS of neutron stars can be calculated from

ε =
γN

(2π)3

(∫K
p

F

0

+

∫Kn
F

0

)

√

M∗
N

2 +p2dp3

+
g2

ω

2m2
ω

ρ2 +
1

2
m2

σ
σ̄2 +

1

3
bσ̄3 +

1

4
cσ̄4 +

Γρ(ρB)2

8m2
ρ

ρ3
2

+
1

π2

∑

l

∫ kl

0

√

k2 +m2
l k

2dk , (11)

p =
1

3

γN

(2π)3

(∫K
p

F

0

+

∫Kn
F

0

)

p2

√

M∗
N

2 +p2
dp3

+
g2

ω

2m2
ω

ρ2
−

1

2
m2

σ
σ̄2

−
1

3
bσ̄3

−
1

4
cσ̄4 +

Γρ(ρB)
2

8m2
ρ

ρ3
2

+
1

3π2

∑

l

∫kl

0

k4

√

k2 +m2
l

dk+ρBΣ
R
0 . (12)

Using the Oppenheimer and Volkoff equations [8],

dp(r)

dr
= −

Gm(r)ε

r2

(

1+
p

εC2

)

(

1+
4πr3p

m(r)C2

)

×

(

1−
2Gm(r)

rC2

)−1

, (13)

dM(r) = 4πr2ε(r)dr, (14)

where G is the gravitational constant and C is the

velocity of light. We can study the physical behavior

of neutron stars within IQMDD.

4 Numerical results

Before carrying out concrete numerical calcula-

tions, we need to explain the parameters used in this

model. First, the masses of mesons are fixed as mω=

783 MeV, mρ=770 MeV and mσ=509 MeV, respec-

tively. Fitting the nucleon mass MN = 939 MeV, we

obtain B = 174 MeV fm−3. gq
ω
=2.44, gq

σ
=4.67 and

b=−1460 MeV are chosen to reproduce the saturation

properties of neutron matter: the binding energy per

particle E/A=−15 MeV and the compressibility K =

210 MeV at the density ρ0 = 0.15 fm−3.

4.1 Symmetry energy

For nuclear symmetry energy, Γρ(ρ0) = 8.92 and

aρ = −0.243 can be derived from ρ0 = 0.15 fm−3,

Esym = 32.5 MeV; ρB = 0.10 fm−3 and Esym =

25.8 MeV [11, 14, 21]. Fig. 1 describes the density

dependence of the symmetry energy. By and large,

our model shows a relatively softer symmetry energy

compared with that in the constant coupling IQMDD

model. We may see that large discrepancies exist, es-

pecially at suprasaturation densities. This means that

the density dependent coupling succeeds in softening

the high density behavior of Esym.

Around saturation density ρ0, Esym(ρB) can be

expanded up to the second order in terms of ρB as

Esym(ρB) = Esym(ρ0)+
L

3

(

ρB−ρ0

ρ0

)

+
Ksym

18

(

ρB−ρ0

ρ0

)2

, (15)
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where L and Ksym read as [12]

L= 3ρ0

∂Esym(ρB)

∂ρB

∣

∣

∣

ρB=ρ0

, (16)

Ksym = 9ρ0
2 ∂2

Esym(ρB)

∂2
ρB

∣

∣

∣

ρB=ρ0

. (17)

The present L is predicted to be 62.6 MeV, right

in the range of L= (88±25) MeV calculated from the

recent isospin data [18]. The isospin dependent part

of the isobaric incompressibility Kasy =Ksym −6L=

−386 MeV is consistent with the extracted value

Kasy = −500 ± 50 MeV from the isospin diffusion

[17, 22] and Kasy = −550±100 MeV favored by the

giant monopole resonance in Sn isotopes [1]. Compar-

isons of these physical quantities in different models

[12, 16, 23–25] are made in Table 1. One can see that

the calculated results are satisfactory.

Fig. 1. Density dependence of the symmetry

energy. The solid line is our present result.

The broken line is the constant coupling case.

Table 1. Values of some quantities in several typical theoretical model predictions.

ρ0/fm−3 E0/MeV K/MeV J/MeV L/MeV Kasy/MeV Ref.

MDI(x =1) 0.16 −16.0 211 30.6 16.4 −369 [12]

TW99 0.15 −16.2 241 32.8 55 −454 [16]

CDM3Y6 0.17 −15.9 252 29.8 62.5 −336 [23]

M3Y-P5 0.16 −16.1 235 30.9 27.9 −384 [24]

FSUGold 0.15 −16.3 230 37.3 119 −384 [25]

IQMDD 0.15 −15.0 210 32.5 62.6 −386

4.2 Neutron stars

First, we display the particle populations in Fig. 2

with respect to the baryon density in the interior of

neutron stars. One can find that although neutrons

dominate the nucleonic component of neutron stars,

some protons still exist. The proton fraction is impor-

tant for the cooling mechanism of neutron stars thro-

ugh a Direct Urca process permitted only when the

Fig. 2. The neutron (solid), proton (dashed),

electron (dotted) and muon (dash-dot) densi-

ties in neutron stars as functions of the baryon

density.

proton fraction exceeds 1/9 [22, 26]. We cannot claim

that such a process is impossible since we have not

taken hyperons and the isovector-scalar δ meson into

account. They are assumed to increase the proton

fraction [27] and the DU process may happen as well.

We plot the star mass ratio M/M� versus cen-

tral baryon density in Fig. 3. The maximum mass is

Fig. 3. Neutron star mass as a function of the

central density. The solid line and the broken

one are the density dependent coupling case

and the constant coupling case, respectively.



No. 11 LIU Xiao-Jin et al: Effects of the density dependence of the symmetry energy on neutron stars 1713

about 1.79M�, rather smaller than the predicted

value from the constant coupling case. Our result is

reasonable when compared with 1.58±0.18M� from

PSR J0437-4715.

In Fig. 4, the masses of stars versus their radii are

shown. The radius of a 1.4M� neutron star is one of

the most important astrophysical quantities. From

Fig. 4, we can find that it is reduced from 13.38 km

[7] to 12.74 km. This is reasonable since this radius

Fig. 4. The neutron star mass-radius relation.

The solid line describes the density dependent

coupling case and the broken one describes the

constant coupling case.

tightly connects with the high-density EOS [11, 26]

and a softer symmetry energy is expected to lead to

a smaller neutron star radius. We may end this sec-

tion with a conclusion that the density dependence of

the symmetry energy plays an important role in the

neutron EOS, thus neutron star predictions.

5 Summary and discussions

Recently, the knowledge of the symmetry energy

has been the focus of attention in both nuclear physics

and astrophysics, especially its suprasaturation den-

sity behavior. In this work, including the density de-

pendent ρ-nucleon (quark) coupling, we are success-

ful in giving a relatively softer symmetry energy. The

neutron star maximum mass [28] and the radius of the

1.4M� neutron star are to some extent reduced, and

the effects of the density dependence of the symmetry

energy on neutron stars are recognized. Because of the

linear relationship between the slope of the symmetry

energy and the neutron-skin thickness of heavy nuclei

[12, 18, 28], we hope to pin down the accurate density

dependence form of Esym in the near future. This will

enable us to constrain neutron star observations.
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