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Study of shape isomer yields of 240Am in the

framework of a dynamical-statistical model
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Abstract A dynamical statistical model is used to analyze the experimental shape isomer yields data in

the reaction d+240Pu at E=20–29 MeV. The possibility of determining the nuclear dissipation is discussed.

Comparison of the experimental data with the calculations leads to a value of the reduced dissipation coefficient

β=0.45×1021 s−1 for the Am isotopes.
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1 Introduction

At present the double-humped fission barrier con-

cept has firmly established itself in nuclear physics.

The presence of the second deep minimum on the

potential surface of a heavy nucleus upon deforma-

tions permits a unified explanation of a great deal of

experimental data, in particular, the nature of spon-

taneously fissionable isomers, subbarrier fission reso-

nances, etc.

Spontaneous fission of isomers in heavy nuclei and

spontaneous fission half-lives of heavy nuclei in the

ground state and in the isomeric state [1, 2] are very

important subjects in nuclear physics.

The aim of this research is to analyze the shape

isomer yields in the framework of a dynamical sta-

tistical model of nuclear fission of heavy elements [3]

that allows us to obtain information about the mag-

nitude of dissipation coefficient for Am isotopes. It

should be stressed that in low excitation energies the

shell effect is very important so we want to consider

the effect of it on the fission barrier.

2 Details of the model and analysis of

the experimental data

We combine a dynamical (Langevin) and statisti-

cal description of heavy ion induced fission so that in

the first potential well we use a statistical model and

at each time step ~/Γtot calculate the decay widths

for emission of n, p, α, γ and the width of the de-

cay channel related to passing the inner fission bar-

rier. The probabilities of decay via different channels

can be calculated by using a standard Monte Carlo

cascade procedure where the kind of decay selected

with the weights Γi/Γtot (i = n, p, α, γ, fission) and

Γtot =
∑

i
Γi. If a random choice of decay channel

leads to the transition of the nucleus from the first

potential well to the second one, further evolution

of the nucleus is simulated in terms of the coupled

Langevin equations. It should be stressed that sim-

ulation of the fission process of the nucleus in terms

of Langevin equations also allows for the emission of

n, p, α and γ quanta. The result of simulation of the

nucleus evolution in the second potential well can be

classified as follows: 1) overcoming the second barrier

and reaching the scission point; 2) population of the

second potential well and cooling there via particle or

γ emission that this event is interpreted as the for-

mation of shape isomers; 3) returning of the system

into the first potential well.

In order to specify the shape collective coordinates

for a dynamical description of nuclear fission, we use

the shape parameters r, h and α as suggested by

Brack et al. [4]. However, we will simplify the calcula-

tion by considering only the symmetric fission (α=0)

and will further neglect the neck degree of freedom

(h=0). Consequently, the one-dimensional potential
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in the Langevin equation will be defined as V (r) and

the coupled Langevin equations in one dimension will

be given [5] as

dp

dt
= −

1

2

(

p

m(r)

)2
dm(r)

dr
−

dF

dr
−β(r)p+R(t),

dr

dt
=

p

m(r)
. (1)

The free energy of the system is denoted by F

while R(t) is a random delta–correlated force with the

properties 〈R(t)〉 = 0 and 〈R (t)R (t′)〉 = 2βTδ (t− t′)

and β is the damping coefficient. The collective iner-

tia, m, was calculated in the frame of the Werner–

Wheeler approach. The conservative forces are cal-

culated by free energy of the excited nuclear system

as

F (r,T,J) = V (r,T,J)−a(r)T 2, (2)

where T is the nuclear temperature that is defined as

T = (Eint/a(r))
2
, (3)

with

Eint = E∗−p2/(2m)−V (r,T,J)−Erot (J) , (4)

where E∗ is the total excitation energy and Erot (J)

is the rotational energy.

The potential energy of a fissionable nucleus is

calculated as the sum of the liquid drop potential en-

ergy Vld(r,J) of a rotating nucleus with an angular

momentum J and a shell correction δw,

V (r,J,T ) = Vld(r,J)+δw(r)

[

1+exp

(

T −T0

d

)]−1

,

(5)

where r is the distance between the centers of mass

of the forming fission fragments and the bracketed

expression describes the damping of the shell effects

with the growth of temperature T . The values of

the parameters T0 = 1.75 MeV and d = 0.2 MeV are

taken from Ref. [6].

In the zero temperature limit, δw(r) can be taken

to be equal to the difference between the above ap-

proximation and Vld(r,J = 0). Therefore, if we ap-

proximate V (r, J = 0, T = 0) in terms of another

method, then we can calculate δw(r) as

δw = V (r)−Vld(r). (6)

The double-humped fission barrier, V (r), can be ap-

proximated in terms of four smoothly joined parabolic

segments [7] and determined by

V (r) = Ei±
1

2
mω2

i (r−ri)
2, (7)

where i=0, 1, 2, 3, and the negative sign applies to

i = 1, 3 and the positive sign to i = 0, 2. Ei repre-

sents the minima and maxima of the potential, ~ωi

are their respective curvature energies, ri represents

the locations of the minima and maxima on the defor-

mation axis (fission coordinate) and m is the inertial

mass parameter of the fissioning nucleus.

It is clear that the double-humped fission barrier

can be determined by twelve parameters; three of

them describe each of the four parabolas. The val-

ues of the parameters E0, E1, E2, E3, ~ω0, ~ω1, ~ω2

and ~ω3 are taken from Refs. [8, 9]. The exact loca-

tions of the various minima and maxima as well as

those of the points of intersection of the successive

parabolic segments can then be expressed in terms

of these eight parameters. These parameters can be

determined by matching the potentials V (r) as well

as their first derivatives at the intersection points.

Figure 1 shows the results of calculation of the

double-humped fission barrier and the shell correc-

tion for 240Am, 241Am, and 242Am.

Typical Langevin trajectories calculated by

Langevin equations are also presented in Fig. 2.

Fig. 1. Calculated double–humped fission bar-

rier (solid curve), liquid-drop fission barrier

(dashed curve) and shell correction (dotted

curve) for 240Am, 241Am, 242Am.

Fig. 2. Typical Langevin trajectories reach the

scission point (solid curve), terminate in shape

isomers (dotted curves) and return to the first

potential well (dashed curve). R0 is the radius

of the spherical nucleus.

Decay widths for excited compound nuclei are

calculated in the Hauser-Feschbach formalism [10],

which gives the width of the disintegration of a com-

pound nucleus C with spin J and at excitation energy

E∗
C toward a nucleus B by the emission of a particle

b of spin Ib,

Γ{C,J,E∗

C
}→{b,Ib} =

1

2πρg
c(E

∗
C,J)

∑

IB

(2Ib +1)(2IB +1)
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×

E∗

C∫

Vcoul

dεbρ
g
B(E∗

C−Bb−εb, IB)

×

Ib+IB
∑

Sb=|Ib−IB|

J+Sb
∑

lB=|J−Sb|

τJ
lbSb

(b,εb), (8)

where τJ
lb,Sb

is the transmission coefficient and ρg the

level density at the ground state. The variable εb is

the kinetic energy of the evaporated particle b and

Bb the binding energy of the particle b in the nucleus

B.

The fission width is calculated by the Bohr for-

mula [11],

Γ{C,J,E∗

C
}→{f,J,Ef} =

1

2πρg(E∗
C,J)

E∗

C
−Bf∫

−Bf

dεfρ
s(E∗

C

−Bf −εf ,J)τf(εf), (9)

where ρs and ρg are the level densities of the nu-

cleus at the ground and saddle points, respectively.

The transmission coefficient in terms of the Hill and

Wheeler formula [12] can be defined as

τf(εf) =
1

1+e−2πεf/(~ωsd)
, (10)

where parameter ωsd is the curvature of the fission

barrier at the saddle point.

The width of the gamma emission is calculated by

Γ{C,J,E∗

C
}→γ =

C

ρg
c(E

∗
C,J)

×

J+1
∑

|J−1|

E∗∫

0

dερB(E∗
C−ε,I)ε3. (11)

The constant C for the above equation is obtained

by requiring the expression to give the observed total

radiation widths for the slow-neutron resonances.

In terms of the above described model, we ana-

lyzed the experimental data on isomer/prompt ratios

for 240Am produced in the reaction d+238PU at bom-

barding energies of 20–29 MeV. It should be stressed

that in calculations we investigated the probability of

the production isomers form after the emission of two

neutrons. In the dynamical branch and in Langevin

equations the reduced friction parameter is consid-

ered as a free parameter. In Fig. 3, the results of the

calculations in terms of various values of β are pre-

sented.

Fig. 3. Yields of the shape isomer 240Am in

the reaction d+240Pu, � experimental data

[9], ♦, �, M calculation results with β =

0.60×1022 s−1, β = 0.45×1021 s−1 and β =

0.20×1020 s−1, respectively.

It can be seen that the calculations are very sen-

sitive to the magnitude of the dissipation coefficient

and in terms of β = 0.45×1021 s−1 the calculation is

in agreement with the experimental data very well.

3 Conclusion

A dynamical statistical model was used to an-

alyze the experimental shape isomer yield data in

the reaction d+240Pu at E = 20–29 MeV. The pos-

sibility of determining the nuclear dissipation was

discussed and it shows that the suitable value of the

reduced dissipation coefficient for the Am isotopes is

β = 0.45×1021 s−1. The reduced dissipation coeffi-

cient obtained is consistent with the under damped

collective motion and is in agreement with the ones

obtained on the basis of the analysis of the experi-

mental information of the fission probability at low

excitation energies (β = 0.5×1021 s−1) [13].
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