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Abstract Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler

structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a

manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in

Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric in general. This

indicates that the local Lorentz invariance is violated.
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1 Introduction

The possible violation of Lorentz invariance has

been proposed within several models of quantum

gravity (QG) as well as Very Special Relativity (VSR)

[1]. A succinct list of QG includes tensor VEVs

originating from string field theory [2], cosmologi-

cally varying moduli scenarios [3], spacetime foam

models [4], semiclassical spin–network calculations in

Loop QG [5, 6], noncommutative geometry gravity

[7–10] and brane–world scenarios [11]. A common

feature of these phenomenological studies on Planck

scale physics is introducing the modified dispersion

relations (MDR) for elementary particles. Girelli et

al. [12] proposed a possible relation between MDR

and Finsler geometry. Gibbons et al. [13] pointed out

that VSR is Finsler geometry. In the VSR, CPT sym-

metry is preserved. VSR has radical consequences for

neutrino mass mechanism. Lepton-number conserv-

ing neutrino masses are VSR invariant. The mere ob-

servation of ultra-high energy cosmic rays and analy-

sis of neutrino data give an upper bound of 10−25 on

the Lorentz violation [14].

The above facts imply that new physics may be

connected with Finsler geometry. In fact, in 1941

Randers [15] published his work on possible appli-

cation of Finsler geometry in physics. Properties of

Randers space have been investigated exhaustively by

both mathematicians and physicists [16–20].

In a recent paper [21], Kostelecky studied the ef-

fect of gravitation in the Lorentz- and CPT -violating

Standard Model Extension (SME). The incorporation

of Lorentz and CPT violation into general relativity

based on Riemann-Cartan geometry was discussed. It

provided dominant terms in the effective low-energy

action for the gravitational sector, thereby complet-

ing the formulation of the leading-order terms in the

SME with gravity. It shows that a generalized geo-

metric framework is helpful in constructing a unifi-

cation theory of gravity and electromagnetism, weak

and strong interaction.

Finsler geometry is a natural and fundamental

generalization of Riemann geometry. The Finsler

structure depends on both coordinates and velocities.

It is defined as a mapping function from tangent bun-

dle of a manifold to R1. S. S. Chern [22] proved that

there is a unique connection in the Finsler manifold

that is torsion free and almost g-compatible. We use

the Bianchi identities satisfied by Chern curvature to

set up a gravitation theory in Berwald-Finsler space.

The geometric part of the gravitational field equation

is nonsymmetric in general. This indicates that the

local Lorentz invariance is violated. Nontrivial solu-

tions of the gravitational field equation are presented.
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This paper is organized as follows. In Sec. 2,

we briefly review the basic concept and notations of

Finsler geometry [23]. The torsion free Chern con-

nection and corresponding curvature are introduced.

The first and second Bianchi identities for curvature

are presented. Sec. 3 is devoted to constructing a

gravitation theory in Berwald-Finsler space. Finally,

we give the conclusion and remarks.

2 Finsler geometry

2.1 Finsler manifold

Denote by TxM the tangent space at x∈M , and

by TM the tangent bundle of M . Each element of

TM has the form (x,y), where x ∈ M and y ∈ TxM .

The natural projection π : TM → M is given by

π(x,y)≡x.

A Finsler structure of M is a function

F :TM → [0,∞)

with the following properties:

(i) Regularity: F is C∞ on the entire slit tangent

bundle TM\0.

(ii) Positive homogeneity : F (x,λy) = λF (x,y) for

all λ > 0.

(iii) Strong convexity: The n×n Hessian matrix

gij ≡

(

1

2
F 2

)

yiyj

is positive-definite at every point of TM\0, where we

have used the notation ( )yi =
∂

∂yi
( ), and the symbol

TM\0 means the tangent vector y is nonzero in the

tangent bundle TM .

Finsler geometry has its genesis in integrals of the

form ∫ r

s

F (x1, · · · ,xn;
dx1

dt
, · · · ,

dxn

dt
)dt . (1)

Throughout the paper, the lowering and raising

of indices are carried out by the fundamental tensor

gij defined above, and its matrix inverse gij . Given

a manifold M and a Finsler structure F on TM , the

pair (M,F ) is called a Finsler manifold. It is obvious

that the Finsler structure F is a function of (xi,yi).

In the case of F depending on xi only , the Finsler

manifold reduces to a Riemannian manifold.

The symmetric Cartan tensor can be defined as

Aijk ≡
F

2

∂gij

∂yk
=

F

4
(F 2)yiyjyk , (2)

The Cartan tensor vanishes if and only if gij has no y-

dependence. So the Cartan tensor is a measurement

of the deviation from the Riemannian manifold.

Using Euler’s theorem on homogeneous function,

we can get useful properties of the fundamental tensor

gij and Cartan tensor Aijk

gij l
i = Fyj , (3)

gij l
ilj = 1, (4)

yi ∂gij

∂yk
= 0, yj ∂gij

∂yk
= 0, yk ∂gij

∂yk
= 0, (5)

yiAijk = yjAijk = ykAijk = 0, (6)

where li ≡
yi

F
.

2.2 Chern connection

The nonlinear connection N i
j on TM\0 is defined

as

N i
j ≡ γi

jky
k−

Ai
jk

F
γk

rsy
rys , (7)

where γi
jk is the formal Christoffel symbols of the sec-

ond kind

γi
jk ≡

gis

2

(

∂gsj

∂xk
+

∂gsk

∂xj
−

∂gjk

∂xs

)

. (8)

The invariant connection under the transform y −→

λy is of the form

N i
j

F
≡ γi

jkl
k−Ai

jkγk
rsl

rls. (9)

Usually, we define the covariant derivatives ∇
∂

∂xi

and ∇dxi as

∇
∂

∂xi
≡ ωj

i

∂
∂xj

, (10)

∇dxi ≡ −ωi
jdxj , (11)

where ωi
j is the connection 1-forms. The operator ∇

has the same linear property as the covariant deriva-

tives defined on the Riemannian manifold.

Here, we introduce the Chern connection that is

torsion freeness

dxj ∧ωi
j = 0 (12)

and almost g-compatibility

dgij −gkjω
k
i −gikω

k
j = 2Aijs

δys

F
, (13)

where

δyi ≡ dyi +N i
jdxj . (14)

A theorem given by S. S. Chern [22] guarantees

the uniqueness of the Chern connection. Theorem

(Chern): Let (M,F ) be a Finsler manifold. The

pulled-back bundle π
∗TM admits a unique linear con-

nection, called the Chern connection. Its connection

forms are characterized by the structural equations of

(12) and (13).



30 Chinese Physics C (HEP & NP) Vol. 34

We ignore the proof of the theorem, and just give

some consequences of it directly. Torsion freeness is

equivalent to the absence of dyi terms in ωi
j ; namely,

ωi
j = Γ i

jkdxk, (15)

together with the symmetry

Γ i
jk = Γ i

kj , (16)

and almost g-compatibility implies that

Γ i
jk =

gis

2

(

δgsj

δxk
+

δgsk

δxj
−

δgjk

δxs

)

, (17)

where

δ

δxi
≡

∂
∂xi

−N
j

i

∂
∂xj

. (18)

The dual basis of
∂

∂yi
is δyi. As before, we prefer to

work with

δyi

F
=

1

F
(dyi +N i

jdxj), (19)

which is invariant under the rescaling of y. Here, we

give the relation between N i
j and Γ i

jk

Γ i
jklj =

N i
k

F
, (20)

which will be useful in this paper.

We will work on two new natural local bases that

are dual to each other:

{

δ

δxi
,F

∂
∂yi

}

for the tangent

bundle of TM\0,

{

dxi,
δyi

F

}

for the cotangent bun-

dle of TM\0.

One can check that the transformation law of the

Chern connection on the Finsler manifold is the same

as the Riemannian connection on the Riemannian

manifold. This fact is useful to guide us in defining

the covariant derivative of a tensor.

Let V ≡V
j

i

∂
∂xj

⊗dxi be an arbitrary smooth local

section of π
∗TM ⊗π

∗T ∗M . The definitions of (10)

and (11) and the property of operator ∇ imply that

the covariant derivatives of V are

∇V ≡ (∇V )j

i

∂
∂xj

⊗dxi, (21)

where

(∇V )j

i ≡ dV
j

i +V k
i ω

j

k−V
j

k ωk
i . (22)

∇V is a 1-form on TM\0. Thus, it can be expressed

in terms of the natural basis

{

dxi,
δyi

F

}

,

(∇V )j

i = V
j

i |sdxs +V
j

i ;s

δys

F
. (23)

Using the relation between the Chern connection and

the connection 1-forms ωi
j (15), we obtain the hori-

zontal covariant derivative V
j

i |s

V
j

i |s =
δV j

i

δxs
+V k

i Γ
j

ik −V
j

k Γ k
is, (24)

and the vertical covariant derivative V j
i ;s

V
j

i ;s = F
∂V j

i

∂ys
. (25)

The treatment for the tensor fields of higher rank is

similar to the methods used on the Riemannian mani-

fold. Here, we give the results of covariant derivatives

of the fundamental tensor g and the norm 1 vector l:

gij|s = gij

|s = 0, (26)

gij;s = 2Aijs and g
ij

|s =−2Aij
s, (27)

li|s = li|s = 0, (28)

li;s = δ
i
s− lils and li;s = gis− lils. (29)

2.3 Curvature

The curvature 2-forms of the Chern connection

are

Ωi
j ≡ dωi

j −ωk
j ∧ωi

k. (30)

The expression of Ωi
j in terms of the natural basis

{dxi,
δyi

F
} is of the form

Ωi
j ≡

1

2
Ri

jkldxk∧dxl+P i
jkldxk∧

δyl

F
+

1

2
Qi

jkl

δyk

F
∧

δyl

F
,

(31)

where R, P and Q are the hh-, hv-, vv-curvature

tensors of the Chern connection, respectively. The

following property is manifest

R i
j kl = −R i

j lk, (32)

Q i
j kl = −Q i

j lk. (33)

We are now in the position to demonstrate the

Bianchi identities for the curvature.

The exterior differential of the structural equation

(12) gives

dxj ∧dωi
j = 0. (34)

The combination of equations (34) and (12) shows

that

dxj ∧Ωi
j = 0. (35)

Substituting Eq. (35) into (31), we get

1

2
Ri

jkldxj ∧dxk ∧dxl +

P i
jkldxj ∧dxk ∧

δyl

F
+

1

2
Qi

jkldxj ∧
δyk

F
∧

δyl

F
= 0. (36)
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The three terms on the left side are completely inde-

pendent. Thus, all of them should vanish. This gives

identities

R i
j kl +R i

k lj +R i
l jk = 0, (37)

P i
j kl = P i

k jl, (38)

Q i
j kl = 0. (39)

Then, the curvature 2-forms can be simplified as

Ωi
j ≡

1

2
Ri

jkldxk ∧dxl +P i
jkldxk ∧

δyl

F
. (40)

Tedious but straightforward manipulation of the

exterior differential on the structural equation (13)

gives

Ωij +Ωji = −2(∇A)ijk ∧
δyk

F
−

2Aijk

[

d

(

δyk

F

)

+ωk
l ∧

δyl

F

]

. (41)

This can be rewritten as

1

2
(Rijkl +Rjikl)dxk ∧dxl +

(Pijkl +Pjikl)dxk ∧
δyl

F
=

−AijuRu
kldxk∧dxl −2(AijuP u

kl +Aijl|k)dxk ∧
δyl

F
+

2(Aijk;l−Aijkll)
δyk

F
∧

δyl

F
, (42)

where we have used the abbreviations

Ri
kl ≡ ljR i

j kl (43)

P i
kl ≡ ljP i

j kl. (44)

Equalization of three different types of terms of two

sides of equation (42) shows identities

Rijkl +Rjikl = −2AijuRu
kl, (45)

Pijkl +Pjikl = −2(AijuP u
kl +Aijl|k), (46)

Aijk;l−Aijkll = Aijl;k−Aijllk. (47)

Formula (32) and Identity (37),(45) enable us to get

the fourth property of hh-curvature,

Rklji−Rjikl = (Bklji−Bjikl)+(Bkilj +Bljki)+

(Biljk −Bjkil), (48)

where, for convenience, we have used the notation

Bijkl ≡−AijuRu
kl. On the Riemannian manifold, the

Cartan tensor vanishes. This means that Bijkl = 0 on

the Riemannian manifold. The familiar properties of

the Riemannian curvature

R̃ijkl +R̃ijlk = 0,

R̃ijkl +R̃kjli +R̃ljik = 0,

R̃ijkl +R̃jikl = 0,

R̃ijkl−R̃klij = 0,

can be deduced directly from the four properties of

hh-curvature (32), (37), (45) and (48). Making use of

Identity (46) and Eqs. (6), (28), we may get a consti-

tutive relation for Pijkl,

Pjikl = −(Aijl|k −Ajkl|i +Akil|j)+

Au
ijȦukl−A u

jk Ȧuil +A u
ki Ȧujl, (49)

where

Ȧijk ≡Aijk|sl
s . (50)

Contracting Pijkl with li in Eq. (49), we obtain an

important relation

Pjkl ≡ liPijkl =−Ȧjkl. (51)

The expression of R and P can be got by substituting

Formula (30) into (40),

R i
j kl =

δΓ i
jl

δxk
−

δΓ i
jk

δxl
+Γ i

hkΓ
h
jl−Γ i

hlΓ
h
jk, (52)

P i
j kl = −F

∂Γ i
jk

∂yl
. (53)

These are the counterparts of the Riemannian cur-

vature expessed in terms of the Christoffel symbols

Γ̃ i
jk

R̃ i
j kl =

∂ Γ̃ i
jl

∂xk
−

∂ Γ̃ i
jk

∂xl
+ Γ̃ i

hkΓ̃
h
jl− Γ̃ i

hlΓ̃
h
jk. (54)

Before ending the section, we present the second

Bianchi identity. Exterior differential of the Chern

connection (30) gives

dΩi
j −ωk

j ∧Ωi
k +ωi

k∧Ωk
j = 0. (55)

Substituting (40) into the above equation, we obtain

1

2
dR i

j kl∧dxk ∧dxl +dP i
j kl∧dxk ∧

δyl

F
−

P i
j kldxk ∧d

(

δyl

F

)

=
1

2
R i

r klω
r
j ∧dxk ∧dxl−

1

2
R r

j klω
i
r∧dxk ∧dxl +P i

r klω
r
j ∧dxk ∧

δyl

F
−

P r
j klω

i
r∧dxk ∧

δyl

F
. (56)

To evaluate d

(

δyl

F

)

, by making use of formula (28)

and the definition of the covariant derivative, we first
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rewrite
δyl

F
as

δyl

F
= dll +Γ l

jklkdxj +
dF

F
ll. (57)

Then, one has

d

(

δyl

F

)

= dlj ∧ωl
j + ljdωl

j +dll∧
dF

F
=

ljΩl
j + ljωk

j ∧ωl
k +

(

δyj

F
−ωj

kl
k− lj

dF

F

)

∧ωl
j +

(

δyl

F
−ωl

kl
k

)

∧
dF

F
=

ljΩl
j +

δyj

F
∧

(

ωl
j − lj

δyl

F

)

, (58)

here we have used the identity

li
δyi

F
=

dF

F
(59)

to get the third equality.

Substituting Formula (58) into (56) and noticing

the torsion freeness of the Chern connection, we ob-

tain

1

2
∇R i

j kl∧dxk ∧dxl +∇P i
j kl∧dxk ∧

δyl

F
=

P i
j kll

tdxk ∧

(

1

2
R l

t rsdxr ∧dxs +P l
t rsdxr ∧

δys

F

)

−

P i
j kllrdxk ∧

δyr

F
∧

δyl

F
. (60)

In a natural basis, we can rewrite Eq. (60) into the

form

1

2
(R i

j kl|t−P i
j kuRu

lt)dxk ∧dxl ∧dxt +

1

2
(R i

j kl;t−2P i
j kt|l +2P i

j kuȦu
lt)dxk ∧dxl ∧

δyt

F
+

(P i
j kl;t−P i

j kllt)dxk ∧
δyl

F
∧

δyt

F
= 0. (61)

The three terms on the left side are completely inde-

pendent. Then, we get the following identities

R i
j kl|t +R i

j lt|k +R i
j tk|l =

P i
j kuRu

lt +P i
j luRu

tk +P i
j tuRu

kl, (62)

R i
j kl;t = P i

j kt|l−P i
j lt|k−(P i

j kuȦu
lt−P i

j luȦu
kt), (63)

P i
j kl;t−P i

j kt;l = P i
j kllt−P i

j ktll. (64)

3 Gravitation theory in Berwald space

Einstein successfully proposed his general relativ-

ity in Riemannian space to describe gravity. It is

interesting to investigate the behaviors of gravitation

in more general Finsler spaces. Let us briefly recall

the setup method of the Einstein field equation on

the Riemannian manifold. One starts from the se-

cond Bianchi identities on the Riemannian manifold

R̃ i
j kl|t +R̃ i

j lt|k +R̃ i
j tk|l = 0. (65)

The metric-compatibility

g̃ij|k = 0 and g̃ij

|k = 0, (66)

and contraction of (65) with g̃jt gives that

R̃ji

kl|j +R̃i
l|k−R̃i

k|l = 0, (67)

where R̃i
l ≡ R̃ij

jl is the Ricci tensor. Lowering the

index i and contracting with g̃ik, we obtain

R̃j

l|j +R̃j

l|j − S̃|l = 0, (68)

where S̃ = g̃ijR̃ij is the scalar curvature. An equiva-

lent but more familiar form is
(

R̃jl−
1

2
g̃jlS̃

)

|j

= 0. (69)

In the weak field limit, the gravitation theory should

reduce to the Newtonian theory. Einstein suggested

his gravitational field equation of the form

R̃jl−
1

2
g̃jlS̃ = 8πGTjl, (70)

where Tjl is the energy–momentum tensor and G is

Newton’s constant.

In the paper, we use a similar approach to discuss

gravitation on the Finsler manifold. Let us introduce

first two notions for Ricci curvature: the Ricci scalar

Ric and the Ricci tensor Ricij.

The Ricci scalar is defined as

Ric = gikRik, (71)

where Rik ≡ ljRjikll
l is symmetric. The Ricci ten-

sor on the Finsler manifold was first introduced by

Akbar-Zadeh [24]

Ricik ≡

(

1

2
F 2Ric

)

yiyk

, (72)

which is manifestly symmetric and covariant. Ex-

panding y derivatives in the defining formula for the

Ricci tensor Ricik, we get

Ricik =
1

4
(Ric;i;k +Ric;k;i)+

3

4
(liRic;k + lkRic;i)+gikRic. (73)

Substituting the defining formula for the Ricci scalar
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Ric into the above equation, we obtain

Ricik =
1

2
(R s

k si +R s
i sk)+

1

4
ljll(R s

j sl;k;i +R s
j sl;i;k)−

1

4
ljll(liR

s
j sl;k + lkR

s
j sl;i)+

1

2
lj(R s

i sj;k +R s
j si;k +R s

k sj;i +R s
j sk;i) =

1

2
(R s

k si +R s
i sk)+Eik , (74)

where we introduced the notation

Eik ≡
1

4
ljll(R s

j sl;k;i +R s
j sl;i;k)−

1

4
ljll(liR

s
j sl;k + lkR

s
j sl;i)+

1

2
lj(R s

i sj;k +R s
j si;k +R s

k sj;i +R s
j sk;i). (75)

Following the same setup process for the gravita-

tional field equation in Riemannian space, we start

from the second Bianchi identities (62). Contrac-

ting it with gjt, lowering the index i, and contracting

again with gik, we get

R
ji

il|j +R
ji

lj|i +R
ji

ji|l =

gjtgik(PjikuRu
lt +PjiluRu

tk +PjituRu
kl). (76)

Using the first Bianchi identity (45) and Formula

(48), we can divide the left side of the above equation

into a symmetric part labelled by [ ] and a nonsym-

metric part labelled by { }

Rji

il|j +Rji

lj|i +Rji

ji|l =

(

Ricj

l +
1

2
B kj

k l−Ej

l

)

|j

+

(

2Bjk

lk +Ricj

l +
1

2
B kj

k l−Ej

l

)

|j

−δ
j

l (S−E)|j =

[

(2Ricj

l−δ
j

l S)−(2Ej

l−δ
j

l E)
]

|j
+{B kj

k l +2Bjk

lk}|j ,

(77)

where E ≡ gijEij and S = gijRicij . Using the con-

stituent relation of the hv-curvature tensor (49), we

rewrite the right side of Identity (76) as

gjtgik(PjikuRu
lt +PjiluRu

tk +PjituRu
kl) =

2(Aj

lu|i−Ajr

lȦriu)Ru i
j +

2(Aj

iu|j −Au|i +ArȦriu−Ajr

iȦrju)Ru i
l , (78)

where Ar ≡ gijAijr. Finally, we get the equivalent

form of the identity (76)
[(

Ricjl−
1

2
gjlS

)

−

(

Ejl−
1

2
gjlE

)]

|j

+

{

1

2
B kjl

k +Bjkl

k

}

|j

= (Ajl

u|i−AjrlȦriu)Ru i
j +

(Aj

iu|j −Au|i +ArȦriu−Ajr

iȦrju)Ruli. (79)

A Finsler structure F is said to be of Berwald type if

the Chern connection coefficients Γ i
jk in natural coor-

dinates have no y dependence. A direct proposition

on Berwald space is that the hv–part of the Chern

curvature vanishes identically

P i
j kl = 0, (80)

and the hh–part of the Chern connection reduces to

R i
j kl =

∂Γ i
jl

∂xk
−

∂Γ i
jk

∂xl
+Γ i

hkΓ
h
jl−Γ i

hlΓ
h
jk. (81)

So, in the Berwald space the identity of (79) reduces

as
[

Ricjl−
1

2
gjlS

]

|j

+

{

1

2
B

kjl

k +B
jkl

k

}

|j

= 0. (82)

Thus, the counterpart of Einstein’s field equation on

Berwald space takes the form
[

Ricjl−
1

2
gjlS

]

+

{

1

2
B k

k jl +B k
j lk

}

= 8πGTjl. (83)

The gravitational field equation on Berwald space

is obviously different from Einstein’s field equation.

The geometric part contains a nonsymmetric term.

Thus, in general, the energy–momentum tensor Tjl

is not symmetric. This means that the local Lorentz

invariance is violated in general.

Here, we present the relation between Berwald

space and Randers space. Kikuchi [25] proved that

in a Randers space of Berwald type, one has

b̃i|j ≡ b̃i,j − b̃kγ̃
k
ij = 0, (84)

where γ̃k
ij is the Christoffel symbols of the Riemannian

metric ã≡ ãijdxi⊗dxj . In Randers space, one can de-

rive straightforwardly the expression of the geodesic

spray coefficients as

Gi ≡ γi
jky

jyk = (γ̃i
jk + lib̃j|k)y

jyk +

(ãij − lib̃j)(b̃j|k − b̃k|j)αyk, (85)

and the Chern connection as

Γ i
jk = (N i

j)yk +
1

2
gitys(N

s
t )yjyk . (86)

It is not difficult to check that the geodesic spray co-

efficients satisfy that

1

2

∂Gi

∂yj
= N i

j . (87)
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Thus in Randers spaces of Berwald type, the geodesic

spray coefficients reduce to

Gi = γ̃i
jky

jyk. (88)

The Chern connection reduces to

Γ i
jk = γ̃i

jk. (89)

Then, the hh–curvature takes the form

R i
j kl =

∂ γ̃i
jl

∂xk
−

∂ γ̃i
jk

∂xl
+ γ̃i

hkγ̃
h
jl− γ̃i

hlγ̃
h
jk. (90)

Thus, it is very convenient to investigate the field

equation in Randers space of Berwald type. This will

be studied in our future work.

4 Conclusion and remarks

In this paper, we have set up a gravitation the-

ory in a torsion freeness Berwald-Finsler space. The

geometric part of the gravitational field equation is

in general nonsymmetric. This fact indicates that

the local Lorentz invariance is violated in the Finsler

manifold. This is in good agreement with the discus-

sions on special relativity in Finsler space [12, 13, 20].

However, problems still remain. How to construct

a gravitation in general Finsler space is still a open

question. It is well-known that in Riemannian space

the sign of section curvature K(x) determines the

type of geometry near x (hyperbolic, flat or spheri-

cal). In the Finslerian landscape, the sign of K(x,y)

depends on the direction y of our line of sight. This

makes it possible to encounter all three types of ge-

ometry during a survey. In such a cosmology model,

one may wish to find a natural explanation for why

the space of the universe is asymptotically flat.

We would like to thank Prof. C.-G. Huang for

helpful discussion.
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