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Analysis of the coupling constants ga0ηπ0 and ga0η′π0

with light-cone QCD sum rules *

WANG Zhi-Gang(��f)1)

Department of Physics, North China Electric Power University, Baoding 071003, China

Abstract In this article, we take the point of view that the light scalar meson a0(980) is a conventional qq̄

state, and calculate the coupling constants ga0ηπ0 and ga0η′π0 with the light-cone QCD sum rules. The central

value of the coupling constant ga0ηπ0 is consistent with that extracted from the radiative decay φ(1020) →

a0(980)γ→ηπ0γ. The central value and lower bound of the decay width Γa0→ηπ0 = 127+84
−48 MeV are compatible

with the experimental data of the total decay width Γa0(980) = (50−100) MeV from the Particle Data Group

with a very model dependent estimation (the decay width can be much larger), while the upper bound is too

large. We give a possible explanation for the discrepancy between the theoretical calculation and experimental

data.
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1 Introduction

Light flavor scalar mesons present a remarkable

exception for constituent quark models; the struc-

tures of these mesons have not been unambiguously

determined yet [1–4]. Experimentally, the strong

overlaps with each other and the broad widths (for

the f0(980), a0(980), f0(1710), the widths are rela-

tively narrow) are responsible for the fact that their

spectra cannot be approximated by the Breit-Wigner

formula. The numerous candidates with the same

quantum numbers JPC = 0++ below 2GeV cannot be

accommodated in one qq̄ nonet; some are supposed

to be glueballs, molecules and multiquark states [2–

4]. The more elusive things are the constituent struc-

tures of the mesons f0(980) and a0(980) with almost

degenerate masses.

In the naive quark model, a0 = (uu−dd)/
√

2 and

f0 = ss; while in the framework of the tetraquark

models, the mesons f0(980) and a0(980) could ei-

ther be compact objects (i.e. nucleon-like bound

states of quarks with the symbolic quark structures

f0 = ss(uu+dd)/
√

2 and a0 = ss(uu−dd)/
√

2 [5, 6]) or

spatially extended objects (i.e. deuteron-like bound

states of hadrons: KK molecules [7, 8]). The hadronic

dressing mechanism takes the point of view that the

mesons f0(980) and a0(980) have small qq̄ cores of

typical qq̄ meson size, strong couplings to the in-

termediate hadronic states (KK̄) enrich the pure qq̄

states with other components and spend part (or

most) of their lifetime as virtual KK̄ states [9–11]. In

the hybrid model, these mesons are tetraquark states

(qq)3̄(q̄q̄)3 in the S-wave near the center, with some

constituents qq̄ in the P -wave, but further out they

rearrange into (qq̄)1(qq̄)1 states and finally as meson-

meson states [2, 4]. All these interpretations have

both outstanding advantages and obvious shortcom-

ings in one way or other.

We can study scalar mesons through their cou-

plings to two pseudoscalar mesons, two-photon de-

cays and radiative decays. The radiative decays

φ(1020) → π0π0γ and φ(1020) → ηπ0γ have been

the subject of intense investigation [12–18]. From the

invariant π0π0 and ηπ0 mass distributions, we can ob-

tain a lot of information about the nature of f0(980)

and a0(980) respectively.

In this article, we take the scalar mesons a0(980)

and f0(980) as the conventional qq̄ states, and calcu-

late the values of the coupling constants ga0ηπ0 and

ga0η′π0 with the light-cone QCD sum rules. The cou-
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pling constant ga0ηπ0 is a basic parameter in study-

ing the radiative decay φ(1020)→ a0(980)γ→ ηπ0γ.

In previous works, the mesons f0(980), a0(980), Ds0,

Ds1, Bs0 and Bs1 were taken as the conventional qq̄, cs̄

and bs̄ states respectively, and the values of the cou-

pling constants gf0KK, ga0KK, gDs0DK, gDs1D∗K, gBs0BK

and gBs1B∗K have been calculated using the light-cone

QCD sum rules [19–24]. The large values of the cou-

pling constants support the hadronic dressing mech-

anism. In Ref. [25], the authors study the coupling

constant ga0ηπ0 with the interpolating current

J8
µ =

1√
6

[

ūγµγ5u+ d̄γµγ5d−2s̄γµγ5s
]

and a complex subtraction procedure is taken due to

the asymmetric Borel parameters M 2
1 6= M 2

2 . In this

article, we study the coupling constants ga0ηπ0 and

ga0η′π0 together and a simple subtraction procedure

is taken. The decay f0(980) → ππ cannot occur at

the tree level if the scalar meson f0(980) is a pure ss̄

state. It should have some nn̄ components and the

coupling constant gf0ππ has also been calculated with

the light-cone QCD sum rules [26].

The light-cone QCD sum rule approach carries out

the operator product expansion near the light-cone

x2 ≈ 0 instead of the short distance x ≈ 0, while the

nonperturbative matrix elements are parameterized

by the light-cone distribution amplitudes instead of

the vacuum condensates [27–31]. The nonperturba-

tive parameters in the light-cone distribution ampli-

tudes are calculated by the conventional QCD sum

rules and the values are universal [32–34].

The article is arranged as follows: in section 2,

we obtain the coupling constants ga0ηπ0 and ga0η′π0

with the light-cone QCD sum rules; in section 3 nu-

merical results are given; section 4 is reserved for the

conclusion.

2 Coupling constants ga0ηπ0 and

ga0η′π0 with light-cone QCD sum

rules

In the following, we write down the definitions for

the coupling constants ga0ηπ0 and ga0η′π0 ,

〈a0|ηπ0〉 = iga0ηπ0 = i

√

2

3
g ,

〈a0|η′π0〉 = iga0η′π0 = i
2√
3
g , (1)

where we have used the phenomenological Lagrangian

L= gTr[SPP], the S and P stand for the light nonet

scalar mesons and pseudoscalar mesons respectively.

We study the coupling constants ga0ηπ0 and ga0η′π0 by

means of the two-point correlation function Πµ(p,q),

Πµ(p,q) = i

∫
d4xe−iq·x〈0|T {Jµ(0)J(x)}|π0(p)〉 , (2)

Jµ(x) = ū(x)γµγ5u(x)+ d̄(x)γµγ5d(x) ,

J(x) =
ū(x)u(x)− d̄(x)d(x)√

2
, (3)

where the currents Jµ(x) and J(x) interpolate the

pseudoscalar mesons η, η′ and scalar meson a0(980),

respectively; the external π0 meson has the four mo-

mentum pµ with p2 = m2
π. One may think that it is

more convenient to take the octet current J 8
µ(x) and

singlet current J0
µ(x)

J8
µ(x) =

ū(x)γµγ5u(x)+ d̄(x)γµγ5d(x)−2s̄(x)γµγ5s(x)√
6

,

J0
µ(x) =

ū(x)γµγ5u(x)+ d̄(x)γµγ5d(x)+ s̄(x)γµγ5s(x)√
3

(4)

to interpolate the pseudoscalar mesons η and η′ re-

spectively. The s̄s components of the interpolating

currents have no contributions at the level of the

quark-gluon degrees of freedom and the octet current

J8
µ(x) and singlet current J0

µ(x) lead to the same an-

alytical expressions. Jµ(x) is a linear combination of

the octet current J8
µ(x) and singlet current J0

µ(x); we

choose it to interpolate the mesons η and η′ together,

Jµ(x) =

√

2

3
J8

µ(x)+
2√
3
J0

µ(x) . (5)

Irrespective of the chosen interpolating current, the

coupling with a0(980)π0 takes place through the uū

and dd̄ components of the pseudoscalar mesons η and

η′ (not the ss̄ component) at the level of the quark-

gluon degrees of freedom. Although the coupling con-

stant ga0η′π0 has no direct phenomenological interest,

we take into account the η′ meson to facilitate sub-

tractions of the continuum states and obtain more

reliable QCD sum rules. We will revisit this subject

at the end of this section.

The correlation function Πµ(p,q) can be decom-

posed as

Πµ(p,q) = iΠ(p,q)qµ +iΠA(p,q)pµ (6)

due to Lorentz covariance. We choose the tensor

structure qµ and study Π(p,q).

According to the basic assumption of the quark-

hadron duality in the QCD sum rules [32–34], we can

insert a complete sets of intermediate hadronic states
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with the same quantum numbers as the current op-

erators Jµ(x) and J(x) into the correlation function

Πµ(p,q) to obtain the hadronic representation. Af-

ter isolating the ground state contributions from the

pole terms of the mesons η, η′ and a0(980), we get the

following result (we present some technical details in

the appendix),

Πµ =
〈0|Jµ(0) |η(q+p)〉
M 2

η −(q+p)2− iε
〈η|J(0)|π0〉+ 〈0|Jµ(0) |η′(q+p)〉

M 2
η′ −(q+p)2− iε

〈η′|J(0)|π0〉+ · · ·=

i2fη(q+p)µ√
6
[

M 2
η −(q+p)2− iε

]〈η|a0π
0〉 i

q2−M 2
a0

+iε
〈a0(q)|J(0)|0〉+

i2fη′(q+p)µ√
3
[

M 2
η′ −(q+p)2− iε

]〈η′|a0π
0〉 i

q2−M 2
a0

+iε
〈a0(q)|J(0)|0〉+ · · ·=

[

i2gfηfa0
Ma0

3
[

M 2
η −(q+p)2− iε

][

M 2
a0
−q2− iε

]+
i4gfη′fa0

Ma0

3
[

M 2
η′ −(q+p)2− iε

][

M 2
a0
−q2− iε

]

]

(p+q)µ + · · · , (7)

where the following definitions for the weak decay

constants have been used,

〈0|Jµ(0)|η(p)〉 =
i2fη√

6
pµ ,

〈0|Jµ(0)|η′(p)〉 =
i2fη′√

3
pµ , (8)

〈0|J(0)|a0(p)〉 = fa0
Ma0

.

We have taken the ideal mixing limit for η and η′

(i.e. η =

∣

∣

∣

∣

uū+dd̄−2ss̄√
6

〉

, η′ =

∣

∣

∣

∣

uū+dd̄+ss̄√
3

〉

) and

neglected the anomaly contribution.

In the following, we briefly outline the opera-

tor product expansion for the correlation function

Πµ(p,q) in perturbative QCD theory. The calcula-

tions are performed in the large space-like momentum

regions (q+p)2 � 0 and q2 � 0, which correspond to

the small light-cone distance x2 ≈ 0 required by the

validity of the operator product expansion approach.

We write down the propagator of a massive quark in

the external gluon field in the Fock-Schwinger gauge

[35],

Sij(x1,x2) = i

∫
d4k

(2π)4
e−ik(x1−x2)

{ 6k+m

k2−m2
δij−

1∫

0

dv gs G
µν
ij (vx1 +(1−v)x2)

[1

2

6k+m

(k2−m2)2
σµν −

1

k2−m2
v(x1−x2)µγν

]

}

. (9)

Substituting the u and d quark propagators and the

corresponding π-meson light-cone distribution ampli-

tudes into the correlation function Πµ(p,q) and com-

pleting the integrals over the variables x and k, we

obtain finally an analytical expression. In the calcula-

tion the two-particle and three-particle π-meson light-

cone distribution amplitudes have been used [36–39].

The explicit expressions are given in the appendix.

The parameters in the light-cone distribution ampli-

tudes are scale dependent and are estimated with the

QCD sum rules [36–39]. In this article, the energy

scale µ is chosen to be µ = 1 GeV.

After straightforward calculations we obtain the

final expression of the double Borel transformed cor-

relation function Π at the level of the quark-gluon

degrees of freedom. The masses of the pseudoscalar

meson and scalar meson are Mη′ = 0.958GeV and

Ma0
= 0.985 GeV respectively,

M 2
η′

M 2
η′ +M 2

a0

≈ 0.49 . (10)

There exists an overlapping working window for the

two Borel parameters M 2
1 and M 2

2 . It is convenient

to take the value M 2
1 = M 2

2 , M 2 =
M 2

1 M 2
2

M 2
1 +M 2

2

. We

introduce the threshold parameter s0 and make the

simple replacement,

e−
m

2
u+u0(1−u0)m2

π

M2 → e−
m

2
u+u0(1−u0)m2

π

M2 −e−
s0

M2

to subtract the contributions from the high reso-

nances and continuum states [35]. Finally we obtain

the sum rule for the coupling constant g,
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g =

3exp

(

M 2
a0

M 2
2

)

2fa0
Ma0

[

fη exp

(

−M 2
η

M 2
1

)

+2f ′
η exp

(

−M 2
η′

M 2
1

)]

{[

exp

(

− Ξ

M 2

)

−exp
(

− s0

M 2

)

]

fπm2
πM 2

2mu

[

ϕp(u0)−
dϕσ(u0)

6du0

]

+exp

(

− Ξ

M 2

)[

−mufπm2
π

∫u0

0

dtB(t) +

f3πm2
π

∫u0

0

dαu

∫1−αu

u0−αu

dαgϕ3π(1−αu−αg,αg,αu)
2(αu +αg−u0)−3αg

α2
g

−

2mufπm4
π

M 2

∫1

1−u0

dαg

1−u0

α2
g

∫αg

0

dβ

∫1−β

0

dαΦ(1−α−β,β,α)+

2mufπm4
π

M 2

(∫1−u0

0

dαg

∫u0

u0−αg

dαu

∫αu

0

dα+

∫1

1−u0

dαg

∫1−αg

u0−αg

dαu

∫αu

0

dα

)

Φ(1−α−αg,αg,α)

αg

]}

, (11)

where

Φ(αi) = A‖(αi)+A⊥(αi)−V‖(αi)−V⊥(αi) ,

Ξ = m2
u +u0(1−u0)m

2
π ,

u0 =
M 2

1

M 2
1 +M 2

2

, (12)

and we have taken the isospin limit mu = md.

In Ref. [25] (also in Refs. [22, 23, 26]), a complex

subtraction procedure is taken due to the asymmetry

Borel parameters, M 2
1 6= M 2

2 . In the light-cone QCD

sum rules, we often take the technique developed in

Ref. [35] to obtain the spectral densities at the level

of the quark-gluon degrees of freedom,

Π =

∫ 1

0

f(u)

∆−(q+up)2
du =

∫∞

∆

ρQCD(s)

[s−(p+q)2] [s−q2]
ds =

∫∞

∆1

∫∞

∆2

ρQCD(s1,s2)δ(s1−s2)

[s1−(p+q)2] [s2−q2]
ds1ds2 , (13)

where f(u) are functions of the two-particle light-cone

distribution amplitudes, u =
∆−q2

s−q2
, ∆ stands for the

squared masses of the exchanged quarks, ∆1 and ∆2

are the corresponding thresholds. It works efficiently

in the case where the threshold parameters s0
1 and s0

2

differ from each other slightly. If we take the values

s0
1 = s0

η=(0.7–0.8) GeV2 (in the case that the octet

current J8
µ(x) is chosen to interpolate the η meson,

see Ref. [25]) and s0
2 = s0

a0
> M 2

a0
≈ 1 GeV2, the con-

tributions from a0(980) are not taken into account

properly,

Π =

∫ s0
1

∆1

∫ s0
2

∆2

ρQCD(s1,s2)δ(s1−s2)

[s1−(p+q)2] [s2−q2]
ds1ds2 + · · ·=

∫ s0
1

∆1

∫ s0
1

∆2

ρQCD(s1,s2)δ(s1−s2)

[s1−(p+q)2] [s2−q2]
ds1ds2 + · · · . (14)

In the case of non-equal threshold parameters

s0
1 6= s0

2, we can take s0 = max(s0
1,s

0
2) with s0 small

enough to avoid the contaminations from the high

resonances in either of the two channels, or take

s0 = min(s0
1,s

0
2) with s0 large enough to take into

account the contributions from the ground states in

either of the two channels. We have two choices in

general, which can result in some uncertainties. In

this article, we choose the current Jµ(x) to interpo-

late both the η and η′ mesons to overcome the short-

coming, and take into account the contributions from

the η′ meson at the phenomenological side.

3 Numerical results and discussion

The input parameters of the light-cone distribu-

tion amplitudes are taken as λ3 = 0.0, f3π = (0.45±
0.15)× 10−2 GeV2, ω3 = −1.5± 0.7, ω4 = 0.2± 0.1,

a1 = 0.0, a2 = 0.28±0.08, a4 = 0.0, η4 = 10.0±3.0 [36–

39], mu = md = mq = (5.6±1.6)MeV, fπ = 0.130 GeV,

mπ = 0.135 GeV, Mη = 0.547 GeV, Mη′ = 0.958 GeV,

Ma0
= 0.985 GeV, fη = 1.3fπ, fη′ = 1.2fπ [40], and

fa0
= (0.21±0.01) GeV [23].

The axial-vector current Jµ(x) has also non-

vanishing couplings with both the pseudoscalar

mesons η(1295), η(1405), η(1475), etc and the axial-
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vector mesons f1(1285), etc. The scalar current

J(x) also has non-vanishing couplings with the scalar

mesons a0(1450), etc. The masses and widths of those

mesons are Mη(1295) = (1294 ± 4) GeV, Γη(1295) =

(55±5) GeV; Mη(1405) = (1409.8±2.5) GeV, Γη(1405) =

(51.1±3.4) GeV; Mη(1475) = (1476±4) GeV, Γη(1475) =

(87±9) GeV; Mf1(1285) = (1281.8±0.6) GeV, Γf1(1285) =

(24.2± 1.1) GeV; Ma0(1450) = (1474± 19) GeV and

Γa0(1450) = (265± 13) GeV from the Particle Data

Group [41].

From the experimental data, we can see that

the a0 channel permits a larger threshold parame-

ter than that of the η channel. If we take the value

s0 = max(s0
η,s0

a0
) = s0

a0
6 1.7 GeV2, the contamina-

tions from the η(1295) and f1(1285) are included. We

have to take the other choice, s0 = min(s0
η,s0

a0
) = s0

η 6

1.6 GeV2. It happens to be the ideal choice and re-

produces the mass of a0(980) with the conventional

two-point QCD sum rules for the Borel parameter

M 2 = (1.0−1.6) GeV2.

In this article, we take the threshold parame-

ter and Borel parameter as s0 = (1.4 − 1.6) GeV2

and M 2 = (1.0− 1.6) GeV2 to avoid contaminations

from the high resonances and continuum states as

exp

(

− s0

M 2

)

= 0.2−0.4. In this region, the value of

the coupling constant g is rather stable with respect

to a variation of the Borel parameter, see Figs. 1–2.

Fig. 1. The coupling constant g as a function

of M2 with mu as a parameter.

In this article, we take the values of the coeffi-

cients ai of the twist-2 light-cone distribution am-

plitude ϕπ(u) from the conventional QCD sum rules

[36, 39]. ϕπ(u) has been analyzed with the light-cone

QCD sum rules and (non-local condensates) QCD

sum rules and confronted with the high precision

CLEO data on the γγ∗ → π0 transition form-factor

[42–47]. We also study the coupling constants ga0ηπ0

and ga0η′π0 with the values a2 = 0.29 and a4 =−0.21

at µ = 1 GeV, which are obtained via a one-loop

renormalization group equation for the central values

a2 = 0.268 and a4 = −0.186 at µ2 = 1.35 GeV2 from

the (non-local condensates) QCD sum rules with the

improved model [47].

Fig. 2. Variation of the coupling constant g

with M2, (a) for mq = (5.6 ± 1.6) MeV and

(b) for mq = (5.6±0.6) MeV.

In the limit of a large Borel parameter M 2, the

coupling constant g takes up the following behavior,

g ∝ M 2

mu

[

ϕp(u0)−
dϕσ(u0)

6du0

]

. (15)

It is not unexpected that the contributions from the

two-particle twist-3 light-cone distribution amplitude

ϕp(u) are greatly enhanced by the large Borel pa-

rameter M 2; large uncertainties of the relevant pa-

rameters presented in the above equations have sig-

nificant impact on the numerical results. The con-

tribution from the two-particle twist-3 ϕσ(u0) is zero

due to its symmetry property. If we take the value

mu = md = mq = (5.6 ± 1.6) GeV [39], the un-

certainty coming from mq is very large, about (33–

64)%, and the predictive ability is poor, see Fig. 1.

From the Gell-Mann-Oakes-Renner relation, we can

obtain
f 2

πm2
π

mu +md

= (0.027 ± 0.003) GeV3 [36], i.e.

mq ≈ (5.6± 0.6) GeV, which may result in a much

smaller uncertainty.
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Taking into account all the uncertainties of the in-

put parameters, finally we obtain the numerical val-

ues of the coupling constants, which are shown in

Fig. 2,

g = 3.8+2.5
−1.4 GeV ,

ga0ηπ0 = 3.1+2.0
−1.1 GeV , (16)

ga0η′π0 = 4.4+2.9
−1.6 GeV ,

for mq = (5.6±1.6) GeV and

g = 3.8+1.1
−0.8 GeV ,

ga0ηπ0 = 3.1+0.9
−0.7 GeV , (17)

ga0η′π0 = 4.4+1.3
−0.9 GeV ,

for mq = (5.6±0.6) GeV. The parameters of the twist-

2 light-cone distribution amplitude ϕπ(u) obtained in

Ref. [47] can change the value of the coupling con-

stant slightly, less than 0.1%.

In Table 1, we list some values (not all) of the cou-

pling constant ga0ηπ0 from different quark models and

the experimental data. From the table, we see that

the values of the early estimations with the qq̄ model,

tetraquark model and KK̄ molecule model deviate

greatly from the experimental data [52–54], i.e. we

cannot use them to identify the structures of a0(980)

with confidence. Compared with the values extracted

from the radiative decay φ(1020)→ a0(980)γ→ηπ0γ

[50–54], the central value of our numerical result is

reasonable and supports the qq̄ model.

Table 1. The coupling constant ga0ηπ0 from dif-

ferent quark models and experimental data.

quark models and experimental data ga0ηπ0/GeV

qq̄ model [48] 2.03

tetraquark model [48] 4.57

KK̄ molecule model [8, 49] 1.74

SND Collaboration [50, 51] 3.11

KLOE Collaboration [52, 53] 3.0±0.2

KLOE Collaboration [54] 2.8±0.1

light-cone sum rules (qq̄ model) [25] 2.6−3.4

this work (qq̄ model) 3.1+0.9
−0.7

From the coupling constant ga0ηπ0 , we can obtain

the decay width Γa0→ηπ0 :

Γa0→ηπ0 =
pg2

a0ηπ0

8πM 2
a0

= 127+222
−76 GeV for

g = 3.8+2.5
−1.4 GeV;= 127+84

−48 MeV for

g = 3.8+1.1
−0.8 GeV , (18)

p =

√

[

M 2
a0
−(Mη +mπ)2

][

M 2
a0
−(Mη−mπ)2

]

2Ma0

.

Compared with the experimental data Γa0(980) = (50−
100) GeV from the Particle Data Group with the very

model dependent estimation (the decay width can be

much larger) [41], the central value and lower bound

of our numerical result Γa0→ηπ0 = 127+84
−48 GeV are rea-

sonable; however, the upper-bound is too large. We

should reduce the uncertainties of the input parame-

ters f3π and mq (the main uncertainties originate

from them) before drawing a definite conclusion.

In this article we take the point of view that the

a0(980) is a scalar qq̄ state. In Ref. [55] the light nonet

scalar mesons are taken as tetraquark states, and the

coupling constants among the light scalar mesons and

pseudoscalar mesons are calculated with the QCD

sum rules. The numerical results indicate that the

values of the coupling constants for the tetraquark

states are always smaller than the corresponding ones

for the qq̄ states [22, 23].

The predictions listed in Table 1 are obtained

from the phenomenological (potential) quark mod-

els [8, 48, 49], and the resulting coupling constant

g differs greatly from the corresponding ones from

the QCD sum rules [22, 23, 55]. Furthermore, those

predictions also differ significantly from the ones ex-

tracted from the experimental data [50–54]. In this

article, we prefer the values from the QCD sum rules

for consistency, i.e. if the nonet scalar mesons are

tetraquark states, they have much smaller coupling

constant g [22, 23, 55].

The scalar meson a0(980) may have a small qq̄

kernel of the typical qq̄ meson size. Strong cou-

pling to the nearby K̄K threshold may result in some

tetraquark components, i.e. either a nucleon-like

bound state or a deuteron-like bound state. The

tetraquark components may lead to a smaller decay

width and smear the discrepancy between the (upper

bound of) theoretical calculation and the experimen-

tal data.

4 Conclusion

In this article, we take the point of view that the

scalar meson a0(980) is a conventional qq̄ state and

calculate the coupling constants ga0ηπ0 and ga0η′π0

with the light-cone QCD sum rules. Although the

coupling constant ga0η′π0 has no direct phenomeno-

logical interest, we take into account the η′ meson

to facilitate subtraction of the continuum states to

obtain a more reliable sum rule. The central value

of the coupling constant ga0ηπ0 is consistent with the

values extracted from the radiative decay φ(1020)→
a0(980)γ→ηπ0γ. The central value and lower bound
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of the decay width Γa0→ηπ0 = 127+84
−48 GeV are com-

patible with the experimental data of the total decay

width Γa0(980) = (50 − 100) GeV from the Particle

Data Group with a very model dependent estimation

(the decay width can be much larger), while the up-

per bound is too large. The scalar meson a0(980)

may have a small qq̄ kernel of typical qq̄ meson size.

Strong coupling to the nearby K̄K threshold may re-

sult in some tetraquark components, which can be

a nucleon-like bound state or a deuteron-like bound

state. The tetraquark components may lead to a

smaller decay width and smear the discrepancy be-

tween the theoretical calculation and the experimen-

tal data.

Appendix A

We present some technical details in obtaining the spectral density at the phenomenological side,

〈η|J(0)|π0〉 = 〈η(p′)|
∑

a

∫
d3~q

(2π)32E
|a(q)〉〈a(q)|J(0)|π0(p)〉=

∑

a

∫
d4q

(2π)4
〈η(p′)| i

q2−M 2
a +iε

|a(q)〉〈a(q)|J(0)|π0(p)〉=

∑

a

∫
d4q

(2π)4
〈η(p′)|a(q)π0(p)〉 i

q2−M 2
a +iε

〈a(q)|J(0)|0〉=

∑

a

faMa

∫
d4q

(2π)4
〈η(p′)|i

∫
d4yL(y)|a(q)π0(p)〉 i

q2−M 2
a +iε

=

∑

a

∫
d4q

(2π)4
〈η(p′)|

∫
d4y gaη(y)a(y)π0(y)|a(q)π0(p)〉 faMa

M 2
a −q2− iε

=

∑

a

∫
d4q

(2π)4
(2π)4δ4(p′−p−q)ga

faMa

M 2
a −q2− iε

=
∑

a

gafaMa

M 2
a −(p′−p)2− iε

,

where we have used the completeness relation,

∑

a

∫
d3~q

(2π)32E
|a(q)〉〈a(q)|= 1 ,

which corresponds to the normalization condition 〈a(q)|a(q′)〉= (2π)32Eδ3(~q−~q′). The a’s are the intermediate

hadronic states with the same quantum numbers as the current operator J(0), the ga denote the corresponding

coupling constants among the η, a and π0, and 〈0|J(0)|a(q)〉 = faMa. In the light-cone QCD sum rules, we

often use the economical form,

〈η|J(0)|π0〉 =
∑

a

〈η(p′)|a(q)π0(p)〉 i

q2−M 2
a +iε

〈a(q)|J(0)|0〉=
∑

a

gafaMa

M 2
a −q2− iε

,

with a suitable definition 〈η(p′)|a(q)π0(p)〉= iga.
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The light-cone distribution amplitudes of the π meson are defined as,

〈0|ū(0)γµγ5d(x)|π(p)〉 = ifπpµ

∫1

0

due−iup·x

{

ϕπ(u)+
m2

πx2

16
A(u)

}

+ifπm2
π

xµ

2p ·x

∫1

0

due−iup·xB(u) ,

〈0|ū(0)iγ5d(x)|π(p)〉 =
fπm2

π

mu+md

∫1

0

due−iup·xϕp(u) ,

〈0|ū(0)σµνγ5d(x)|π(p)〉 = i(pµxν −pνxµ)
fπm2

π

6(mu+md)

∫1

0

due−iup·xϕσ(u) ,

〈0|ū(0)σαβγ5gsGµν(vx)d(x)|π(p)〉 = f3π

{

(pµpαg⊥
νβ−pνpαg⊥

µβ)−(pµpβg⊥
να − pνpβg⊥

µα)
}

∫
Dαiϕ3π(αi)e

−ip·x(αd+vαg) ,

〈0|ū(0)γµγ5gsGαβ(vx)d(x)|π(p)〉 = pµ

pαxβ−pβxα

p ·x fπm2
π

∫
DαiA‖(αi)e

−ip·x(αd+vαg) +

fπm2
π(pβgαµ−pαgβµ)

∫
DαiA⊥(αi)e

−ip·x(αd+vαg) ,

〈0|ū(0)γµgsG̃αβ(vx)d(x)|π(p)〉 = pµ

pαxβ−pβxα

p ·x fπm2
π

∫
DαiV‖(αi)e

−ip·x(αd+vαg) +

fπm2
π(pβgαµ−pαgβµ)

∫
DαiV⊥(αi)e

−ip·x(αd+vαg) , (A1)

where G̃αβ =
1

2
εαβµνGµν and Dαi = dα1dα2dα3δ(1−α1−α2−α3).

The light-cone distribution amplitudes are parameterized as

ϕπ(u) = 6u(1−u)
{

1+a1C
3
2
1 (2u−1)+a2C

3
2
2 (2u−1)+a4C

3
2
4 (2u−1)

}

,

ϕp(u) = 1+

{

30η3−
5

2
ρ2

}

C
1
2
2 (2u−1)+

{

−3η3ω3−
27

20
ρ2− 81

10
ρ2a2

}

C
1
2
4 (2u−1) ,

ϕσ(u) = 6u(1−u)

{

1+

[

5η3−
1

2
η3ω3−

7

20
ρ2− 3

5
ρ2a2

]

C
3
2
2 (2u−1)

}

,

ϕ3π(αi) = 360αuαdα
2
g

{

1+λ3(αu−αd)+ω3

1

2
(7αg−3)

}

,

V‖(αi) = 120αuαdαg (v00 +v10(3αg−1)) ,

A‖(αi) = 120αuαdαga10(αd−αu) ,

V⊥(αi) = −30α2
g {h00(1−αg)+h01 [αg(1−αg)−6αuαd] + h10

[

αg(1−αg)−
3

2
(α2

u +α2
d)

]}

,

A⊥(αi) = 30α2
g(αu−αd)

{

h00 +h01αg +
1

2
h10(5αg−3)

}

,

A(u) = 6u(1−u)

{

16

15
+

24

35
a2 +20η3 +

20

9
η4 +

[

− 1

15
+

1

16
− 7

27
η3ω3−

10

27
η4

]

C
3
2
2 (2u−1)+

[

− 11

210
a2−

4

135
η3ω3

]

C
3
2
4 (2u−1)

}

+

{

−18

5
a2 +21η4ω4

}

{2u3(10−15u+6u2) logu+2ū3(10−15ū+6ū2) log ū + uū(2+13uū)} ,

gπ(u) = 1+g2C
1
2
2 (2u−1)+g4C

1
2
4 (2u−1) ,

B(u) = gπ(u)−ϕπ(u) , (A2)
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where

h00 = v00 =−η4

3
,

a10 =
21

8
η4ω4−

9

20
a2 ,

v10 =
21

8
η4ω4 ,

h01 =
7

4
η4ω4−

3

20
a2 ,

h10 =
7

2
η4ω4 +

3

20
a2 ,

g2 = 1+
18

7
a2 +60η3 +

20

3
η4 ,

g4 = − 9

28
a2−6η3ω3 , (A3)

C
1
2
2 (ξ), C

1
2
4 (ξ), C

3
2
2 (ξ) and C

3
2
4 (ξ) are Gegenbauer polynomials, η3 =

f3π

fπ

mu+md

m2
π

and ρ2 =
(mu +md)

2

m2
π

.
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